xref: /openbsd/sys/kern/uipc_socket.c (revision 6a951d55)
1 /*	$OpenBSD: uipc_socket.c,v 1.361 2025/01/20 16:34:48 bluhm Exp $	*/
2 /*	$NetBSD: uipc_socket.c,v 1.21 1996/02/04 02:17:52 christos Exp $	*/
3 
4 /*
5  * Copyright (c) 1982, 1986, 1988, 1990, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)uipc_socket.c	8.3 (Berkeley) 4/15/94
33  */
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/proc.h>
38 #include <sys/file.h>
39 #include <sys/filedesc.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/domain.h>
43 #include <sys/event.h>
44 #include <sys/protosw.h>
45 #include <sys/socket.h>
46 #include <sys/unpcb.h>
47 #include <sys/socketvar.h>
48 #include <sys/signalvar.h>
49 #include <sys/pool.h>
50 #include <sys/atomic.h>
51 #include <sys/rwlock.h>
52 #include <sys/time.h>
53 #include <sys/refcnt.h>
54 
55 #ifdef DDB
56 #include <machine/db_machdep.h>
57 #endif
58 
59 void	sbsync(struct sockbuf *, struct mbuf *);
60 
61 int	sosplice(struct socket *, int, off_t, struct timeval *);
62 void	sounsplice(struct socket *, struct socket *, int);
63 void	soidle(void *);
64 void	sotask(void *);
65 int	somove(struct socket *, int);
66 void	sorflush(struct socket *);
67 
68 void	filt_sordetach(struct knote *kn);
69 int	filt_soread(struct knote *kn, long hint);
70 void	filt_sowdetach(struct knote *kn);
71 int	filt_sowrite(struct knote *kn, long hint);
72 int	filt_soexcept(struct knote *kn, long hint);
73 
74 int	filt_sowmodify(struct kevent *kev, struct knote *kn);
75 int	filt_sowprocess(struct knote *kn, struct kevent *kev);
76 
77 int	filt_sormodify(struct kevent *kev, struct knote *kn);
78 int	filt_sorprocess(struct knote *kn, struct kevent *kev);
79 
80 const struct filterops soread_filtops = {
81 	.f_flags	= FILTEROP_ISFD | FILTEROP_MPSAFE,
82 	.f_attach	= NULL,
83 	.f_detach	= filt_sordetach,
84 	.f_event	= filt_soread,
85 	.f_modify	= filt_sormodify,
86 	.f_process	= filt_sorprocess,
87 };
88 
89 const struct filterops sowrite_filtops = {
90 	.f_flags	= FILTEROP_ISFD | FILTEROP_MPSAFE,
91 	.f_attach	= NULL,
92 	.f_detach	= filt_sowdetach,
93 	.f_event	= filt_sowrite,
94 	.f_modify	= filt_sowmodify,
95 	.f_process	= filt_sowprocess,
96 };
97 
98 const struct filterops soexcept_filtops = {
99 	.f_flags	= FILTEROP_ISFD | FILTEROP_MPSAFE,
100 	.f_attach	= NULL,
101 	.f_detach	= filt_sordetach,
102 	.f_event	= filt_soexcept,
103 	.f_modify	= filt_sormodify,
104 	.f_process	= filt_sorprocess,
105 };
106 
107 #ifndef SOMINCONN
108 #define SOMINCONN 80
109 #endif /* SOMINCONN */
110 
111 int	somaxconn = SOMAXCONN;
112 int	sominconn = SOMINCONN;
113 
114 struct pool socket_pool;
115 #ifdef SOCKET_SPLICE
116 struct pool sosplice_pool;
117 struct taskq *sosplice_taskq;
118 struct rwlock sosplice_lock = RWLOCK_INITIALIZER("sosplicelk");
119 #endif
120 
121 void
122 soinit(void)
123 {
124 	pool_init(&socket_pool, sizeof(struct socket), 0, IPL_SOFTNET, 0,
125 	    "sockpl", NULL);
126 #ifdef SOCKET_SPLICE
127 	pool_init(&sosplice_pool, sizeof(struct sosplice), 0, IPL_SOFTNET, 0,
128 	    "sosppl", NULL);
129 #endif
130 }
131 
132 struct socket *
133 soalloc(const struct protosw *prp, int wait)
134 {
135 	const struct domain *dp = prp->pr_domain;
136 	const char *dom_name = dp->dom_name;
137 	struct socket *so;
138 
139 	so = pool_get(&socket_pool, (wait == M_WAIT ? PR_WAITOK : PR_NOWAIT) |
140 	    PR_ZERO);
141 	if (so == NULL)
142 		return (NULL);
143 
144 #ifdef WITNESS
145 	/*
146 	 * XXX: Make WITNESS happy. AF_INET and AF_INET6 sockets could be
147 	 * spliced together.
148 	 */
149 	switch (dp->dom_family) {
150 	case AF_INET:
151 	case AF_INET6:
152 		dom_name = "inet46";
153 		break;
154 	}
155 #endif
156 
157 	refcnt_init_trace(&so->so_refcnt, DT_REFCNT_IDX_SOCKET);
158 	rw_init_flags(&so->so_lock, dom_name, RWL_DUPOK);
159 	rw_init(&so->so_rcv.sb_lock, "sbufrcv");
160 	rw_init(&so->so_snd.sb_lock, "sbufsnd");
161 	mtx_init_flags(&so->so_rcv.sb_mtx, IPL_MPFLOOR, "sbrcv", 0);
162 	mtx_init_flags(&so->so_snd.sb_mtx, IPL_MPFLOOR, "sbsnd", 0);
163 	klist_init_mutex(&so->so_rcv.sb_klist, &so->so_rcv.sb_mtx);
164 	klist_init_mutex(&so->so_snd.sb_klist, &so->so_snd.sb_mtx);
165 	sigio_init(&so->so_sigio);
166 	TAILQ_INIT(&so->so_q0);
167 	TAILQ_INIT(&so->so_q);
168 
169 	so->so_snd.sb_flags |= SB_MTXLOCK;
170 	so->so_rcv.sb_flags |= SB_MTXLOCK;
171 
172 	return (so);
173 }
174 
175 /*
176  * Socket operation routines.
177  * These routines are called by the routines in
178  * sys_socket.c or from a system process, and
179  * implement the semantics of socket operations by
180  * switching out to the protocol specific routines.
181  */
182 int
183 socreate(int dom, struct socket **aso, int type, int proto)
184 {
185 	struct proc *p = curproc;		/* XXX */
186 	const struct protosw *prp;
187 	struct socket *so;
188 	int error;
189 
190 	if (proto)
191 		prp = pffindproto(dom, proto, type);
192 	else
193 		prp = pffindtype(dom, type);
194 	if (prp == NULL || prp->pr_usrreqs == NULL)
195 		return (EPROTONOSUPPORT);
196 	if (prp->pr_type != type)
197 		return (EPROTOTYPE);
198 	so = soalloc(prp, M_WAIT);
199 	so->so_type = type;
200 	if (suser(p) == 0)
201 		so->so_state = SS_PRIV;
202 	so->so_ruid = p->p_ucred->cr_ruid;
203 	so->so_euid = p->p_ucred->cr_uid;
204 	so->so_rgid = p->p_ucred->cr_rgid;
205 	so->so_egid = p->p_ucred->cr_gid;
206 	so->so_cpid = p->p_p->ps_pid;
207 	so->so_proto = prp;
208 	so->so_snd.sb_timeo_nsecs = INFSLP;
209 	so->so_rcv.sb_timeo_nsecs = INFSLP;
210 
211 	solock(so);
212 	error = pru_attach(so, proto, M_WAIT);
213 	if (error) {
214 		so->so_state |= SS_NOFDREF;
215 		/* sofree() calls sounlock(). */
216 		sofree(so, 0);
217 		return (error);
218 	}
219 	sounlock(so);
220 	*aso = so;
221 	return (0);
222 }
223 
224 int
225 sobind(struct socket *so, struct mbuf *nam, struct proc *p)
226 {
227 	soassertlocked(so);
228 	return pru_bind(so, nam, p);
229 }
230 
231 int
232 solisten(struct socket *so, int backlog)
233 {
234 	int somaxconn_local = atomic_load_int(&somaxconn);
235 	int sominconn_local = atomic_load_int(&sominconn);
236 	int error;
237 
238 	switch (so->so_type) {
239 	case SOCK_STREAM:
240 	case SOCK_SEQPACKET:
241 		break;
242 	default:
243 		return (EOPNOTSUPP);
244 	}
245 
246 	soassertlocked(so);
247 
248 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING|SS_ISDISCONNECTING))
249 		return (EINVAL);
250 #ifdef SOCKET_SPLICE
251 	if (isspliced(so) || issplicedback(so))
252 		return (EOPNOTSUPP);
253 #endif /* SOCKET_SPLICE */
254 	error = pru_listen(so);
255 	if (error)
256 		return (error);
257 	if (TAILQ_FIRST(&so->so_q) == NULL)
258 		so->so_options |= SO_ACCEPTCONN;
259 	if (backlog < 0 || backlog > somaxconn_local)
260 		backlog = somaxconn_local;
261 	if (backlog < sominconn_local)
262 		backlog = sominconn_local;
263 	so->so_qlimit = backlog;
264 	return (0);
265 }
266 
267 void
268 sorele(struct socket *so)
269 {
270 	if (refcnt_rele(&so->so_refcnt) == 0)
271 		return;
272 
273 	sigio_free(&so->so_sigio);
274 	klist_free(&so->so_rcv.sb_klist);
275 	klist_free(&so->so_snd.sb_klist);
276 
277 	mtx_enter(&so->so_snd.sb_mtx);
278 	sbrelease(so, &so->so_snd);
279 	mtx_leave(&so->so_snd.sb_mtx);
280 
281 	if (so->so_proto->pr_flags & PR_RIGHTS &&
282 	    so->so_proto->pr_domain->dom_dispose)
283 		(*so->so_proto->pr_domain->dom_dispose)(so->so_rcv.sb_mb);
284 	m_purge(so->so_rcv.sb_mb);
285 
286 #ifdef SOCKET_SPLICE
287 	if (so->so_sp)
288 		pool_put(&sosplice_pool, so->so_sp);
289 #endif
290 	pool_put(&socket_pool, so);
291 }
292 
293 #define SOSP_FREEING_READ	1
294 #define SOSP_FREEING_WRITE	2
295 void
296 sofree(struct socket *so, int keep_lock)
297 {
298 	int persocket = solock_persocket(so);
299 
300 	soassertlocked(so);
301 
302 	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
303 		if (!keep_lock)
304 			sounlock(so);
305 		return;
306 	}
307 	if (so->so_head) {
308 		struct socket *head = so->so_head;
309 
310 		/*
311 		 * We must not decommission a socket that's on the accept(2)
312 		 * queue.  If we do, then accept(2) may hang after select(2)
313 		 * indicated that the listening socket was ready.
314 		 */
315 		if (so->so_onq == &head->so_q) {
316 			if (!keep_lock)
317 				sounlock(so);
318 			return;
319 		}
320 
321 		if (persocket) {
322 			soref(head);
323 			sounlock(so);
324 			solock(head);
325 			solock(so);
326 
327 			if (so->so_onq != &head->so_q0) {
328 				sounlock(so);
329 				sounlock(head);
330 				sorele(head);
331 				return;
332 			}
333 		}
334 
335 		soqremque(so, 0);
336 
337 		if (persocket) {
338 			sounlock(head);
339 			sorele(head);
340 		}
341 	}
342 
343 	if (!keep_lock)
344 		sounlock(so);
345 	sorele(so);
346 }
347 
348 static inline uint64_t
349 solinger_nsec(struct socket *so)
350 {
351 	if (so->so_linger == 0)
352 		return INFSLP;
353 
354 	return SEC_TO_NSEC(so->so_linger);
355 }
356 
357 /*
358  * Close a socket on last file table reference removal.
359  * Initiate disconnect if connected.
360  * Free socket when disconnect complete.
361  */
362 int
363 soclose(struct socket *so, int flags)
364 {
365 	struct socket *so2;
366 	int error = 0;
367 
368 	solock(so);
369 	/* Revoke async IO early. There is a final revocation in sofree(). */
370 	sigio_free(&so->so_sigio);
371 	if (so->so_state & SS_ISCONNECTED) {
372 		if (so->so_pcb == NULL)
373 			goto discard;
374 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
375 			error = sodisconnect(so);
376 			if (error)
377 				goto drop;
378 		}
379 		if (so->so_options & SO_LINGER) {
380 			if ((so->so_state & SS_ISDISCONNECTING) &&
381 			    (flags & MSG_DONTWAIT))
382 				goto drop;
383 			while (so->so_state & SS_ISCONNECTED) {
384 				error = sosleep_nsec(so, &so->so_timeo,
385 				    PSOCK | PCATCH, "netcls",
386 				    solinger_nsec(so));
387 				if (error)
388 					break;
389 			}
390 		}
391 	}
392 drop:
393 	if (so->so_pcb) {
394 		int error2;
395 		error2 = pru_detach(so);
396 		if (error == 0)
397 			error = error2;
398 	}
399 	if (so->so_options & SO_ACCEPTCONN) {
400 		int persocket = solock_persocket(so);
401 
402 		while ((so2 = TAILQ_FIRST(&so->so_q0)) != NULL) {
403 			soref(so2);
404 			solock(so2);
405 			(void) soqremque(so2, 0);
406 			sounlock(so);
407 			soabort(so2);
408 			sounlock(so2);
409 			sorele(so2);
410 			solock(so);
411 		}
412 		while ((so2 = TAILQ_FIRST(&so->so_q)) != NULL) {
413 			soref(so2);
414 			solock_nonet(so2);
415 			(void) soqremque(so2, 1);
416 			if (persocket)
417 				sounlock(so);
418 			soabort(so2);
419 			sounlock_nonet(so2);
420 			sorele(so2);
421 			if (persocket)
422 				solock(so);
423 		}
424 	}
425 discard:
426 #ifdef SOCKET_SPLICE
427 	if (so->so_sp) {
428 		struct socket *soback;
429 
430 		sounlock(so);
431 		mtx_enter(&so->so_snd.sb_mtx);
432 		/*
433 		 * Concurrent sounsplice() locks `sb_mtx' mutexes on
434 		 * both `so_snd' and `so_rcv' before unsplice sockets.
435 		 */
436 		if ((soback = so->so_sp->ssp_soback) == NULL) {
437 			mtx_leave(&so->so_snd.sb_mtx);
438 			goto notsplicedback;
439 		}
440 		soref(soback);
441 		mtx_leave(&so->so_snd.sb_mtx);
442 
443 		/*
444 		 * `so' can be only unspliced, and never spliced again.
445 		 * Thus if issplicedback(so) check is positive, socket is
446 		 * still spliced and `ssp_soback' points to the same
447 		 * socket that `soback'.
448 		 */
449 		sblock(&soback->so_rcv, SBL_WAIT | SBL_NOINTR);
450 		if (issplicedback(so)) {
451 			int freeing = SOSP_FREEING_WRITE;
452 
453 			if (so->so_sp->ssp_soback == so)
454 				freeing |= SOSP_FREEING_READ;
455 			sounsplice(so->so_sp->ssp_soback, so, freeing);
456 		}
457 		sbunlock(&soback->so_rcv);
458 		sorele(soback);
459 
460 notsplicedback:
461 		sblock(&so->so_rcv, SBL_WAIT | SBL_NOINTR);
462 		if (isspliced(so)) {
463 			struct socket *sosp;
464 			int freeing = SOSP_FREEING_READ;
465 
466 			if (so == so->so_sp->ssp_socket)
467 				freeing |= SOSP_FREEING_WRITE;
468 			sosp = soref(so->so_sp->ssp_socket);
469 			sounsplice(so, so->so_sp->ssp_socket, freeing);
470 			sorele(sosp);
471 		}
472 		sbunlock(&so->so_rcv);
473 
474 		timeout_del_barrier(&so->so_sp->ssp_idleto);
475 		task_del(sosplice_taskq, &so->so_sp->ssp_task);
476 		taskq_barrier(sosplice_taskq);
477 
478 		solock(so);
479 	}
480 #endif /* SOCKET_SPLICE */
481 
482 	if (so->so_state & SS_NOFDREF)
483 		panic("soclose NOFDREF: so %p, so_type %d", so, so->so_type);
484 	so->so_state |= SS_NOFDREF;
485 
486 	/* sofree() calls sounlock(). */
487 	sofree(so, 0);
488 	return (error);
489 }
490 
491 void
492 soabort(struct socket *so)
493 {
494 	soassertlocked(so);
495 	pru_abort(so);
496 }
497 
498 int
499 soaccept(struct socket *so, struct mbuf *nam)
500 {
501 	int error = 0;
502 
503 	soassertlocked(so);
504 
505 	if ((so->so_state & SS_NOFDREF) == 0)
506 		panic("soaccept !NOFDREF: so %p, so_type %d", so, so->so_type);
507 	so->so_state &= ~SS_NOFDREF;
508 	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
509 	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
510 		error = pru_accept(so, nam);
511 	else
512 		error = ECONNABORTED;
513 	return (error);
514 }
515 
516 int
517 soconnect(struct socket *so, struct mbuf *nam)
518 {
519 	int error;
520 
521 	soassertlocked(so);
522 
523 	if (so->so_options & SO_ACCEPTCONN)
524 		return (EOPNOTSUPP);
525 	/*
526 	 * If protocol is connection-based, can only connect once.
527 	 * Otherwise, if connected, try to disconnect first.
528 	 * This allows user to disconnect by connecting to, e.g.,
529 	 * a null address.
530 	 */
531 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
532 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
533 	    (error = sodisconnect(so))))
534 		error = EISCONN;
535 	else
536 		error = pru_connect(so, nam);
537 	return (error);
538 }
539 
540 int
541 soconnect2(struct socket *so1, struct socket *so2)
542 {
543 	int persocket, error;
544 
545 	if ((persocket = solock_persocket(so1)))
546 		solock_pair(so1, so2);
547 	else
548 		solock(so1);
549 
550 	error = pru_connect2(so1, so2);
551 
552 	if (persocket)
553 		sounlock(so2);
554 	sounlock(so1);
555 	return (error);
556 }
557 
558 int
559 sodisconnect(struct socket *so)
560 {
561 	int error;
562 
563 	soassertlocked(so);
564 
565 	if ((so->so_state & SS_ISCONNECTED) == 0)
566 		return (ENOTCONN);
567 	if (so->so_state & SS_ISDISCONNECTING)
568 		return (EALREADY);
569 	error = pru_disconnect(so);
570 	return (error);
571 }
572 
573 int m_getuio(struct mbuf **, int, long, struct uio *);
574 
575 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT)
576 /*
577  * Send on a socket.
578  * If send must go all at once and message is larger than
579  * send buffering, then hard error.
580  * Lock against other senders.
581  * If must go all at once and not enough room now, then
582  * inform user that this would block and do nothing.
583  * Otherwise, if nonblocking, send as much as possible.
584  * The data to be sent is described by "uio" if nonzero,
585  * otherwise by the mbuf chain "top" (which must be null
586  * if uio is not).  Data provided in mbuf chain must be small
587  * enough to send all at once.
588  *
589  * Returns nonzero on error, timeout or signal; callers
590  * must check for short counts if EINTR/ERESTART are returned.
591  * Data and control buffers are freed on return.
592  */
593 int
594 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
595     struct mbuf *control, int flags)
596 {
597 	long space, clen = 0;
598 	size_t resid;
599 	int error;
600 	int atomic = sosendallatonce(so) || top;
601 	int dosolock = ((so->so_snd.sb_flags & SB_MTXLOCK) == 0);
602 
603 	if (uio)
604 		resid = uio->uio_resid;
605 	else
606 		resid = top->m_pkthdr.len;
607 	/* MSG_EOR on a SOCK_STREAM socket is invalid. */
608 	if (so->so_type == SOCK_STREAM && (flags & MSG_EOR)) {
609 		m_freem(top);
610 		m_freem(control);
611 		return (EINVAL);
612 	}
613 	if (uio && uio->uio_procp)
614 		uio->uio_procp->p_ru.ru_msgsnd++;
615 	if (control) {
616 		/*
617 		 * In theory clen should be unsigned (since control->m_len is).
618 		 * However, space must be signed, as it might be less than 0
619 		 * if we over-committed, and we must use a signed comparison
620 		 * of space and clen.
621 		 */
622 		clen = control->m_len;
623 		/* reserve extra space for AF_UNIX's internalize */
624 		if (so->so_proto->pr_domain->dom_family == AF_UNIX &&
625 		    clen >= CMSG_ALIGN(sizeof(struct cmsghdr)) &&
626 		    mtod(control, struct cmsghdr *)->cmsg_type == SCM_RIGHTS)
627 			clen = CMSG_SPACE(
628 			    (clen - CMSG_ALIGN(sizeof(struct cmsghdr))) *
629 			    (sizeof(struct fdpass) / sizeof(int)));
630 	}
631 
632 #define	snderr(errno)	{ error = errno; goto release; }
633 
634 restart:
635 	if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
636 		goto out;
637 	if (dosolock)
638 		solock_shared(so);
639 	sb_mtx_lock(&so->so_snd);
640 	so->so_snd.sb_state |= SS_ISSENDING;
641 	do {
642 		if (so->so_snd.sb_state & SS_CANTSENDMORE)
643 			snderr(EPIPE);
644 		if ((error = READ_ONCE(so->so_error))) {
645 			so->so_error = 0;
646 			snderr(error);
647 		}
648 		if ((so->so_state & SS_ISCONNECTED) == 0) {
649 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
650 				if (!(resid == 0 && clen != 0))
651 					snderr(ENOTCONN);
652 			} else if (addr == NULL)
653 				snderr(EDESTADDRREQ);
654 		}
655 		space = sbspace_locked(so, &so->so_snd);
656 		if (flags & MSG_OOB)
657 			space += 1024;
658 		if (so->so_proto->pr_domain->dom_family == AF_UNIX) {
659 			if (atomic && resid > so->so_snd.sb_hiwat)
660 				snderr(EMSGSIZE);
661 		} else {
662 			if (clen > so->so_snd.sb_hiwat ||
663 			    (atomic && resid > so->so_snd.sb_hiwat - clen))
664 				snderr(EMSGSIZE);
665 		}
666 		if (space < clen ||
667 		    (space - clen < resid &&
668 		    (atomic || space < so->so_snd.sb_lowat))) {
669 			if (flags & MSG_DONTWAIT)
670 				snderr(EWOULDBLOCK);
671 			sbunlock(&so->so_snd);
672 			error = sbwait(so, &so->so_snd);
673 			so->so_snd.sb_state &= ~SS_ISSENDING;
674 			sb_mtx_unlock(&so->so_snd);
675 			if (dosolock)
676 				sounlock_shared(so);
677 			if (error)
678 				goto out;
679 			goto restart;
680 		}
681 		space -= clen;
682 		do {
683 			if (uio == NULL) {
684 				/*
685 				 * Data is prepackaged in "top".
686 				 */
687 				resid = 0;
688 				if (flags & MSG_EOR)
689 					top->m_flags |= M_EOR;
690 			} else {
691 				sb_mtx_unlock(&so->so_snd);
692 				if (dosolock)
693 					sounlock_shared(so);
694 				error = m_getuio(&top, atomic, space, uio);
695 				if (dosolock)
696 					solock_shared(so);
697 				sb_mtx_lock(&so->so_snd);
698 				if (error)
699 					goto release;
700 				space -= top->m_pkthdr.len;
701 				resid = uio->uio_resid;
702 				if (flags & MSG_EOR)
703 					top->m_flags |= M_EOR;
704 			}
705 			if (resid == 0)
706 				so->so_snd.sb_state &= ~SS_ISSENDING;
707 			if (top && so->so_options & SO_ZEROIZE)
708 				top->m_flags |= M_ZEROIZE;
709 			sb_mtx_unlock(&so->so_snd);
710 			if (!dosolock)
711 				solock_shared(so);
712 			if (flags & MSG_OOB)
713 				error = pru_sendoob(so, top, addr, control);
714 			else
715 				error = pru_send(so, top, addr, control);
716 			if (!dosolock)
717 				sounlock_shared(so);
718 			sb_mtx_lock(&so->so_snd);
719 			clen = 0;
720 			control = NULL;
721 			top = NULL;
722 			if (error)
723 				goto release;
724 		} while (resid && space > 0);
725 	} while (resid);
726 
727 release:
728 	so->so_snd.sb_state &= ~SS_ISSENDING;
729 	sb_mtx_unlock(&so->so_snd);
730 	if (dosolock)
731 		sounlock_shared(so);
732 	sbunlock(&so->so_snd);
733 out:
734 	m_freem(top);
735 	m_freem(control);
736 	return (error);
737 }
738 
739 int
740 m_getuio(struct mbuf **mp, int atomic, long space, struct uio *uio)
741 {
742 	struct mbuf *m, *top = NULL;
743 	struct mbuf **nextp = &top;
744 	u_long len, mlen;
745 	size_t resid = uio->uio_resid;
746 	int error;
747 
748 	do {
749 		if (top == NULL) {
750 			MGETHDR(m, M_WAIT, MT_DATA);
751 			mlen = MHLEN;
752 		} else {
753 			MGET(m, M_WAIT, MT_DATA);
754 			mlen = MLEN;
755 		}
756 		/* chain mbuf together */
757 		*nextp = m;
758 		nextp = &m->m_next;
759 
760 		resid = ulmin(resid, space);
761 		if (resid >= MINCLSIZE) {
762 			MCLGETL(m, M_NOWAIT, ulmin(resid, MAXMCLBYTES));
763 			if ((m->m_flags & M_EXT) == 0)
764 				MCLGETL(m, M_NOWAIT, MCLBYTES);
765 			if ((m->m_flags & M_EXT) == 0)
766 				goto nopages;
767 			mlen = m->m_ext.ext_size;
768 			len = ulmin(mlen, resid);
769 			/*
770 			 * For datagram protocols, leave room
771 			 * for protocol headers in first mbuf.
772 			 */
773 			if (atomic && m == top && len < mlen - max_hdr)
774 				m->m_data += max_hdr;
775 		} else {
776 nopages:
777 			len = ulmin(mlen, resid);
778 			/*
779 			 * For datagram protocols, leave room
780 			 * for protocol headers in first mbuf.
781 			 */
782 			if (atomic && m == top && len < mlen - max_hdr)
783 				m_align(m, len);
784 		}
785 
786 		error = uiomove(mtod(m, caddr_t), len, uio);
787 		if (error) {
788 			m_freem(top);
789 			return (error);
790 		}
791 
792 		/* adjust counters */
793 		resid = uio->uio_resid;
794 		space -= len;
795 		m->m_len = len;
796 		top->m_pkthdr.len += len;
797 
798 		/* Is there more space and more data? */
799 	} while (space > 0 && resid > 0);
800 
801 	*mp = top;
802 	return 0;
803 }
804 
805 /*
806  * Following replacement or removal of the first mbuf on the first
807  * mbuf chain of a socket buffer, push necessary state changes back
808  * into the socket buffer so that other consumers see the values
809  * consistently.  'nextrecord' is the callers locally stored value of
810  * the original value of sb->sb_mb->m_nextpkt which must be restored
811  * when the lead mbuf changes.  NOTE: 'nextrecord' may be NULL.
812  */
813 void
814 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
815 {
816 
817 	/*
818 	 * First, update for the new value of nextrecord.  If necessary,
819 	 * make it the first record.
820 	 */
821 	if (sb->sb_mb != NULL)
822 		sb->sb_mb->m_nextpkt = nextrecord;
823 	else
824 		sb->sb_mb = nextrecord;
825 
826 	/*
827 	 * Now update any dependent socket buffer fields to reflect
828 	 * the new state.  This is an inline of SB_EMPTY_FIXUP, with
829 	 * the addition of a second clause that takes care of the
830 	 * case where sb_mb has been updated, but remains the last
831 	 * record.
832 	 */
833 	if (sb->sb_mb == NULL) {
834 		sb->sb_mbtail = NULL;
835 		sb->sb_lastrecord = NULL;
836 	} else if (sb->sb_mb->m_nextpkt == NULL)
837 		sb->sb_lastrecord = sb->sb_mb;
838 }
839 
840 /*
841  * Implement receive operations on a socket.
842  * We depend on the way that records are added to the sockbuf
843  * by sbappend*.  In particular, each record (mbufs linked through m_next)
844  * must begin with an address if the protocol so specifies,
845  * followed by an optional mbuf or mbufs containing ancillary data,
846  * and then zero or more mbufs of data.
847  * In order to avoid blocking network for the entire time here, we release
848  * the solock() while doing the actual copy to user space.
849  * Although the sockbuf is locked, new data may still be appended,
850  * and thus we must maintain consistency of the sockbuf during that time.
851  *
852  * The caller may receive the data as a single mbuf chain by supplying
853  * an mbuf **mp0 for use in returning the chain.  The uio is then used
854  * only for the count in uio_resid.
855  */
856 int
857 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
858     struct mbuf **mp0, struct mbuf **controlp, int *flagsp,
859     socklen_t controllen)
860 {
861 	struct mbuf *m, **mp;
862 	struct mbuf *cm;
863 	u_long len, offset, moff;
864 	int flags, error, error2, type, uio_error = 0;
865 	const struct protosw *pr = so->so_proto;
866 	struct mbuf *nextrecord;
867 	size_t resid, orig_resid = uio->uio_resid;
868 	int dosolock = ((so->so_rcv.sb_flags & SB_MTXLOCK) == 0);
869 
870 	mp = mp0;
871 	if (paddr)
872 		*paddr = NULL;
873 	if (controlp)
874 		*controlp = NULL;
875 	if (flagsp)
876 		flags = *flagsp &~ MSG_EOR;
877 	else
878 		flags = 0;
879 	if (flags & MSG_OOB) {
880 		m = m_get(M_WAIT, MT_DATA);
881 		solock_shared(so);
882 		error = pru_rcvoob(so, m, flags & MSG_PEEK);
883 		sounlock_shared(so);
884 		if (error)
885 			goto bad;
886 		do {
887 			error = uiomove(mtod(m, caddr_t),
888 			    ulmin(uio->uio_resid, m->m_len), uio);
889 			m = m_free(m);
890 		} while (uio->uio_resid && error == 0 && m);
891 bad:
892 		m_freem(m);
893 		return (error);
894 	}
895 	if (mp)
896 		*mp = NULL;
897 
898 restart:
899 	if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0)
900 		return (error);
901 	if (dosolock)
902 		solock_shared(so);
903 	sb_mtx_lock(&so->so_rcv);
904 
905 	m = so->so_rcv.sb_mb;
906 #ifdef SOCKET_SPLICE
907 	if (isspliced(so))
908 		m = NULL;
909 #endif /* SOCKET_SPLICE */
910 	/*
911 	 * If we have less data than requested, block awaiting more
912 	 * (subject to any timeout) if:
913 	 *   1. the current count is less than the low water mark,
914 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
915 	 *	receive operation at once if we block (resid <= hiwat), or
916 	 *   3. MSG_DONTWAIT is not set.
917 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
918 	 * we have to do the receive in sections, and thus risk returning
919 	 * a short count if a timeout or signal occurs after we start.
920 	 */
921 	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
922 	    so->so_rcv.sb_cc < uio->uio_resid) &&
923 	    (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
924 	    ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
925 	    m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
926 #ifdef DIAGNOSTIC
927 		if (m == NULL && so->so_rcv.sb_cc)
928 #ifdef SOCKET_SPLICE
929 		    if (!isspliced(so))
930 #endif /* SOCKET_SPLICE */
931 			panic("receive 1: so %p, so_type %d, sb_cc %lu",
932 			    so, so->so_type, so->so_rcv.sb_cc);
933 #endif
934 		if ((error2 = READ_ONCE(so->so_error))) {
935 			if (m)
936 				goto dontblock;
937 			error = error2;
938 			if ((flags & MSG_PEEK) == 0)
939 				so->so_error = 0;
940 			goto release;
941 		}
942 		if (so->so_rcv.sb_state & SS_CANTRCVMORE) {
943 			if (m)
944 				goto dontblock;
945 			else if (so->so_rcv.sb_cc == 0)
946 				goto release;
947 		}
948 		for (; m; m = m->m_next)
949 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
950 				m = so->so_rcv.sb_mb;
951 				goto dontblock;
952 			}
953 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
954 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
955 			error = ENOTCONN;
956 			goto release;
957 		}
958 		if (uio->uio_resid == 0 && controlp == NULL)
959 			goto release;
960 		if (flags & MSG_DONTWAIT) {
961 			error = EWOULDBLOCK;
962 			goto release;
963 		}
964 		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
965 		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
966 
967 		sbunlock(&so->so_rcv);
968 		error = sbwait(so, &so->so_rcv);
969 		sb_mtx_unlock(&so->so_rcv);
970 		if (dosolock)
971 			sounlock_shared(so);
972 		if (error)
973 			return (error);
974 		goto restart;
975 	}
976 dontblock:
977 	/*
978 	 * On entry here, m points to the first record of the socket buffer.
979 	 * From this point onward, we maintain 'nextrecord' as a cache of the
980 	 * pointer to the next record in the socket buffer.  We must keep the
981 	 * various socket buffer pointers and local stack versions of the
982 	 * pointers in sync, pushing out modifications before operations that
983 	 * may sleep, and re-reading them afterwards.
984 	 *
985 	 * Otherwise, we will race with the network stack appending new data
986 	 * or records onto the socket buffer by using inconsistent/stale
987 	 * versions of the field, possibly resulting in socket buffer
988 	 * corruption.
989 	 */
990 	if (uio->uio_procp)
991 		uio->uio_procp->p_ru.ru_msgrcv++;
992 	KASSERT(m == so->so_rcv.sb_mb);
993 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
994 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
995 	nextrecord = m->m_nextpkt;
996 	if (pr->pr_flags & PR_ADDR) {
997 #ifdef DIAGNOSTIC
998 		if (m->m_type != MT_SONAME)
999 			panic("receive 1a: so %p, so_type %d, m %p, m_type %d",
1000 			    so, so->so_type, m, m->m_type);
1001 #endif
1002 		orig_resid = 0;
1003 		if (flags & MSG_PEEK) {
1004 			if (paddr)
1005 				*paddr = m_copym(m, 0, m->m_len, M_NOWAIT);
1006 			m = m->m_next;
1007 		} else {
1008 			sbfree(so, &so->so_rcv, m);
1009 			if (paddr) {
1010 				*paddr = m;
1011 				so->so_rcv.sb_mb = m->m_next;
1012 				m->m_next = NULL;
1013 				m = so->so_rcv.sb_mb;
1014 			} else {
1015 				so->so_rcv.sb_mb = m_free(m);
1016 				m = so->so_rcv.sb_mb;
1017 			}
1018 			sbsync(&so->so_rcv, nextrecord);
1019 		}
1020 	}
1021 	while (m && m->m_type == MT_CONTROL && error == 0) {
1022 		int skip = 0;
1023 		if (flags & MSG_PEEK) {
1024 			if (mtod(m, struct cmsghdr *)->cmsg_type ==
1025 			    SCM_RIGHTS) {
1026 				/* don't leak internalized SCM_RIGHTS msgs */
1027 				skip = 1;
1028 			} else if (controlp)
1029 				*controlp = m_copym(m, 0, m->m_len, M_NOWAIT);
1030 			m = m->m_next;
1031 		} else {
1032 			sbfree(so, &so->so_rcv, m);
1033 			so->so_rcv.sb_mb = m->m_next;
1034 			m->m_nextpkt = m->m_next = NULL;
1035 			cm = m;
1036 			m = so->so_rcv.sb_mb;
1037 			sbsync(&so->so_rcv, nextrecord);
1038 			if (controlp) {
1039 				if (pr->pr_domain->dom_externalize) {
1040 					sb_mtx_unlock(&so->so_rcv);
1041 					if (dosolock)
1042 						sounlock_shared(so);
1043 					error =
1044 					    (*pr->pr_domain->dom_externalize)
1045 					    (cm, controllen, flags);
1046 					if (dosolock)
1047 						solock_shared(so);
1048 					sb_mtx_lock(&so->so_rcv);
1049 				}
1050 				*controlp = cm;
1051 			} else {
1052 				/*
1053 				 * Dispose of any SCM_RIGHTS message that went
1054 				 * through the read path rather than recv.
1055 				 */
1056 				if (pr->pr_domain->dom_dispose) {
1057 					sb_mtx_unlock(&so->so_rcv);
1058 					pr->pr_domain->dom_dispose(cm);
1059 					sb_mtx_lock(&so->so_rcv);
1060 				}
1061 				m_free(cm);
1062 			}
1063 		}
1064 		if (m != NULL)
1065 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1066 		else
1067 			nextrecord = so->so_rcv.sb_mb;
1068 		if (controlp && !skip)
1069 			controlp = &(*controlp)->m_next;
1070 		orig_resid = 0;
1071 	}
1072 
1073 	/* If m is non-NULL, we have some data to read. */
1074 	if (m) {
1075 		type = m->m_type;
1076 		if (type == MT_OOBDATA)
1077 			flags |= MSG_OOB;
1078 		if (m->m_flags & M_BCAST)
1079 			flags |= MSG_BCAST;
1080 		if (m->m_flags & M_MCAST)
1081 			flags |= MSG_MCAST;
1082 	}
1083 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1084 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1085 
1086 	moff = 0;
1087 	offset = 0;
1088 	while (m && uio->uio_resid > 0 && error == 0) {
1089 		if (m->m_type == MT_OOBDATA) {
1090 			if (type != MT_OOBDATA)
1091 				break;
1092 		} else if (type == MT_OOBDATA) {
1093 			break;
1094 		} else if (m->m_type == MT_CONTROL) {
1095 			/*
1096 			 * If there is more than one control message in the
1097 			 * stream, we do a short read.  Next can be received
1098 			 * or disposed by another system call.
1099 			 */
1100 			break;
1101 #ifdef DIAGNOSTIC
1102 		} else if (m->m_type != MT_DATA && m->m_type != MT_HEADER) {
1103 			panic("receive 3: so %p, so_type %d, m %p, m_type %d",
1104 			    so, so->so_type, m, m->m_type);
1105 #endif
1106 		}
1107 		so->so_rcv.sb_state &= ~SS_RCVATMARK;
1108 		len = uio->uio_resid;
1109 		if (so->so_oobmark && len > so->so_oobmark - offset)
1110 			len = so->so_oobmark - offset;
1111 		if (len > m->m_len - moff)
1112 			len = m->m_len - moff;
1113 		/*
1114 		 * If mp is set, just pass back the mbufs.
1115 		 * Otherwise copy them out via the uio, then free.
1116 		 * Sockbuf must be consistent here (points to current mbuf,
1117 		 * it points to next record) when we drop priority;
1118 		 * we must note any additions to the sockbuf when we
1119 		 * block interrupts again.
1120 		 */
1121 		if (mp == NULL && uio_error == 0) {
1122 			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1123 			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1124 			resid = uio->uio_resid;
1125 			sb_mtx_unlock(&so->so_rcv);
1126 			if (dosolock)
1127 				sounlock_shared(so);
1128 			uio_error = uiomove(mtod(m, caddr_t) + moff, len, uio);
1129 			if (dosolock)
1130 				solock_shared(so);
1131 			sb_mtx_lock(&so->so_rcv);
1132 			if (uio_error)
1133 				uio->uio_resid = resid - len;
1134 		} else
1135 			uio->uio_resid -= len;
1136 		if (len == m->m_len - moff) {
1137 			if (m->m_flags & M_EOR)
1138 				flags |= MSG_EOR;
1139 			if (flags & MSG_PEEK) {
1140 				m = m->m_next;
1141 				moff = 0;
1142 				orig_resid = 0;
1143 			} else {
1144 				nextrecord = m->m_nextpkt;
1145 				sbfree(so, &so->so_rcv, m);
1146 				if (mp) {
1147 					*mp = m;
1148 					mp = &m->m_next;
1149 					so->so_rcv.sb_mb = m = m->m_next;
1150 					*mp = NULL;
1151 				} else {
1152 					so->so_rcv.sb_mb = m_free(m);
1153 					m = so->so_rcv.sb_mb;
1154 				}
1155 				/*
1156 				 * If m != NULL, we also know that
1157 				 * so->so_rcv.sb_mb != NULL.
1158 				 */
1159 				KASSERT(so->so_rcv.sb_mb == m);
1160 				if (m) {
1161 					m->m_nextpkt = nextrecord;
1162 					if (nextrecord == NULL)
1163 						so->so_rcv.sb_lastrecord = m;
1164 				} else {
1165 					so->so_rcv.sb_mb = nextrecord;
1166 					SB_EMPTY_FIXUP(&so->so_rcv);
1167 				}
1168 				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1169 				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1170 			}
1171 		} else {
1172 			if (flags & MSG_PEEK) {
1173 				moff += len;
1174 				orig_resid = 0;
1175 			} else {
1176 				if (mp)
1177 					*mp = m_copym(m, 0, len, M_WAIT);
1178 				m->m_data += len;
1179 				m->m_len -= len;
1180 				so->so_rcv.sb_cc -= len;
1181 				so->so_rcv.sb_datacc -= len;
1182 			}
1183 		}
1184 		if (so->so_oobmark) {
1185 			if ((flags & MSG_PEEK) == 0) {
1186 				so->so_oobmark -= len;
1187 				if (so->so_oobmark == 0) {
1188 					so->so_rcv.sb_state |= SS_RCVATMARK;
1189 					break;
1190 				}
1191 			} else {
1192 				offset += len;
1193 				if (offset == so->so_oobmark)
1194 					break;
1195 			}
1196 		}
1197 		if (flags & MSG_EOR)
1198 			break;
1199 		/*
1200 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
1201 		 * we must not quit until "uio->uio_resid == 0" or an error
1202 		 * termination.  If a signal/timeout occurs, return
1203 		 * with a short count but without error.
1204 		 * Keep sockbuf locked against other readers.
1205 		 */
1206 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1207 		    !sosendallatonce(so) && !nextrecord) {
1208 			if (so->so_rcv.sb_state & SS_CANTRCVMORE ||
1209 			    so->so_error)
1210 				break;
1211 			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1212 			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1213 			if (sbwait(so, &so->so_rcv)) {
1214 				sb_mtx_unlock(&so->so_rcv);
1215 				if (dosolock)
1216 					sounlock_shared(so);
1217 				sbunlock(&so->so_rcv);
1218 				return (0);
1219 			}
1220 			if ((m = so->so_rcv.sb_mb) != NULL)
1221 				nextrecord = m->m_nextpkt;
1222 		}
1223 	}
1224 
1225 	if (m && pr->pr_flags & PR_ATOMIC) {
1226 		flags |= MSG_TRUNC;
1227 		if ((flags & MSG_PEEK) == 0)
1228 			(void) sbdroprecord(so, &so->so_rcv);
1229 	}
1230 	if ((flags & MSG_PEEK) == 0) {
1231 		if (m == NULL) {
1232 			/*
1233 			 * First part is an inline SB_EMPTY_FIXUP().  Second
1234 			 * part makes sure sb_lastrecord is up-to-date if
1235 			 * there is still data in the socket buffer.
1236 			 */
1237 			so->so_rcv.sb_mb = nextrecord;
1238 			if (so->so_rcv.sb_mb == NULL) {
1239 				so->so_rcv.sb_mbtail = NULL;
1240 				so->so_rcv.sb_lastrecord = NULL;
1241 			} else if (nextrecord->m_nextpkt == NULL)
1242 				so->so_rcv.sb_lastrecord = nextrecord;
1243 		}
1244 		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1245 		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1246 		if (pr->pr_flags & PR_WANTRCVD) {
1247 			sb_mtx_unlock(&so->so_rcv);
1248 			if (!dosolock)
1249 				solock_shared(so);
1250 			pru_rcvd(so);
1251 			if (!dosolock)
1252 				sounlock_shared(so);
1253 			sb_mtx_lock(&so->so_rcv);
1254 		}
1255 	}
1256 	if (orig_resid == uio->uio_resid && orig_resid &&
1257 	    (flags & MSG_EOR) == 0 &&
1258 	    (so->so_rcv.sb_state & SS_CANTRCVMORE) == 0) {
1259 		sb_mtx_unlock(&so->so_rcv);
1260 		sbunlock(&so->so_rcv);
1261 		goto restart;
1262 	}
1263 
1264 	if (uio_error)
1265 		error = uio_error;
1266 
1267 	if (flagsp)
1268 		*flagsp |= flags;
1269 release:
1270 	sb_mtx_unlock(&so->so_rcv);
1271 	if (dosolock)
1272 		sounlock_shared(so);
1273 	sbunlock(&so->so_rcv);
1274 	return (error);
1275 }
1276 
1277 int
1278 soshutdown(struct socket *so, int how)
1279 {
1280 	int error = 0;
1281 
1282 	switch (how) {
1283 	case SHUT_RD:
1284 		sorflush(so);
1285 		break;
1286 	case SHUT_RDWR:
1287 		sorflush(so);
1288 		/* FALLTHROUGH */
1289 	case SHUT_WR:
1290 		solock(so);
1291 		error = pru_shutdown(so);
1292 		sounlock(so);
1293 		break;
1294 	default:
1295 		error = EINVAL;
1296 		break;
1297 	}
1298 
1299 	return (error);
1300 }
1301 
1302 void
1303 sorflush(struct socket *so)
1304 {
1305 	struct sockbuf *sb = &so->so_rcv;
1306 	struct mbuf *m;
1307 	const struct protosw *pr = so->so_proto;
1308 	int error;
1309 
1310 	error = sblock(sb, SBL_WAIT | SBL_NOINTR);
1311 	/* with SBL_WAIT and SLB_NOINTR sblock() must not fail */
1312 	KASSERT(error == 0);
1313 
1314 	solock_shared(so);
1315 	socantrcvmore(so);
1316 	mtx_enter(&sb->sb_mtx);
1317 	m = sb->sb_mb;
1318 	memset(&sb->sb_startzero, 0,
1319 	     (caddr_t)&sb->sb_endzero - (caddr_t)&sb->sb_startzero);
1320 	sb->sb_timeo_nsecs = INFSLP;
1321 	mtx_leave(&sb->sb_mtx);
1322 	sounlock_shared(so);
1323 	sbunlock(sb);
1324 
1325 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
1326 		(*pr->pr_domain->dom_dispose)(m);
1327 	m_purge(m);
1328 }
1329 
1330 #ifdef SOCKET_SPLICE
1331 
1332 #define so_splicelen	so_sp->ssp_len
1333 #define so_splicemax	so_sp->ssp_max
1334 #define so_idletv	so_sp->ssp_idletv
1335 #define so_idleto	so_sp->ssp_idleto
1336 #define so_splicetask	so_sp->ssp_task
1337 
1338 void
1339 sosplice_solock_pair(struct socket *so1, struct socket *so2)
1340 {
1341 	NET_LOCK_SHARED();
1342 
1343 	if (so1 == so2)
1344 		rw_enter_write(&so1->so_lock);
1345 	else if (so1 < so2) {
1346 		rw_enter_write(&so1->so_lock);
1347 		rw_enter_write(&so2->so_lock);
1348 	} else {
1349 		rw_enter_write(&so2->so_lock);
1350 		rw_enter_write(&so1->so_lock);
1351 	}
1352 }
1353 
1354 void
1355 sosplice_sounlock_pair(struct socket *so1, struct socket *so2)
1356 {
1357 	if (so1 == so2)
1358 		rw_exit_write(&so1->so_lock);
1359 	else if (so1 < so2) {
1360 		rw_exit_write(&so2->so_lock);
1361 		rw_exit_write(&so1->so_lock);
1362 	} else {
1363 		rw_exit_write(&so1->so_lock);
1364 		rw_exit_write(&so2->so_lock);
1365 	}
1366 
1367 	NET_UNLOCK_SHARED();
1368 }
1369 
1370 int
1371 sosplice(struct socket *so, int fd, off_t max, struct timeval *tv)
1372 {
1373 	struct file	*fp;
1374 	struct socket	*sosp;
1375 	struct taskq	*tq;
1376 	int		 error = 0;
1377 
1378 	if ((so->so_proto->pr_flags & PR_SPLICE) == 0)
1379 		return (EPROTONOSUPPORT);
1380 	if (max && max < 0)
1381 		return (EINVAL);
1382 	if (tv && (tv->tv_sec < 0 || !timerisvalid(tv)))
1383 		return (EINVAL);
1384 
1385 	/* If no fd is given, unsplice by removing existing link. */
1386 	if (fd < 0) {
1387 		if ((error = sblock(&so->so_rcv, SBL_WAIT)) != 0)
1388 			return (error);
1389 		if (so->so_sp && so->so_sp->ssp_socket) {
1390 			sosp = soref(so->so_sp->ssp_socket);
1391 			sounsplice(so, so->so_sp->ssp_socket, 0);
1392 			sorele(sosp);
1393 		} else
1394 			error = EPROTO;
1395 		sbunlock(&so->so_rcv);
1396 		return (error);
1397 	}
1398 
1399 	if (sosplice_taskq == NULL) {
1400 		rw_enter_write(&sosplice_lock);
1401 		if (sosplice_taskq == NULL) {
1402 			tq = taskq_create("sosplice", 1, IPL_SOFTNET,
1403 			    TASKQ_MPSAFE);
1404 			if (tq == NULL) {
1405 				rw_exit_write(&sosplice_lock);
1406 				return (ENOMEM);
1407 			}
1408 			/* Ensure the taskq is fully visible to other CPUs. */
1409 			membar_producer();
1410 			sosplice_taskq = tq;
1411 		}
1412 		rw_exit_write(&sosplice_lock);
1413 	} else {
1414 		/* Ensure the taskq is fully visible on this CPU. */
1415 		membar_consumer();
1416 	}
1417 
1418 	/* Find sosp, the drain socket where data will be spliced into. */
1419 	if ((error = getsock(curproc, fd, &fp)) != 0)
1420 		return (error);
1421 	sosp = fp->f_data;
1422 
1423 	if (sosp->so_proto->pr_usrreqs->pru_send !=
1424 	    so->so_proto->pr_usrreqs->pru_send) {
1425 		error = EPROTONOSUPPORT;
1426 		goto frele;
1427 	}
1428 
1429 	if ((error = sblock(&so->so_rcv, SBL_WAIT)) != 0)
1430 		goto frele;
1431 	if ((error = sblock(&sosp->so_snd, SBL_WAIT)) != 0) {
1432 		sbunlock(&so->so_rcv);
1433 		goto frele;
1434 	}
1435 	sosplice_solock_pair(so, sosp);
1436 
1437 	if ((so->so_options & SO_ACCEPTCONN) ||
1438 	    (sosp->so_options & SO_ACCEPTCONN)) {
1439 		error = EOPNOTSUPP;
1440 		goto release;
1441 	}
1442 	if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1443 	    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1444 		error = ENOTCONN;
1445 		goto release;
1446 	}
1447 	if ((sosp->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0) {
1448 		error = ENOTCONN;
1449 		goto release;
1450 	}
1451 	if (so->so_sp == NULL) {
1452 		struct sosplice *so_sp;
1453 
1454 		so_sp = pool_get(&sosplice_pool, PR_WAITOK | PR_ZERO);
1455 		timeout_set_flags(&so_sp->ssp_idleto, soidle, so,
1456 		    KCLOCK_NONE, TIMEOUT_PROC | TIMEOUT_MPSAFE);
1457 		task_set(&so_sp->ssp_task, sotask, so);
1458 
1459 		so->so_sp = so_sp;
1460 	}
1461 	if (sosp->so_sp == NULL) {
1462 		struct sosplice *so_sp;
1463 
1464 		so_sp = pool_get(&sosplice_pool, PR_WAITOK | PR_ZERO);
1465 		timeout_set_flags(&so_sp->ssp_idleto, soidle, sosp,
1466 		    KCLOCK_NONE, TIMEOUT_PROC | TIMEOUT_MPSAFE);
1467 		task_set(&so_sp->ssp_task, sotask, sosp);
1468 
1469 		sosp->so_sp = so_sp;
1470 	}
1471 	if (so->so_sp->ssp_socket || sosp->so_sp->ssp_soback) {
1472 		error = EBUSY;
1473 		goto release;
1474 	}
1475 
1476 	so->so_splicelen = 0;
1477 	so->so_splicemax = max;
1478 	if (tv)
1479 		so->so_idletv = *tv;
1480 	else
1481 		timerclear(&so->so_idletv);
1482 
1483 	/*
1484 	 * To prevent sorwakeup() calling somove() before this somove()
1485 	 * has finished, the socket buffers are not marked as spliced yet.
1486 	 */
1487 
1488 	/* Splice so and sosp together. */
1489 	mtx_enter(&so->so_rcv.sb_mtx);
1490 	mtx_enter(&sosp->so_snd.sb_mtx);
1491 	so->so_sp->ssp_socket = sosp;
1492 	sosp->so_sp->ssp_soback = so;
1493 	mtx_leave(&sosp->so_snd.sb_mtx);
1494 	mtx_leave(&so->so_rcv.sb_mtx);
1495 
1496 	sosplice_sounlock_pair(so, sosp);
1497 	sbunlock(&sosp->so_snd);
1498 
1499 	if (somove(so, M_WAIT)) {
1500 		mtx_enter(&so->so_rcv.sb_mtx);
1501 		mtx_enter(&sosp->so_snd.sb_mtx);
1502 		so->so_rcv.sb_flags |= SB_SPLICE;
1503 		sosp->so_snd.sb_flags |= SB_SPLICE;
1504 		mtx_leave(&sosp->so_snd.sb_mtx);
1505 		mtx_leave(&so->so_rcv.sb_mtx);
1506 	}
1507 
1508 	sbunlock(&so->so_rcv);
1509 	FRELE(fp, curproc);
1510 	return (0);
1511 
1512  release:
1513 	sosplice_sounlock_pair(so, sosp);
1514 	sbunlock(&sosp->so_snd);
1515 	sbunlock(&so->so_rcv);
1516  frele:
1517 	FRELE(fp, curproc);
1518 	return (error);
1519 }
1520 
1521 void
1522 sounsplice(struct socket *so, struct socket *sosp, int freeing)
1523 {
1524 	sbassertlocked(&so->so_rcv);
1525 
1526 	mtx_enter(&so->so_rcv.sb_mtx);
1527 	mtx_enter(&sosp->so_snd.sb_mtx);
1528 	so->so_rcv.sb_flags &= ~SB_SPLICE;
1529 	sosp->so_snd.sb_flags &= ~SB_SPLICE;
1530 	so->so_sp->ssp_socket = sosp->so_sp->ssp_soback = NULL;
1531 	mtx_leave(&sosp->so_snd.sb_mtx);
1532 	mtx_leave(&so->so_rcv.sb_mtx);
1533 
1534 	task_del(sosplice_taskq, &so->so_splicetask);
1535 	timeout_del(&so->so_idleto);
1536 
1537 	/* Do not wakeup a socket that is about to be freed. */
1538 	if ((freeing & SOSP_FREEING_READ) == 0) {
1539 		int readable;
1540 
1541 		solock_shared(so);
1542 		mtx_enter(&so->so_rcv.sb_mtx);
1543 		readable = soreadable(so);
1544 		mtx_leave(&so->so_rcv.sb_mtx);
1545 		if (readable)
1546 			sorwakeup(so);
1547 		sounlock_shared(so);
1548 	}
1549 	if ((freeing & SOSP_FREEING_WRITE) == 0) {
1550 		solock_shared(sosp);
1551 		if (sowriteable(sosp))
1552 			sowwakeup(sosp);
1553 		sounlock_shared(sosp);
1554 	}
1555 }
1556 
1557 void
1558 soidle(void *arg)
1559 {
1560 	struct socket *so = arg;
1561 
1562 	sblock(&so->so_rcv, SBL_WAIT | SBL_NOINTR);
1563 	if (so->so_rcv.sb_flags & SB_SPLICE) {
1564 		struct socket *sosp;
1565 
1566 		WRITE_ONCE(so->so_error, ETIMEDOUT);
1567 		sosp = soref(so->so_sp->ssp_socket);
1568 		sounsplice(so, so->so_sp->ssp_socket, 0);
1569 		sorele(sosp);
1570 	}
1571 	sbunlock(&so->so_rcv);
1572 }
1573 
1574 void
1575 sotask(void *arg)
1576 {
1577 	struct socket *so = arg;
1578 	int doyield = 0;
1579 
1580 	sblock(&so->so_rcv, SBL_WAIT | SBL_NOINTR);
1581 	if (so->so_rcv.sb_flags & SB_SPLICE) {
1582 		if (so->so_proto->pr_flags & PR_WANTRCVD)
1583 			doyield = 1;
1584 		somove(so, M_DONTWAIT);
1585 	}
1586 	sbunlock(&so->so_rcv);
1587 
1588 	if (doyield) {
1589 		/* Avoid user land starvation. */
1590 		yield();
1591 	}
1592 }
1593 
1594 /*
1595  * Move data from receive buffer of spliced source socket to send
1596  * buffer of drain socket.  Try to move as much as possible in one
1597  * big chunk.  It is a TCP only implementation.
1598  * Return value 0 means splicing has been finished, 1 continue.
1599  */
1600 int
1601 somove(struct socket *so, int wait)
1602 {
1603 	struct socket	*sosp = so->so_sp->ssp_socket;
1604 	struct mbuf	*m, **mp, *nextrecord;
1605 	u_long		 len, off, oobmark;
1606 	long		 space;
1607 	int		 error = 0, maxreached = 0, unsplice = 0;
1608 	unsigned int	 rcvstate;
1609 
1610 	sbassertlocked(&so->so_rcv);
1611 
1612 	if (so->so_proto->pr_flags & PR_WANTRCVD)
1613 		sblock(&so->so_snd, SBL_WAIT | SBL_NOINTR);
1614 
1615 	mtx_enter(&so->so_rcv.sb_mtx);
1616 	mtx_enter(&sosp->so_snd.sb_mtx);
1617 
1618  nextpkt:
1619 	if ((error = READ_ONCE(so->so_error)))
1620 		goto release;
1621 	if (sosp->so_snd.sb_state & SS_CANTSENDMORE) {
1622 		error = EPIPE;
1623 		goto release;
1624 	}
1625 
1626 	error = READ_ONCE(sosp->so_error);
1627 	if (error) {
1628 		if (error != ETIMEDOUT && error != EFBIG && error != ELOOP)
1629 			goto release;
1630 		error = 0;
1631 	}
1632 	if ((sosp->so_state & SS_ISCONNECTED) == 0)
1633 		goto release;
1634 
1635 	/* Calculate how many bytes can be copied now. */
1636 	len = so->so_rcv.sb_datacc;
1637 	if (so->so_splicemax) {
1638 		KASSERT(so->so_splicelen < so->so_splicemax);
1639 		if (so->so_splicemax <= so->so_splicelen + len) {
1640 			len = so->so_splicemax - so->so_splicelen;
1641 			maxreached = 1;
1642 		}
1643 	}
1644 	space = sbspace_locked(sosp, &sosp->so_snd);
1645 	if (so->so_oobmark && so->so_oobmark < len &&
1646 	    so->so_oobmark < space + 1024)
1647 		space += 1024;
1648 	if (space <= 0) {
1649 		maxreached = 0;
1650 		goto release;
1651 	}
1652 	if (space < len) {
1653 		maxreached = 0;
1654 		if (space < sosp->so_snd.sb_lowat)
1655 			goto release;
1656 		len = space;
1657 	}
1658 	sosp->so_snd.sb_state |= SS_ISSENDING;
1659 
1660 	SBLASTRECORDCHK(&so->so_rcv, "somove 1");
1661 	SBLASTMBUFCHK(&so->so_rcv, "somove 1");
1662 	m = so->so_rcv.sb_mb;
1663 	if (m == NULL)
1664 		goto release;
1665 	nextrecord = m->m_nextpkt;
1666 
1667 	/* Drop address and control information not used with splicing. */
1668 	if (so->so_proto->pr_flags & PR_ADDR) {
1669 #ifdef DIAGNOSTIC
1670 		if (m->m_type != MT_SONAME)
1671 			panic("somove soname: so %p, so_type %d, m %p, "
1672 			    "m_type %d", so, so->so_type, m, m->m_type);
1673 #endif
1674 		m = m->m_next;
1675 	}
1676 	while (m && m->m_type == MT_CONTROL)
1677 		m = m->m_next;
1678 	if (m == NULL) {
1679 		sbdroprecord(so, &so->so_rcv);
1680 		if (so->so_proto->pr_flags & PR_WANTRCVD) {
1681 			mtx_leave(&sosp->so_snd.sb_mtx);
1682 			mtx_leave(&so->so_rcv.sb_mtx);
1683 			solock_shared(so);
1684 			pru_rcvd(so);
1685 			sounlock_shared(so);
1686 			mtx_enter(&so->so_rcv.sb_mtx);
1687 			mtx_enter(&sosp->so_snd.sb_mtx);
1688 		}
1689 		goto nextpkt;
1690 	}
1691 
1692 	/*
1693 	 * By splicing sockets connected to localhost, userland might create a
1694 	 * loop.  Dissolve splicing with error if loop is detected by counter.
1695 	 *
1696 	 * If we deal with looped broadcast/multicast packet we bail out with
1697 	 * no error to suppress splice termination.
1698 	 */
1699 	if ((m->m_flags & M_PKTHDR) &&
1700 	    ((m->m_pkthdr.ph_loopcnt++ >= M_MAXLOOP) ||
1701 	    ((m->m_flags & M_LOOP) && (m->m_flags & (M_BCAST|M_MCAST))))) {
1702 		error = ELOOP;
1703 		goto release;
1704 	}
1705 
1706 	if (so->so_proto->pr_flags & PR_ATOMIC) {
1707 		if ((m->m_flags & M_PKTHDR) == 0)
1708 			panic("somove !PKTHDR: so %p, so_type %d, m %p, "
1709 			    "m_type %d", so, so->so_type, m, m->m_type);
1710 		if (sosp->so_snd.sb_hiwat < m->m_pkthdr.len) {
1711 			error = EMSGSIZE;
1712 			goto release;
1713 		}
1714 		if (len < m->m_pkthdr.len)
1715 			goto release;
1716 		if (m->m_pkthdr.len < len) {
1717 			maxreached = 0;
1718 			len = m->m_pkthdr.len;
1719 		}
1720 		/*
1721 		 * Throw away the name mbuf after it has been assured
1722 		 * that the whole first record can be processed.
1723 		 */
1724 		m = so->so_rcv.sb_mb;
1725 		sbfree(so, &so->so_rcv, m);
1726 		so->so_rcv.sb_mb = m_free(m);
1727 		sbsync(&so->so_rcv, nextrecord);
1728 	}
1729 	/*
1730 	 * Throw away the control mbufs after it has been assured
1731 	 * that the whole first record can be processed.
1732 	 */
1733 	m = so->so_rcv.sb_mb;
1734 	while (m && m->m_type == MT_CONTROL) {
1735 		sbfree(so, &so->so_rcv, m);
1736 		so->so_rcv.sb_mb = m_free(m);
1737 		m = so->so_rcv.sb_mb;
1738 		sbsync(&so->so_rcv, nextrecord);
1739 	}
1740 
1741 	SBLASTRECORDCHK(&so->so_rcv, "somove 2");
1742 	SBLASTMBUFCHK(&so->so_rcv, "somove 2");
1743 
1744 	/* Take at most len mbufs out of receive buffer. */
1745 	for (off = 0, mp = &m; off <= len && *mp;
1746 	    off += (*mp)->m_len, mp = &(*mp)->m_next) {
1747 		u_long size = len - off;
1748 
1749 #ifdef DIAGNOSTIC
1750 		if ((*mp)->m_type != MT_DATA && (*mp)->m_type != MT_HEADER)
1751 			panic("somove type: so %p, so_type %d, m %p, "
1752 			    "m_type %d", so, so->so_type, *mp, (*mp)->m_type);
1753 #endif
1754 		if ((*mp)->m_len > size) {
1755 			/*
1756 			 * Move only a partial mbuf at maximum splice length or
1757 			 * if the drain buffer is too small for this large mbuf.
1758 			 */
1759 			if (!maxreached && sosp->so_snd.sb_datacc > 0) {
1760 				len -= size;
1761 				break;
1762 			}
1763 			*mp = m_copym(so->so_rcv.sb_mb, 0, size, wait);
1764 			if (*mp == NULL) {
1765 				len -= size;
1766 				break;
1767 			}
1768 			so->so_rcv.sb_mb->m_data += size;
1769 			so->so_rcv.sb_mb->m_len -= size;
1770 			so->so_rcv.sb_cc -= size;
1771 			so->so_rcv.sb_datacc -= size;
1772 		} else {
1773 			*mp = so->so_rcv.sb_mb;
1774 			sbfree(so, &so->so_rcv, *mp);
1775 			so->so_rcv.sb_mb = (*mp)->m_next;
1776 			sbsync(&so->so_rcv, nextrecord);
1777 		}
1778 	}
1779 	*mp = NULL;
1780 
1781 	SBLASTRECORDCHK(&so->so_rcv, "somove 3");
1782 	SBLASTMBUFCHK(&so->so_rcv, "somove 3");
1783 	SBCHECK(so, &so->so_rcv);
1784 	if (m == NULL)
1785 		goto release;
1786 	m->m_nextpkt = NULL;
1787 	if (m->m_flags & M_PKTHDR) {
1788 		m_resethdr(m);
1789 		m->m_pkthdr.len = len;
1790 	}
1791 
1792 	/* Send window update to source peer as receive buffer has changed. */
1793 	if (so->so_proto->pr_flags & PR_WANTRCVD) {
1794 		mtx_leave(&sosp->so_snd.sb_mtx);
1795 		mtx_leave(&so->so_rcv.sb_mtx);
1796 		solock_shared(so);
1797 		pru_rcvd(so);
1798 		sounlock_shared(so);
1799 		mtx_enter(&so->so_rcv.sb_mtx);
1800 		mtx_enter(&sosp->so_snd.sb_mtx);
1801 	}
1802 
1803 	/* Receive buffer did shrink by len bytes, adjust oob. */
1804 	rcvstate = so->so_rcv.sb_state;
1805 	so->so_rcv.sb_state &= ~SS_RCVATMARK;
1806 	oobmark = so->so_oobmark;
1807 	so->so_oobmark = oobmark > len ? oobmark - len : 0;
1808 	if (oobmark) {
1809 		if (oobmark == len)
1810 			so->so_rcv.sb_state |= SS_RCVATMARK;
1811 		if (oobmark >= len)
1812 			oobmark = 0;
1813 	}
1814 
1815 	/*
1816 	 * Handle oob data.  If any malloc fails, ignore error.
1817 	 * TCP urgent data is not very reliable anyway.
1818 	 */
1819 	while (((rcvstate & SS_RCVATMARK) || oobmark) &&
1820 	    (so->so_options & SO_OOBINLINE)) {
1821 		struct mbuf *o = NULL;
1822 
1823 		if (rcvstate & SS_RCVATMARK) {
1824 			o = m_get(wait, MT_DATA);
1825 			rcvstate &= ~SS_RCVATMARK;
1826 		} else if (oobmark) {
1827 			o = m_split(m, oobmark, wait);
1828 			if (o) {
1829 				mtx_leave(&sosp->so_snd.sb_mtx);
1830 				mtx_leave(&so->so_rcv.sb_mtx);
1831 				solock_shared(sosp);
1832 				error = pru_send(sosp, m, NULL, NULL);
1833 				sounlock_shared(sosp);
1834 				mtx_enter(&so->so_rcv.sb_mtx);
1835 				mtx_enter(&sosp->so_snd.sb_mtx);
1836 
1837 				if (error) {
1838 					if (sosp->so_snd.sb_state &
1839 					    SS_CANTSENDMORE)
1840 						error = EPIPE;
1841 					m_freem(o);
1842 					goto release;
1843 				}
1844 				len -= oobmark;
1845 				so->so_splicelen += oobmark;
1846 				m = o;
1847 				o = m_get(wait, MT_DATA);
1848 			}
1849 			oobmark = 0;
1850 		}
1851 		if (o) {
1852 			o->m_len = 1;
1853 			*mtod(o, caddr_t) = *mtod(m, caddr_t);
1854 
1855 			mtx_leave(&sosp->so_snd.sb_mtx);
1856 			mtx_leave(&so->so_rcv.sb_mtx);
1857 			solock_shared(sosp);
1858 			error = pru_sendoob(sosp, o, NULL, NULL);
1859 			sounlock_shared(sosp);
1860 			mtx_enter(&so->so_rcv.sb_mtx);
1861 			mtx_enter(&sosp->so_snd.sb_mtx);
1862 
1863 			if (error) {
1864 				if (sosp->so_snd.sb_state & SS_CANTSENDMORE)
1865 					error = EPIPE;
1866 				m_freem(m);
1867 				goto release;
1868 			}
1869 			len -= 1;
1870 			so->so_splicelen += 1;
1871 			if (oobmark) {
1872 				oobmark -= 1;
1873 				if (oobmark == 0)
1874 					rcvstate |= SS_RCVATMARK;
1875 			}
1876 			m_adj(m, 1);
1877 		}
1878 	}
1879 
1880 	/* Append all remaining data to drain socket. */
1881 	if (so->so_rcv.sb_cc == 0 || maxreached)
1882 		sosp->so_snd.sb_state &= ~SS_ISSENDING;
1883 
1884 	mtx_leave(&sosp->so_snd.sb_mtx);
1885 	mtx_leave(&so->so_rcv.sb_mtx);
1886 	solock_shared(sosp);
1887 	error = pru_send(sosp, m, NULL, NULL);
1888 	sounlock_shared(sosp);
1889 	mtx_enter(&so->so_rcv.sb_mtx);
1890 	mtx_enter(&sosp->so_snd.sb_mtx);
1891 
1892 	if (error) {
1893 		if (sosp->so_snd.sb_state & SS_CANTSENDMORE ||
1894 		    sosp->so_pcb == NULL)
1895 			error = EPIPE;
1896 		goto release;
1897 	}
1898 	so->so_splicelen += len;
1899 
1900 	/* Move several packets if possible. */
1901 	if (!maxreached && nextrecord)
1902 		goto nextpkt;
1903 
1904  release:
1905 	sosp->so_snd.sb_state &= ~SS_ISSENDING;
1906 
1907 	if (!error && maxreached && so->so_splicemax == so->so_splicelen)
1908 		error = EFBIG;
1909 	if (error)
1910 		WRITE_ONCE(so->so_error, error);
1911 
1912 	if (((so->so_rcv.sb_state & SS_CANTRCVMORE) &&
1913 	    so->so_rcv.sb_cc == 0) ||
1914 	    (sosp->so_snd.sb_state & SS_CANTSENDMORE) ||
1915 	    maxreached || error)
1916 		unsplice = 1;
1917 
1918 	mtx_leave(&sosp->so_snd.sb_mtx);
1919 	mtx_leave(&so->so_rcv.sb_mtx);
1920 
1921 	if (so->so_proto->pr_flags & PR_WANTRCVD)
1922 		sbunlock(&so->so_snd);
1923 
1924 	if (unsplice) {
1925 		soref(sosp);
1926 		sounsplice(so, sosp, 0);
1927 		sorele(sosp);
1928 
1929 		return (0);
1930 	}
1931 	if (timerisset(&so->so_idletv))
1932 		timeout_add_tv(&so->so_idleto, &so->so_idletv);
1933 	return (1);
1934 }
1935 #endif /* SOCKET_SPLICE */
1936 
1937 void
1938 sorwakeup(struct socket *so)
1939 {
1940 	if ((so->so_rcv.sb_flags & SB_MTXLOCK) == 0)
1941 		soassertlocked_readonly(so);
1942 
1943 #ifdef SOCKET_SPLICE
1944 	if (so->so_proto->pr_flags & PR_SPLICE) {
1945 		sb_mtx_lock(&so->so_rcv);
1946 		if (so->so_rcv.sb_flags & SB_SPLICE)
1947 			task_add(sosplice_taskq, &so->so_splicetask);
1948 		if (isspliced(so)) {
1949 			sb_mtx_unlock(&so->so_rcv);
1950 			return;
1951 		}
1952 		sb_mtx_unlock(&so->so_rcv);
1953 	}
1954 #endif
1955 	sowakeup(so, &so->so_rcv);
1956 	if (so->so_upcall)
1957 		(*(so->so_upcall))(so, so->so_upcallarg, M_DONTWAIT);
1958 }
1959 
1960 void
1961 sowwakeup(struct socket *so)
1962 {
1963 	if ((so->so_snd.sb_flags & SB_MTXLOCK) == 0)
1964 		soassertlocked_readonly(so);
1965 
1966 #ifdef SOCKET_SPLICE
1967 	if (so->so_proto->pr_flags & PR_SPLICE) {
1968 		sb_mtx_lock(&so->so_snd);
1969 		if (so->so_snd.sb_flags & SB_SPLICE)
1970 			task_add(sosplice_taskq,
1971 			    &so->so_sp->ssp_soback->so_splicetask);
1972 		if (issplicedback(so)) {
1973 			sb_mtx_unlock(&so->so_snd);
1974 			return;
1975 		}
1976 		sb_mtx_unlock(&so->so_snd);
1977 	}
1978 #endif
1979 	sowakeup(so, &so->so_snd);
1980 }
1981 
1982 int
1983 sosetopt(struct socket *so, int level, int optname, struct mbuf *m)
1984 {
1985 	int error = 0;
1986 
1987 	if (level != SOL_SOCKET) {
1988 		if (so->so_proto->pr_ctloutput) {
1989 			solock(so);
1990 			error = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so,
1991 			    level, optname, m);
1992 			sounlock(so);
1993 			return (error);
1994 		}
1995 		error = ENOPROTOOPT;
1996 	} else {
1997 		switch (optname) {
1998 
1999 		case SO_LINGER:
2000 			if (m == NULL || m->m_len != sizeof (struct linger) ||
2001 			    mtod(m, struct linger *)->l_linger < 0 ||
2002 			    mtod(m, struct linger *)->l_linger > SHRT_MAX)
2003 				return (EINVAL);
2004 
2005 			solock(so);
2006 			so->so_linger = mtod(m, struct linger *)->l_linger;
2007 			if (*mtod(m, int *))
2008 				so->so_options |= optname;
2009 			else
2010 				so->so_options &= ~optname;
2011 			sounlock(so);
2012 
2013 			break;
2014 		case SO_BINDANY:
2015 			if ((error = suser(curproc)) != 0)	/* XXX */
2016 				return (error);
2017 			/* FALLTHROUGH */
2018 
2019 		case SO_DEBUG:
2020 		case SO_KEEPALIVE:
2021 		case SO_USELOOPBACK:
2022 		case SO_BROADCAST:
2023 		case SO_REUSEADDR:
2024 		case SO_REUSEPORT:
2025 		case SO_OOBINLINE:
2026 		case SO_TIMESTAMP:
2027 		case SO_ZEROIZE:
2028 			if (m == NULL || m->m_len < sizeof (int))
2029 				return (EINVAL);
2030 
2031 			solock(so);
2032 			if (*mtod(m, int *))
2033 				so->so_options |= optname;
2034 			else
2035 				so->so_options &= ~optname;
2036 			sounlock(so);
2037 
2038 			break;
2039 		case SO_DONTROUTE:
2040 			if (m == NULL || m->m_len < sizeof (int))
2041 				return (EINVAL);
2042 			if (*mtod(m, int *))
2043 				error = EOPNOTSUPP;
2044 			break;
2045 
2046 		case SO_SNDBUF:
2047 		case SO_RCVBUF:
2048 		case SO_SNDLOWAT:
2049 		case SO_RCVLOWAT:
2050 		    {
2051 			struct sockbuf *sb = (optname == SO_SNDBUF ||
2052 			    optname == SO_SNDLOWAT ?
2053 			    &so->so_snd : &so->so_rcv);
2054 			u_long cnt;
2055 
2056 			if (m == NULL || m->m_len < sizeof (int))
2057 				return (EINVAL);
2058 			cnt = *mtod(m, int *);
2059 			if ((long)cnt <= 0)
2060 				cnt = 1;
2061 
2062 			if (((sb->sb_flags & SB_MTXLOCK) == 0))
2063 				solock(so);
2064 			mtx_enter(&sb->sb_mtx);
2065 
2066 			switch (optname) {
2067 			case SO_SNDBUF:
2068 			case SO_RCVBUF:
2069 				if (sb->sb_state &
2070 				    (SS_CANTSENDMORE | SS_CANTRCVMORE)) {
2071 					error = EINVAL;
2072 					break;
2073 				}
2074 				if (sbcheckreserve(cnt, sb->sb_wat) ||
2075 				    sbreserve(so, sb, cnt)) {
2076 					error = ENOBUFS;
2077 					break;
2078 				}
2079 				sb->sb_wat = cnt;
2080 				break;
2081 			case SO_SNDLOWAT:
2082 			case SO_RCVLOWAT:
2083 				sb->sb_lowat = (cnt > sb->sb_hiwat) ?
2084 				    sb->sb_hiwat : cnt;
2085 				break;
2086 			}
2087 
2088 			mtx_leave(&sb->sb_mtx);
2089 			if (((sb->sb_flags & SB_MTXLOCK) == 0))
2090 				sounlock(so);
2091 
2092 			break;
2093 		    }
2094 
2095 		case SO_SNDTIMEO:
2096 		case SO_RCVTIMEO:
2097 		    {
2098 			struct sockbuf *sb = (optname == SO_SNDTIMEO ?
2099 			    &so->so_snd : &so->so_rcv);
2100 			struct timeval tv;
2101 			uint64_t nsecs;
2102 
2103 			if (m == NULL || m->m_len < sizeof (tv))
2104 				return (EINVAL);
2105 			memcpy(&tv, mtod(m, struct timeval *), sizeof tv);
2106 			if (!timerisvalid(&tv))
2107 				return (EINVAL);
2108 			nsecs = TIMEVAL_TO_NSEC(&tv);
2109 			if (nsecs == UINT64_MAX)
2110 				return (EDOM);
2111 			if (nsecs == 0)
2112 				nsecs = INFSLP;
2113 
2114 			mtx_enter(&sb->sb_mtx);
2115 			sb->sb_timeo_nsecs = nsecs;
2116 			mtx_leave(&sb->sb_mtx);
2117 			break;
2118 		    }
2119 
2120 		case SO_RTABLE:
2121 			if (so->so_proto->pr_domain &&
2122 			    so->so_proto->pr_domain->dom_protosw &&
2123 			    so->so_proto->pr_ctloutput) {
2124 				const struct domain *dom =
2125 				    so->so_proto->pr_domain;
2126 
2127 				level = dom->dom_protosw->pr_protocol;
2128 				solock(so);
2129 				error = (*so->so_proto->pr_ctloutput)
2130 				    (PRCO_SETOPT, so, level, optname, m);
2131 				sounlock(so);
2132 			} else
2133 				error = ENOPROTOOPT;
2134 			break;
2135 #ifdef SOCKET_SPLICE
2136 		case SO_SPLICE:
2137 			if (m == NULL) {
2138 				error = sosplice(so, -1, 0, NULL);
2139 			} else if (m->m_len < sizeof(int)) {
2140 				error = EINVAL;
2141 			} else if (m->m_len < sizeof(struct splice)) {
2142 				error = sosplice(so, *mtod(m, int *), 0, NULL);
2143 			} else {
2144 				error = sosplice(so,
2145 				    mtod(m, struct splice *)->sp_fd,
2146 				    mtod(m, struct splice *)->sp_max,
2147 				   &mtod(m, struct splice *)->sp_idle);
2148 			}
2149 			break;
2150 #endif /* SOCKET_SPLICE */
2151 
2152 		default:
2153 			error = ENOPROTOOPT;
2154 			break;
2155 		}
2156 	}
2157 
2158 	return (error);
2159 }
2160 
2161 int
2162 sogetopt(struct socket *so, int level, int optname, struct mbuf *m)
2163 {
2164 	int error = 0;
2165 
2166 	if (level != SOL_SOCKET) {
2167 		if (so->so_proto->pr_ctloutput) {
2168 			m->m_len = 0;
2169 
2170 			solock(so);
2171 			error = (*so->so_proto->pr_ctloutput)(PRCO_GETOPT, so,
2172 			    level, optname, m);
2173 			sounlock(so);
2174 			return (error);
2175 		} else
2176 			return (ENOPROTOOPT);
2177 	} else {
2178 		m->m_len = sizeof (int);
2179 
2180 		switch (optname) {
2181 
2182 		case SO_LINGER:
2183 			m->m_len = sizeof (struct linger);
2184 			solock_shared(so);
2185 			mtod(m, struct linger *)->l_onoff =
2186 				so->so_options & SO_LINGER;
2187 			mtod(m, struct linger *)->l_linger = so->so_linger;
2188 			sounlock_shared(so);
2189 			break;
2190 
2191 		case SO_BINDANY:
2192 		case SO_USELOOPBACK:
2193 		case SO_DEBUG:
2194 		case SO_KEEPALIVE:
2195 		case SO_REUSEADDR:
2196 		case SO_REUSEPORT:
2197 		case SO_BROADCAST:
2198 		case SO_OOBINLINE:
2199 		case SO_ACCEPTCONN:
2200 		case SO_TIMESTAMP:
2201 		case SO_ZEROIZE:
2202 			*mtod(m, int *) = so->so_options & optname;
2203 			break;
2204 
2205 		case SO_DONTROUTE:
2206 			*mtod(m, int *) = 0;
2207 			break;
2208 
2209 		case SO_TYPE:
2210 			*mtod(m, int *) = so->so_type;
2211 			break;
2212 
2213 		case SO_ERROR:
2214 			solock(so);
2215 			*mtod(m, int *) = so->so_error;
2216 			so->so_error = 0;
2217 			sounlock(so);
2218 
2219 			break;
2220 
2221 		case SO_DOMAIN:
2222 			*mtod(m, int *) = so->so_proto->pr_domain->dom_family;
2223 			break;
2224 
2225 		case SO_PROTOCOL:
2226 			*mtod(m, int *) = so->so_proto->pr_protocol;
2227 			break;
2228 
2229 		case SO_SNDBUF:
2230 			*mtod(m, int *) = so->so_snd.sb_hiwat;
2231 			break;
2232 
2233 		case SO_RCVBUF:
2234 			*mtod(m, int *) = so->so_rcv.sb_hiwat;
2235 			break;
2236 
2237 		case SO_SNDLOWAT:
2238 			*mtod(m, int *) = so->so_snd.sb_lowat;
2239 			break;
2240 
2241 		case SO_RCVLOWAT:
2242 			*mtod(m, int *) = so->so_rcv.sb_lowat;
2243 			break;
2244 
2245 		case SO_SNDTIMEO:
2246 		case SO_RCVTIMEO:
2247 		    {
2248 			struct sockbuf *sb = (optname == SO_SNDTIMEO ?
2249 			    &so->so_snd : &so->so_rcv);
2250 			struct timeval tv;
2251 			uint64_t nsecs;
2252 
2253 			mtx_enter(&sb->sb_mtx);
2254 			nsecs = sb->sb_timeo_nsecs;
2255 			mtx_leave(&sb->sb_mtx);
2256 
2257 			m->m_len = sizeof(struct timeval);
2258 			memset(&tv, 0, sizeof(tv));
2259 			if (nsecs != INFSLP)
2260 				NSEC_TO_TIMEVAL(nsecs, &tv);
2261 			memcpy(mtod(m, struct timeval *), &tv, sizeof tv);
2262 			break;
2263 		    }
2264 
2265 		case SO_RTABLE:
2266 			if (so->so_proto->pr_domain &&
2267 			    so->so_proto->pr_domain->dom_protosw &&
2268 			    so->so_proto->pr_ctloutput) {
2269 				const struct domain *dom =
2270 				    so->so_proto->pr_domain;
2271 
2272 				level = dom->dom_protosw->pr_protocol;
2273 				solock(so);
2274 				error = (*so->so_proto->pr_ctloutput)
2275 				    (PRCO_GETOPT, so, level, optname, m);
2276 				sounlock(so);
2277 				if (error)
2278 					return (error);
2279 				break;
2280 			}
2281 			return (ENOPROTOOPT);
2282 
2283 #ifdef SOCKET_SPLICE
2284 		case SO_SPLICE:
2285 		    {
2286 			off_t len;
2287 
2288 			m->m_len = sizeof(off_t);
2289 			solock_shared(so);
2290 			len = so->so_sp ? so->so_sp->ssp_len : 0;
2291 			sounlock_shared(so);
2292 			memcpy(mtod(m, off_t *), &len, sizeof(off_t));
2293 			break;
2294 		    }
2295 #endif /* SOCKET_SPLICE */
2296 
2297 		case SO_PEERCRED:
2298 			if (so->so_proto->pr_protocol == AF_UNIX) {
2299 				struct unpcb *unp = sotounpcb(so);
2300 
2301 				solock(so);
2302 				if (unp->unp_flags & UNP_FEIDS) {
2303 					m->m_len = sizeof(unp->unp_connid);
2304 					memcpy(mtod(m, caddr_t),
2305 					    &(unp->unp_connid), m->m_len);
2306 					sounlock(so);
2307 					break;
2308 				}
2309 				sounlock(so);
2310 
2311 				return (ENOTCONN);
2312 			}
2313 			return (EOPNOTSUPP);
2314 
2315 		default:
2316 			return (ENOPROTOOPT);
2317 		}
2318 		return (0);
2319 	}
2320 }
2321 
2322 void
2323 sohasoutofband(struct socket *so)
2324 {
2325 	pgsigio(&so->so_sigio, SIGURG, 0);
2326 	knote(&so->so_rcv.sb_klist, 0);
2327 }
2328 
2329 void
2330 sofilt_lock(struct socket *so, struct sockbuf *sb)
2331 {
2332 	switch (so->so_proto->pr_domain->dom_family) {
2333 	case PF_INET:
2334 	case PF_INET6:
2335 		NET_LOCK_SHARED();
2336 		break;
2337 	default:
2338 		rw_enter_write(&so->so_lock);
2339 		break;
2340 	}
2341 
2342 	mtx_enter(&sb->sb_mtx);
2343 }
2344 
2345 void
2346 sofilt_unlock(struct socket *so, struct sockbuf *sb)
2347 {
2348 	mtx_leave(&sb->sb_mtx);
2349 
2350 	switch (so->so_proto->pr_domain->dom_family) {
2351 	case PF_INET:
2352 	case PF_INET6:
2353 		NET_UNLOCK_SHARED();
2354 		break;
2355 	default:
2356 		rw_exit_write(&so->so_lock);
2357 		break;
2358 	}
2359 }
2360 
2361 int
2362 soo_kqfilter(struct file *fp, struct knote *kn)
2363 {
2364 	struct socket *so = kn->kn_fp->f_data;
2365 	struct sockbuf *sb;
2366 
2367 	switch (kn->kn_filter) {
2368 	case EVFILT_READ:
2369 		kn->kn_fop = &soread_filtops;
2370 		sb = &so->so_rcv;
2371 		break;
2372 	case EVFILT_WRITE:
2373 		kn->kn_fop = &sowrite_filtops;
2374 		sb = &so->so_snd;
2375 		break;
2376 	case EVFILT_EXCEPT:
2377 		kn->kn_fop = &soexcept_filtops;
2378 		sb = &so->so_rcv;
2379 		break;
2380 	default:
2381 		return (EINVAL);
2382 	}
2383 
2384 	klist_insert(&sb->sb_klist, kn);
2385 
2386 	return (0);
2387 }
2388 
2389 void
2390 filt_sordetach(struct knote *kn)
2391 {
2392 	struct socket *so = kn->kn_fp->f_data;
2393 
2394 	klist_remove(&so->so_rcv.sb_klist, kn);
2395 }
2396 
2397 int
2398 filt_soread(struct knote *kn, long hint)
2399 {
2400 	struct socket *so = kn->kn_fp->f_data;
2401 	u_int state = READ_ONCE(so->so_state);
2402 	u_int error = READ_ONCE(so->so_error);
2403 	int rv = 0;
2404 
2405 	MUTEX_ASSERT_LOCKED(&so->so_rcv.sb_mtx);
2406 	if ((so->so_rcv.sb_flags & SB_MTXLOCK) == 0)
2407 		soassertlocked_readonly(so);
2408 
2409 	if (so->so_options & SO_ACCEPTCONN) {
2410 		short qlen = READ_ONCE(so->so_qlen);
2411 
2412 		if (so->so_rcv.sb_flags & SB_MTXLOCK)
2413 			soassertlocked_readonly(so);
2414 
2415 		kn->kn_data = qlen;
2416 		rv = (kn->kn_data != 0);
2417 
2418 		if (kn->kn_flags & (__EV_POLL | __EV_SELECT)) {
2419 			if (state & SS_ISDISCONNECTED) {
2420 				kn->kn_flags |= __EV_HUP;
2421 				rv = 1;
2422 			} else {
2423 				rv = qlen || soreadable(so);
2424 			}
2425 		}
2426 
2427 		return rv;
2428 	}
2429 
2430 	kn->kn_data = so->so_rcv.sb_cc;
2431 #ifdef SOCKET_SPLICE
2432 	if (isspliced(so)) {
2433 		rv = 0;
2434 	} else
2435 #endif /* SOCKET_SPLICE */
2436 	if (so->so_rcv.sb_state & SS_CANTRCVMORE) {
2437 		kn->kn_flags |= EV_EOF;
2438 		if (kn->kn_flags & __EV_POLL) {
2439 			if (state & SS_ISDISCONNECTED)
2440 				kn->kn_flags |= __EV_HUP;
2441 		}
2442 		kn->kn_fflags = error;
2443 		rv = 1;
2444 	} else if (error) {
2445 		rv = 1;
2446 	} else if (kn->kn_sfflags & NOTE_LOWAT) {
2447 		rv = (kn->kn_data >= kn->kn_sdata);
2448 	} else {
2449 		rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2450 	}
2451 
2452 	return rv;
2453 }
2454 
2455 void
2456 filt_sowdetach(struct knote *kn)
2457 {
2458 	struct socket *so = kn->kn_fp->f_data;
2459 
2460 	klist_remove(&so->so_snd.sb_klist, kn);
2461 }
2462 
2463 int
2464 filt_sowrite(struct knote *kn, long hint)
2465 {
2466 	struct socket *so = kn->kn_fp->f_data;
2467 	u_int state = READ_ONCE(so->so_state);
2468 	u_int error = READ_ONCE(so->so_error);
2469 	int rv;
2470 
2471 	MUTEX_ASSERT_LOCKED(&so->so_snd.sb_mtx);
2472 	if ((so->so_snd.sb_flags & SB_MTXLOCK) == 0)
2473 		soassertlocked_readonly(so);
2474 
2475 	kn->kn_data = sbspace_locked(so, &so->so_snd);
2476 	if (so->so_snd.sb_state & SS_CANTSENDMORE) {
2477 		kn->kn_flags |= EV_EOF;
2478 		if (kn->kn_flags & __EV_POLL) {
2479 			if (state & SS_ISDISCONNECTED)
2480 				kn->kn_flags |= __EV_HUP;
2481 		}
2482 		kn->kn_fflags = error;
2483 		rv = 1;
2484 	} else if (error) {
2485 		rv = 1;
2486 	} else if (((state & SS_ISCONNECTED) == 0) &&
2487 	    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
2488 		rv = 0;
2489 	} else if (kn->kn_sfflags & NOTE_LOWAT) {
2490 		rv = (kn->kn_data >= kn->kn_sdata);
2491 	} else {
2492 		rv = (kn->kn_data >= so->so_snd.sb_lowat);
2493 	}
2494 
2495 	return (rv);
2496 }
2497 
2498 int
2499 filt_soexcept(struct knote *kn, long hint)
2500 {
2501 	struct socket *so = kn->kn_fp->f_data;
2502 	int rv = 0;
2503 
2504 	MUTEX_ASSERT_LOCKED(&so->so_rcv.sb_mtx);
2505 	if ((so->so_rcv.sb_flags & SB_MTXLOCK) == 0)
2506 		soassertlocked_readonly(so);
2507 
2508 #ifdef SOCKET_SPLICE
2509 	if (isspliced(so)) {
2510 		rv = 0;
2511 	} else
2512 #endif /* SOCKET_SPLICE */
2513 	if (kn->kn_sfflags & NOTE_OOB) {
2514 		if (so->so_oobmark || (so->so_rcv.sb_state & SS_RCVATMARK)) {
2515 			kn->kn_fflags |= NOTE_OOB;
2516 			kn->kn_data -= so->so_oobmark;
2517 			rv = 1;
2518 		}
2519 	}
2520 
2521 	if (kn->kn_flags & __EV_POLL) {
2522 		u_int state = READ_ONCE(so->so_state);
2523 
2524 		if (state & SS_ISDISCONNECTED) {
2525 			kn->kn_flags |= __EV_HUP;
2526 			rv = 1;
2527 		}
2528 	}
2529 
2530 	return rv;
2531 }
2532 
2533 int
2534 filt_sowmodify(struct kevent *kev, struct knote *kn)
2535 {
2536 	struct socket *so = kn->kn_fp->f_data;
2537 	int rv;
2538 
2539 	sofilt_lock(so, &so->so_snd);
2540 	rv = knote_modify(kev, kn);
2541 	sofilt_unlock(so, &so->so_snd);
2542 
2543 	return (rv);
2544 }
2545 
2546 int
2547 filt_sowprocess(struct knote *kn, struct kevent *kev)
2548 {
2549 	struct socket *so = kn->kn_fp->f_data;
2550 	int rv;
2551 
2552 	sofilt_lock(so, &so->so_snd);
2553 	rv = knote_process(kn, kev);
2554 	sofilt_unlock(so, &so->so_snd);
2555 
2556 	return (rv);
2557 }
2558 
2559 int
2560 filt_sormodify(struct kevent *kev, struct knote *kn)
2561 {
2562 	struct socket *so = kn->kn_fp->f_data;
2563 	int rv;
2564 
2565 	sofilt_lock(so, &so->so_rcv);
2566 	rv = knote_modify(kev, kn);
2567 	sofilt_unlock(so, &so->so_rcv);
2568 
2569 	return (rv);
2570 }
2571 
2572 int
2573 filt_sorprocess(struct knote *kn, struct kevent *kev)
2574 {
2575 	struct socket *so = kn->kn_fp->f_data;
2576 	int rv;
2577 
2578 	sofilt_lock(so, &so->so_rcv);
2579 	rv = knote_process(kn, kev);
2580 	sofilt_unlock(so, &so->so_rcv);
2581 
2582 	return (rv);
2583 }
2584 
2585 #ifdef DDB
2586 void
2587 sobuf_print(struct sockbuf *,
2588     int (*)(const char *, ...) __attribute__((__format__(__kprintf__,1,2))));
2589 
2590 void
2591 sobuf_print(struct sockbuf *sb,
2592     int (*pr)(const char *, ...) __attribute__((__format__(__kprintf__,1,2))))
2593 {
2594 	(*pr)("\tsb_cc: %lu\n", sb->sb_cc);
2595 	(*pr)("\tsb_datacc: %lu\n", sb->sb_datacc);
2596 	(*pr)("\tsb_hiwat: %lu\n", sb->sb_hiwat);
2597 	(*pr)("\tsb_wat: %lu\n", sb->sb_wat);
2598 	(*pr)("\tsb_mbcnt: %lu\n", sb->sb_mbcnt);
2599 	(*pr)("\tsb_mbmax: %lu\n", sb->sb_mbmax);
2600 	(*pr)("\tsb_lowat: %ld\n", sb->sb_lowat);
2601 	(*pr)("\tsb_mb: %p\n", sb->sb_mb);
2602 	(*pr)("\tsb_mbtail: %p\n", sb->sb_mbtail);
2603 	(*pr)("\tsb_lastrecord: %p\n", sb->sb_lastrecord);
2604 	(*pr)("\tsb_flags: %04x\n", sb->sb_flags);
2605 	(*pr)("\tsb_state: %04x\n", sb->sb_state);
2606 	(*pr)("\tsb_timeo_nsecs: %llu\n", sb->sb_timeo_nsecs);
2607 }
2608 
2609 void
2610 so_print(void *v,
2611     int (*pr)(const char *, ...) __attribute__((__format__(__kprintf__,1,2))))
2612 {
2613 	struct socket *so = v;
2614 
2615 	(*pr)("socket %p\n", so);
2616 	(*pr)("so_type: %i\n", so->so_type);
2617 	(*pr)("so_options: 0x%04x\n", so->so_options); /* %b */
2618 	(*pr)("so_linger: %i\n", so->so_linger);
2619 	(*pr)("so_state: 0x%04x\n", so->so_state);
2620 	(*pr)("so_pcb: %p\n", so->so_pcb);
2621 	(*pr)("so_proto: %p\n", so->so_proto);
2622 	(*pr)("so_sigio: %p\n", so->so_sigio.sir_sigio);
2623 
2624 	(*pr)("so_head: %p\n", so->so_head);
2625 	(*pr)("so_onq: %p\n", so->so_onq);
2626 	(*pr)("so_q0: @%p first: %p\n", &so->so_q0, TAILQ_FIRST(&so->so_q0));
2627 	(*pr)("so_q: @%p first: %p\n", &so->so_q, TAILQ_FIRST(&so->so_q));
2628 	(*pr)("so_eq: next: %p\n", TAILQ_NEXT(so, so_qe));
2629 	(*pr)("so_q0len: %i\n", so->so_q0len);
2630 	(*pr)("so_qlen: %i\n", so->so_qlen);
2631 	(*pr)("so_qlimit: %i\n", so->so_qlimit);
2632 	(*pr)("so_timeo: %i\n", so->so_timeo);
2633 	(*pr)("so_obmark: %lu\n", so->so_oobmark);
2634 
2635 	(*pr)("so_sp: %p\n", so->so_sp);
2636 	if (so->so_sp != NULL) {
2637 		(*pr)("\tssp_socket: %p\n", so->so_sp->ssp_socket);
2638 		(*pr)("\tssp_soback: %p\n", so->so_sp->ssp_soback);
2639 		(*pr)("\tssp_len: %lld\n",
2640 		    (unsigned long long)so->so_sp->ssp_len);
2641 		(*pr)("\tssp_max: %lld\n",
2642 		    (unsigned long long)so->so_sp->ssp_max);
2643 		(*pr)("\tssp_idletv: %lld %ld\n", so->so_sp->ssp_idletv.tv_sec,
2644 		    so->so_sp->ssp_idletv.tv_usec);
2645 		(*pr)("\tssp_idleto: %spending (@%i)\n",
2646 		    timeout_pending(&so->so_sp->ssp_idleto) ? "" : "not ",
2647 		    so->so_sp->ssp_idleto.to_time);
2648 	}
2649 
2650 	(*pr)("so_rcv:\n");
2651 	sobuf_print(&so->so_rcv, pr);
2652 	(*pr)("so_snd:\n");
2653 	sobuf_print(&so->so_snd, pr);
2654 
2655 	(*pr)("so_upcall: %p so_upcallarg: %p\n",
2656 	    so->so_upcall, so->so_upcallarg);
2657 
2658 	(*pr)("so_euid: %d so_ruid: %d\n", so->so_euid, so->so_ruid);
2659 	(*pr)("so_egid: %d so_rgid: %d\n", so->so_egid, so->so_rgid);
2660 	(*pr)("so_cpid: %d\n", so->so_cpid);
2661 }
2662 #endif
2663