1 /* $OpenBSD: uipc_socket2.c,v 1.55 2013/01/15 11:12:57 bluhm Exp $ */ 2 /* $NetBSD: uipc_socket2.c,v 1.11 1996/02/04 02:17:55 christos Exp $ */ 3 4 /* 5 * Copyright (c) 1982, 1986, 1988, 1990, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93 33 */ 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/proc.h> 38 #include <sys/file.h> 39 #include <sys/buf.h> 40 #include <sys/malloc.h> 41 #include <sys/mbuf.h> 42 #include <sys/protosw.h> 43 #include <sys/socket.h> 44 #include <sys/socketvar.h> 45 #include <sys/signalvar.h> 46 #include <sys/event.h> 47 #include <sys/pool.h> 48 49 /* 50 * Primitive routines for operating on sockets and socket buffers 51 */ 52 53 u_long sb_max = SB_MAX; /* patchable */ 54 55 extern struct pool mclpools[]; 56 extern struct pool mbpool; 57 58 /* 59 * Procedures to manipulate state flags of socket 60 * and do appropriate wakeups. Normal sequence from the 61 * active (originating) side is that soisconnecting() is 62 * called during processing of connect() call, 63 * resulting in an eventual call to soisconnected() if/when the 64 * connection is established. When the connection is torn down 65 * soisdisconnecting() is called during processing of disconnect() call, 66 * and soisdisconnected() is called when the connection to the peer 67 * is totally severed. The semantics of these routines are such that 68 * connectionless protocols can call soisconnected() and soisdisconnected() 69 * only, bypassing the in-progress calls when setting up a ``connection'' 70 * takes no time. 71 * 72 * From the passive side, a socket is created with 73 * two queues of sockets: so_q0 for connections in progress 74 * and so_q for connections already made and awaiting user acceptance. 75 * As a protocol is preparing incoming connections, it creates a socket 76 * structure queued on so_q0 by calling sonewconn(). When the connection 77 * is established, soisconnected() is called, and transfers the 78 * socket structure to so_q, making it available to accept(). 79 * 80 * If a socket is closed with sockets on either 81 * so_q0 or so_q, these sockets are dropped. 82 * 83 * If higher level protocols are implemented in 84 * the kernel, the wakeups done here will sometimes 85 * cause software-interrupt process scheduling. 86 */ 87 88 void 89 soisconnecting(struct socket *so) 90 { 91 92 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 93 so->so_state |= SS_ISCONNECTING; 94 } 95 96 void 97 soisconnected(struct socket *so) 98 { 99 struct socket *head = so->so_head; 100 101 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); 102 so->so_state |= SS_ISCONNECTED; 103 if (head && soqremque(so, 0)) { 104 soqinsque(head, so, 1); 105 sorwakeup(head); 106 wakeup_one(&head->so_timeo); 107 } else { 108 wakeup(&so->so_timeo); 109 sorwakeup(so); 110 sowwakeup(so); 111 } 112 } 113 114 void 115 soisdisconnecting(struct socket *so) 116 { 117 118 so->so_state &= ~SS_ISCONNECTING; 119 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE); 120 wakeup(&so->so_timeo); 121 sowwakeup(so); 122 sorwakeup(so); 123 } 124 125 void 126 soisdisconnected(struct socket *so) 127 { 128 129 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 130 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED); 131 wakeup(&so->so_timeo); 132 sowwakeup(so); 133 sorwakeup(so); 134 } 135 136 /* 137 * When an attempt at a new connection is noted on a socket 138 * which accepts connections, sonewconn is called. If the 139 * connection is possible (subject to space constraints, etc.) 140 * then we allocate a new structure, properly linked into the 141 * data structure of the original socket, and return this. 142 * Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED. 143 * 144 * Must be called at splsoftnet() 145 */ 146 struct socket * 147 sonewconn(struct socket *head, int connstatus) 148 { 149 struct socket *so; 150 int soqueue = connstatus ? 1 : 0; 151 152 splsoftassert(IPL_SOFTNET); 153 154 if (mclpools[0].pr_nout > mclpools[0].pr_hardlimit * 95 / 100) 155 return ((struct socket *)0); 156 if (head->so_qlen + head->so_q0len > head->so_qlimit * 3) 157 return ((struct socket *)0); 158 so = pool_get(&socket_pool, PR_NOWAIT|PR_ZERO); 159 if (so == NULL) 160 return ((struct socket *)0); 161 so->so_type = head->so_type; 162 so->so_options = head->so_options &~ SO_ACCEPTCONN; 163 so->so_linger = head->so_linger; 164 so->so_state = head->so_state | SS_NOFDREF; 165 so->so_proto = head->so_proto; 166 so->so_timeo = head->so_timeo; 167 so->so_pgid = head->so_pgid; 168 so->so_euid = head->so_euid; 169 so->so_ruid = head->so_ruid; 170 so->so_egid = head->so_egid; 171 so->so_rgid = head->so_rgid; 172 so->so_cpid = head->so_cpid; 173 so->so_siguid = head->so_siguid; 174 so->so_sigeuid = head->so_sigeuid; 175 176 /* 177 * Inherit watermarks but those may get clamped in low mem situations. 178 */ 179 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) { 180 pool_put(&socket_pool, so); 181 return ((struct socket *)0); 182 } 183 so->so_snd.sb_wat = head->so_snd.sb_wat; 184 so->so_snd.sb_lowat = head->so_snd.sb_lowat; 185 so->so_snd.sb_timeo = head->so_snd.sb_timeo; 186 so->so_rcv.sb_wat = head->so_rcv.sb_wat; 187 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat; 188 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo; 189 190 soqinsque(head, so, soqueue); 191 if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH, NULL, NULL, NULL, 192 curproc)) { 193 (void) soqremque(so, soqueue); 194 pool_put(&socket_pool, so); 195 return ((struct socket *)0); 196 } 197 if (connstatus) { 198 sorwakeup(head); 199 wakeup(&head->so_timeo); 200 so->so_state |= connstatus; 201 } 202 return (so); 203 } 204 205 void 206 soqinsque(struct socket *head, struct socket *so, int q) 207 { 208 209 #ifdef DIAGNOSTIC 210 if (so->so_onq != NULL) 211 panic("soqinsque"); 212 #endif 213 214 so->so_head = head; 215 if (q == 0) { 216 head->so_q0len++; 217 so->so_onq = &head->so_q0; 218 } else { 219 head->so_qlen++; 220 so->so_onq = &head->so_q; 221 } 222 TAILQ_INSERT_TAIL(so->so_onq, so, so_qe); 223 } 224 225 int 226 soqremque(struct socket *so, int q) 227 { 228 struct socket *head; 229 230 head = so->so_head; 231 if (q == 0) { 232 if (so->so_onq != &head->so_q0) 233 return (0); 234 head->so_q0len--; 235 } else { 236 if (so->so_onq != &head->so_q) 237 return (0); 238 head->so_qlen--; 239 } 240 TAILQ_REMOVE(so->so_onq, so, so_qe); 241 so->so_onq = NULL; 242 so->so_head = NULL; 243 return (1); 244 } 245 246 /* 247 * Socantsendmore indicates that no more data will be sent on the 248 * socket; it would normally be applied to a socket when the user 249 * informs the system that no more data is to be sent, by the protocol 250 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data 251 * will be received, and will normally be applied to the socket by a 252 * protocol when it detects that the peer will send no more data. 253 * Data queued for reading in the socket may yet be read. 254 */ 255 256 void 257 socantsendmore(struct socket *so) 258 { 259 260 so->so_state |= SS_CANTSENDMORE; 261 sowwakeup(so); 262 } 263 264 void 265 socantrcvmore(struct socket *so) 266 { 267 268 so->so_state |= SS_CANTRCVMORE; 269 sorwakeup(so); 270 } 271 272 /* 273 * Wait for data to arrive at/drain from a socket buffer. 274 */ 275 int 276 sbwait(struct sockbuf *sb) 277 { 278 splsoftassert(IPL_SOFTNET); 279 280 sb->sb_flagsintr |= SB_WAIT; 281 return (tsleep(&sb->sb_cc, 282 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "netio", 283 sb->sb_timeo)); 284 } 285 286 /* 287 * Lock a sockbuf already known to be locked; 288 * return any error returned from sleep (EINTR). 289 */ 290 int 291 sb_lock(struct sockbuf *sb) 292 { 293 int error; 294 295 while (sb->sb_flags & SB_LOCK) { 296 sb->sb_flags |= SB_WANT; 297 error = tsleep(&sb->sb_flags, 298 (sb->sb_flags & SB_NOINTR) ? 299 PSOCK : PSOCK|PCATCH, "netlck", 0); 300 if (error) 301 return (error); 302 } 303 sb->sb_flags |= SB_LOCK; 304 return (0); 305 } 306 307 /* 308 * Wakeup processes waiting on a socket buffer. 309 * Do asynchronous notification via SIGIO 310 * if the socket has the SS_ASYNC flag set. 311 */ 312 void 313 sowakeup(struct socket *so, struct sockbuf *sb) 314 { 315 int s = splsoftnet(); 316 317 selwakeup(&sb->sb_sel); 318 sb->sb_flagsintr &= ~SB_SEL; 319 if (sb->sb_flagsintr & SB_WAIT) { 320 sb->sb_flagsintr &= ~SB_WAIT; 321 wakeup(&sb->sb_cc); 322 } 323 splx(s); 324 if (so->so_state & SS_ASYNC) 325 csignal(so->so_pgid, SIGIO, so->so_siguid, so->so_sigeuid); 326 } 327 328 /* 329 * Socket buffer (struct sockbuf) utility routines. 330 * 331 * Each socket contains two socket buffers: one for sending data and 332 * one for receiving data. Each buffer contains a queue of mbufs, 333 * information about the number of mbufs and amount of data in the 334 * queue, and other fields allowing select() statements and notification 335 * on data availability to be implemented. 336 * 337 * Data stored in a socket buffer is maintained as a list of records. 338 * Each record is a list of mbufs chained together with the m_next 339 * field. Records are chained together with the m_nextpkt field. The upper 340 * level routine soreceive() expects the following conventions to be 341 * observed when placing information in the receive buffer: 342 * 343 * 1. If the protocol requires each message be preceded by the sender's 344 * name, then a record containing that name must be present before 345 * any associated data (mbuf's must be of type MT_SONAME). 346 * 2. If the protocol supports the exchange of ``access rights'' (really 347 * just additional data associated with the message), and there are 348 * ``rights'' to be received, then a record containing this data 349 * should be present (mbuf's must be of type MT_CONTROL). 350 * 3. If a name or rights record exists, then it must be followed by 351 * a data record, perhaps of zero length. 352 * 353 * Before using a new socket structure it is first necessary to reserve 354 * buffer space to the socket, by calling sbreserve(). This should commit 355 * some of the available buffer space in the system buffer pool for the 356 * socket (currently, it does nothing but enforce limits). The space 357 * should be released by calling sbrelease() when the socket is destroyed. 358 */ 359 360 int 361 soreserve(struct socket *so, u_long sndcc, u_long rcvcc) 362 { 363 364 if (sbreserve(&so->so_snd, sndcc)) 365 goto bad; 366 if (sbreserve(&so->so_rcv, rcvcc)) 367 goto bad2; 368 so->so_snd.sb_wat = sndcc; 369 so->so_rcv.sb_wat = rcvcc; 370 if (so->so_rcv.sb_lowat == 0) 371 so->so_rcv.sb_lowat = 1; 372 if (so->so_snd.sb_lowat == 0) 373 so->so_snd.sb_lowat = MCLBYTES; 374 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat) 375 so->so_snd.sb_lowat = so->so_snd.sb_hiwat; 376 return (0); 377 bad2: 378 sbrelease(&so->so_snd); 379 bad: 380 return (ENOBUFS); 381 } 382 383 /* 384 * Allot mbufs to a sockbuf. 385 * Attempt to scale mbmax so that mbcnt doesn't become limiting 386 * if buffering efficiency is near the normal case. 387 */ 388 int 389 sbreserve(struct sockbuf *sb, u_long cc) 390 { 391 392 if (cc == 0 || cc > sb_max) 393 return (1); 394 sb->sb_hiwat = cc; 395 sb->sb_mbmax = min(cc * 2, sb_max + (sb_max / MCLBYTES) * MSIZE); 396 if (sb->sb_lowat > sb->sb_hiwat) 397 sb->sb_lowat = sb->sb_hiwat; 398 return (0); 399 } 400 401 /* 402 * In low memory situation, do not accept any greater than normal request. 403 */ 404 int 405 sbcheckreserve(u_long cnt, u_long defcnt) 406 { 407 if (cnt > defcnt && sbchecklowmem()) 408 return (ENOBUFS); 409 return (0); 410 } 411 412 int 413 sbchecklowmem(void) 414 { 415 static int sblowmem; 416 417 if (mclpools[0].pr_nout < mclpools[0].pr_hardlimit * 60 / 100 || 418 mbpool.pr_nout < mbpool.pr_hardlimit * 60 / 100) 419 sblowmem = 0; 420 if (mclpools[0].pr_nout > mclpools[0].pr_hardlimit * 80 / 100 || 421 mbpool.pr_nout > mbpool.pr_hardlimit * 80 / 100) 422 sblowmem = 1; 423 return (sblowmem); 424 } 425 426 /* 427 * Free mbufs held by a socket, and reserved mbuf space. 428 */ 429 void 430 sbrelease(struct sockbuf *sb) 431 { 432 433 sbflush(sb); 434 sb->sb_hiwat = sb->sb_mbmax = 0; 435 } 436 437 /* 438 * Routines to add and remove 439 * data from an mbuf queue. 440 * 441 * The routines sbappend() or sbappendrecord() are normally called to 442 * append new mbufs to a socket buffer, after checking that adequate 443 * space is available, comparing the function sbspace() with the amount 444 * of data to be added. sbappendrecord() differs from sbappend() in 445 * that data supplied is treated as the beginning of a new record. 446 * To place a sender's address, optional access rights, and data in a 447 * socket receive buffer, sbappendaddr() should be used. To place 448 * access rights and data in a socket receive buffer, sbappendrights() 449 * should be used. In either case, the new data begins a new record. 450 * Note that unlike sbappend() and sbappendrecord(), these routines check 451 * for the caller that there will be enough space to store the data. 452 * Each fails if there is not enough space, or if it cannot find mbufs 453 * to store additional information in. 454 * 455 * Reliable protocols may use the socket send buffer to hold data 456 * awaiting acknowledgement. Data is normally copied from a socket 457 * send buffer in a protocol with m_copy for output to a peer, 458 * and then removing the data from the socket buffer with sbdrop() 459 * or sbdroprecord() when the data is acknowledged by the peer. 460 */ 461 462 #ifdef SOCKBUF_DEBUG 463 void 464 sblastrecordchk(struct sockbuf *sb, const char *where) 465 { 466 struct mbuf *m = sb->sb_mb; 467 468 while (m && m->m_nextpkt) 469 m = m->m_nextpkt; 470 471 if (m != sb->sb_lastrecord) { 472 printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n", 473 sb->sb_mb, sb->sb_lastrecord, m); 474 printf("packet chain:\n"); 475 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) 476 printf("\t%p\n", m); 477 panic("sblastrecordchk from %s", where); 478 } 479 } 480 481 void 482 sblastmbufchk(struct sockbuf *sb, const char *where) 483 { 484 struct mbuf *m = sb->sb_mb; 485 struct mbuf *n; 486 487 while (m && m->m_nextpkt) 488 m = m->m_nextpkt; 489 490 while (m && m->m_next) 491 m = m->m_next; 492 493 if (m != sb->sb_mbtail) { 494 printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n", 495 sb->sb_mb, sb->sb_mbtail, m); 496 printf("packet tree:\n"); 497 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) { 498 printf("\t"); 499 for (n = m; n != NULL; n = n->m_next) 500 printf("%p ", n); 501 printf("\n"); 502 } 503 panic("sblastmbufchk from %s", where); 504 } 505 } 506 #endif /* SOCKBUF_DEBUG */ 507 508 #define SBLINKRECORD(sb, m0) \ 509 do { \ 510 if ((sb)->sb_lastrecord != NULL) \ 511 (sb)->sb_lastrecord->m_nextpkt = (m0); \ 512 else \ 513 (sb)->sb_mb = (m0); \ 514 (sb)->sb_lastrecord = (m0); \ 515 } while (/*CONSTCOND*/0) 516 517 /* 518 * Append mbuf chain m to the last record in the 519 * socket buffer sb. The additional space associated 520 * the mbuf chain is recorded in sb. Empty mbufs are 521 * discarded and mbufs are compacted where possible. 522 */ 523 void 524 sbappend(struct sockbuf *sb, struct mbuf *m) 525 { 526 struct mbuf *n; 527 528 if (m == NULL) 529 return; 530 531 SBLASTRECORDCHK(sb, "sbappend 1"); 532 533 if ((n = sb->sb_lastrecord) != NULL) { 534 /* 535 * XXX Would like to simply use sb_mbtail here, but 536 * XXX I need to verify that I won't miss an EOR that 537 * XXX way. 538 */ 539 do { 540 if (n->m_flags & M_EOR) { 541 sbappendrecord(sb, m); /* XXXXXX!!!! */ 542 return; 543 } 544 } while (n->m_next && (n = n->m_next)); 545 } else { 546 /* 547 * If this is the first record in the socket buffer, it's 548 * also the last record. 549 */ 550 sb->sb_lastrecord = m; 551 } 552 sbcompress(sb, m, n); 553 SBLASTRECORDCHK(sb, "sbappend 2"); 554 } 555 556 /* 557 * This version of sbappend() should only be used when the caller 558 * absolutely knows that there will never be more than one record 559 * in the socket buffer, that is, a stream protocol (such as TCP). 560 */ 561 void 562 sbappendstream(struct sockbuf *sb, struct mbuf *m) 563 { 564 565 KDASSERT(m->m_nextpkt == NULL); 566 KASSERT(sb->sb_mb == sb->sb_lastrecord); 567 568 SBLASTMBUFCHK(sb, __func__); 569 570 sbcompress(sb, m, sb->sb_mbtail); 571 572 sb->sb_lastrecord = sb->sb_mb; 573 SBLASTRECORDCHK(sb, __func__); 574 } 575 576 #ifdef SOCKBUF_DEBUG 577 void 578 sbcheck(struct sockbuf *sb) 579 { 580 struct mbuf *m, *n; 581 u_long len = 0, mbcnt = 0; 582 583 for (m = sb->sb_mb; m; m = m->m_nextpkt) { 584 for (n = m; n; n = n->m_next) { 585 len += n->m_len; 586 mbcnt += MSIZE; 587 if (n->m_flags & M_EXT) 588 mbcnt += n->m_ext.ext_size; 589 if (m != n && n->m_nextpkt) 590 panic("sbcheck nextpkt"); 591 } 592 } 593 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) { 594 printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc, 595 mbcnt, sb->sb_mbcnt); 596 panic("sbcheck"); 597 } 598 } 599 #endif 600 601 /* 602 * As above, except the mbuf chain 603 * begins a new record. 604 */ 605 void 606 sbappendrecord(struct sockbuf *sb, struct mbuf *m0) 607 { 608 struct mbuf *m; 609 610 if (m0 == NULL) 611 return; 612 613 /* 614 * Put the first mbuf on the queue. 615 * Note this permits zero length records. 616 */ 617 sballoc(sb, m0); 618 SBLASTRECORDCHK(sb, "sbappendrecord 1"); 619 SBLINKRECORD(sb, m0); 620 m = m0->m_next; 621 m0->m_next = NULL; 622 if (m && (m0->m_flags & M_EOR)) { 623 m0->m_flags &= ~M_EOR; 624 m->m_flags |= M_EOR; 625 } 626 sbcompress(sb, m, m0); 627 SBLASTRECORDCHK(sb, "sbappendrecord 2"); 628 } 629 630 /* 631 * As above except that OOB data 632 * is inserted at the beginning of the sockbuf, 633 * but after any other OOB data. 634 */ 635 void 636 sbinsertoob(struct sockbuf *sb, struct mbuf *m0) 637 { 638 struct mbuf *m, **mp; 639 640 if (m0 == NULL) 641 return; 642 643 SBLASTRECORDCHK(sb, "sbinsertoob 1"); 644 645 for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) { 646 again: 647 switch (m->m_type) { 648 649 case MT_OOBDATA: 650 continue; /* WANT next train */ 651 652 case MT_CONTROL: 653 if ((m = m->m_next) != NULL) 654 goto again; /* inspect THIS train further */ 655 } 656 break; 657 } 658 /* 659 * Put the first mbuf on the queue. 660 * Note this permits zero length records. 661 */ 662 sballoc(sb, m0); 663 m0->m_nextpkt = *mp; 664 if (*mp == NULL) { 665 /* m0 is actually the new tail */ 666 sb->sb_lastrecord = m0; 667 } 668 *mp = m0; 669 m = m0->m_next; 670 m0->m_next = NULL; 671 if (m && (m0->m_flags & M_EOR)) { 672 m0->m_flags &= ~M_EOR; 673 m->m_flags |= M_EOR; 674 } 675 sbcompress(sb, m, m0); 676 SBLASTRECORDCHK(sb, "sbinsertoob 2"); 677 } 678 679 /* 680 * Append address and data, and optionally, control (ancillary) data 681 * to the receive queue of a socket. If present, 682 * m0 must include a packet header with total length. 683 * Returns 0 if no space in sockbuf or insufficient mbufs. 684 */ 685 int 686 sbappendaddr(struct sockbuf *sb, struct sockaddr *asa, struct mbuf *m0, 687 struct mbuf *control) 688 { 689 struct mbuf *m, *n, *nlast; 690 int space = asa->sa_len; 691 692 if (m0 && (m0->m_flags & M_PKTHDR) == 0) 693 panic("sbappendaddr"); 694 if (m0) 695 space += m0->m_pkthdr.len; 696 for (n = control; n; n = n->m_next) { 697 space += n->m_len; 698 if (n->m_next == NULL) /* keep pointer to last control buf */ 699 break; 700 } 701 if (space > sbspace(sb)) 702 return (0); 703 if (asa->sa_len > MLEN) 704 return (0); 705 MGET(m, M_DONTWAIT, MT_SONAME); 706 if (m == NULL) 707 return (0); 708 m->m_len = asa->sa_len; 709 bcopy(asa, mtod(m, caddr_t), asa->sa_len); 710 if (n) 711 n->m_next = m0; /* concatenate data to control */ 712 else 713 control = m0; 714 m->m_next = control; 715 716 SBLASTRECORDCHK(sb, "sbappendaddr 1"); 717 718 for (n = m; n->m_next != NULL; n = n->m_next) 719 sballoc(sb, n); 720 sballoc(sb, n); 721 nlast = n; 722 SBLINKRECORD(sb, m); 723 724 sb->sb_mbtail = nlast; 725 SBLASTMBUFCHK(sb, "sbappendaddr"); 726 727 SBLASTRECORDCHK(sb, "sbappendaddr 2"); 728 729 return (1); 730 } 731 732 int 733 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control) 734 { 735 struct mbuf *m, *mlast, *n; 736 int space = 0; 737 738 if (control == NULL) 739 panic("sbappendcontrol"); 740 for (m = control; ; m = m->m_next) { 741 space += m->m_len; 742 if (m->m_next == NULL) 743 break; 744 } 745 n = m; /* save pointer to last control buffer */ 746 for (m = m0; m; m = m->m_next) 747 space += m->m_len; 748 if (space > sbspace(sb)) 749 return (0); 750 n->m_next = m0; /* concatenate data to control */ 751 752 SBLASTRECORDCHK(sb, "sbappendcontrol 1"); 753 754 for (m = control; m->m_next != NULL; m = m->m_next) 755 sballoc(sb, m); 756 sballoc(sb, m); 757 mlast = m; 758 SBLINKRECORD(sb, control); 759 760 sb->sb_mbtail = mlast; 761 SBLASTMBUFCHK(sb, "sbappendcontrol"); 762 763 SBLASTRECORDCHK(sb, "sbappendcontrol 2"); 764 765 return (1); 766 } 767 768 /* 769 * Compress mbuf chain m into the socket 770 * buffer sb following mbuf n. If n 771 * is null, the buffer is presumed empty. 772 */ 773 void 774 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n) 775 { 776 int eor = 0; 777 struct mbuf *o; 778 779 while (m) { 780 eor |= m->m_flags & M_EOR; 781 if (m->m_len == 0 && 782 (eor == 0 || 783 (((o = m->m_next) || (o = n)) && 784 o->m_type == m->m_type))) { 785 if (sb->sb_lastrecord == m) 786 sb->sb_lastrecord = m->m_next; 787 m = m_free(m); 788 continue; 789 } 790 if (n && (n->m_flags & M_EOR) == 0 && 791 /* M_TRAILINGSPACE() checks buffer writeability */ 792 m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */ 793 m->m_len <= M_TRAILINGSPACE(n) && 794 n->m_type == m->m_type) { 795 bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len, 796 m->m_len); 797 n->m_len += m->m_len; 798 sb->sb_cc += m->m_len; 799 if (m->m_type != MT_CONTROL && m->m_type != MT_SONAME) 800 sb->sb_datacc += m->m_len; 801 m = m_free(m); 802 continue; 803 } 804 if (n) 805 n->m_next = m; 806 else 807 sb->sb_mb = m; 808 sb->sb_mbtail = m; 809 sballoc(sb, m); 810 n = m; 811 m->m_flags &= ~M_EOR; 812 m = m->m_next; 813 n->m_next = NULL; 814 } 815 if (eor) { 816 if (n) 817 n->m_flags |= eor; 818 else 819 printf("semi-panic: sbcompress"); 820 } 821 SBLASTMBUFCHK(sb, __func__); 822 } 823 824 /* 825 * Free all mbufs in a sockbuf. 826 * Check that all resources are reclaimed. 827 */ 828 void 829 sbflush(struct sockbuf *sb) 830 { 831 832 KASSERT((sb->sb_flags & SB_LOCK) == 0); 833 834 while (sb->sb_mbcnt) 835 sbdrop(sb, (int)sb->sb_cc); 836 837 KASSERT(sb->sb_cc == 0); 838 KASSERT(sb->sb_datacc == 0); 839 KASSERT(sb->sb_mb == NULL); 840 KASSERT(sb->sb_mbtail == NULL); 841 KASSERT(sb->sb_lastrecord == NULL); 842 } 843 844 /* 845 * Drop data from (the front of) a sockbuf. 846 */ 847 void 848 sbdrop(struct sockbuf *sb, int len) 849 { 850 struct mbuf *m, *mn; 851 struct mbuf *next; 852 853 next = (m = sb->sb_mb) ? m->m_nextpkt : 0; 854 while (len > 0) { 855 if (m == NULL) { 856 if (next == NULL) 857 panic("sbdrop"); 858 m = next; 859 next = m->m_nextpkt; 860 continue; 861 } 862 if (m->m_len > len) { 863 m->m_len -= len; 864 m->m_data += len; 865 sb->sb_cc -= len; 866 if (m->m_type != MT_CONTROL && m->m_type != MT_SONAME) 867 sb->sb_datacc -= len; 868 break; 869 } 870 len -= m->m_len; 871 sbfree(sb, m); 872 MFREE(m, mn); 873 m = mn; 874 } 875 while (m && m->m_len == 0) { 876 sbfree(sb, m); 877 MFREE(m, mn); 878 m = mn; 879 } 880 if (m) { 881 sb->sb_mb = m; 882 m->m_nextpkt = next; 883 } else 884 sb->sb_mb = next; 885 /* 886 * First part is an inline SB_EMPTY_FIXUP(). Second part 887 * makes sure sb_lastrecord is up-to-date if we dropped 888 * part of the last record. 889 */ 890 m = sb->sb_mb; 891 if (m == NULL) { 892 sb->sb_mbtail = NULL; 893 sb->sb_lastrecord = NULL; 894 } else if (m->m_nextpkt == NULL) 895 sb->sb_lastrecord = m; 896 } 897 898 /* 899 * Drop a record off the front of a sockbuf 900 * and move the next record to the front. 901 */ 902 void 903 sbdroprecord(struct sockbuf *sb) 904 { 905 struct mbuf *m, *mn; 906 907 m = sb->sb_mb; 908 if (m) { 909 sb->sb_mb = m->m_nextpkt; 910 do { 911 sbfree(sb, m); 912 MFREE(m, mn); 913 } while ((m = mn) != NULL); 914 } 915 SB_EMPTY_FIXUP(sb); 916 } 917 918 /* 919 * Create a "control" mbuf containing the specified data 920 * with the specified type for presentation on a socket buffer. 921 */ 922 struct mbuf * 923 sbcreatecontrol(caddr_t p, int size, int type, int level) 924 { 925 struct cmsghdr *cp; 926 struct mbuf *m; 927 928 if (CMSG_SPACE(size) > MCLBYTES) { 929 printf("sbcreatecontrol: message too large %d\n", size); 930 return NULL; 931 } 932 933 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL) 934 return ((struct mbuf *) NULL); 935 if (CMSG_SPACE(size) > MLEN) { 936 MCLGET(m, M_DONTWAIT); 937 if ((m->m_flags & M_EXT) == 0) { 938 m_free(m); 939 return NULL; 940 } 941 } 942 cp = mtod(m, struct cmsghdr *); 943 bcopy(p, CMSG_DATA(cp), size); 944 m->m_len = CMSG_SPACE(size); 945 cp->cmsg_len = CMSG_LEN(size); 946 cp->cmsg_level = level; 947 cp->cmsg_type = type; 948 return (m); 949 } 950