xref: /openbsd/sys/lib/libkern/muldi3.c (revision df930be7)
1 /*	$NetBSD: muldi3.c,v 1.5 1995/10/07 09:26:33 mycroft Exp $	*/
2 
3 /*-
4  * Copyright (c) 1992, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This software was developed by the Computer Systems Engineering group
8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9  * contributed to Berkeley.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  */
39 
40 #if defined(LIBC_SCCS) && !defined(lint)
41 #if 0
42 static char sccsid[] = "@(#)muldi3.c	8.1 (Berkeley) 6/4/93";
43 #else
44 static char rcsid[] = "$NetBSD: muldi3.c,v 1.5 1995/10/07 09:26:33 mycroft Exp $";
45 #endif
46 #endif /* LIBC_SCCS and not lint */
47 
48 #include "quad.h"
49 
50 /*
51  * Multiply two quads.
52  *
53  * Our algorithm is based on the following.  Split incoming quad values
54  * u and v (where u,v >= 0) into
55  *
56  *	u = 2^n u1  *  u0	(n = number of bits in `u_long', usu. 32)
57  *
58  * and
59  *
60  *	v = 2^n v1  *  v0
61  *
62  * Then
63  *
64  *	uv = 2^2n u1 v1  +  2^n u1 v0  +  2^n v1 u0  +  u0 v0
65  *	   = 2^2n u1 v1  +     2^n (u1 v0 + v1 u0)   +  u0 v0
66  *
67  * Now add 2^n u1 v1 to the first term and subtract it from the middle,
68  * and add 2^n u0 v0 to the last term and subtract it from the middle.
69  * This gives:
70  *
71  *	uv = (2^2n + 2^n) (u1 v1)  +
72  *	         (2^n)    (u1 v0 - u1 v1 + u0 v1 - u0 v0)  +
73  *	       (2^n + 1)  (u0 v0)
74  *
75  * Factoring the middle a bit gives us:
76  *
77  *	uv = (2^2n + 2^n) (u1 v1)  +			[u1v1 = high]
78  *		 (2^n)    (u1 - u0) (v0 - v1)  +	[(u1-u0)... = mid]
79  *	       (2^n + 1)  (u0 v0)			[u0v0 = low]
80  *
81  * The terms (u1 v1), (u1 - u0) (v0 - v1), and (u0 v0) can all be done
82  * in just half the precision of the original.  (Note that either or both
83  * of (u1 - u0) or (v0 - v1) may be negative.)
84  *
85  * This algorithm is from Knuth vol. 2 (2nd ed), section 4.3.3, p. 278.
86  *
87  * Since C does not give us a `long * long = quad' operator, we split
88  * our input quads into two longs, then split the two longs into two
89  * shorts.  We can then calculate `short * short = long' in native
90  * arithmetic.
91  *
92  * Our product should, strictly speaking, be a `long quad', with 128
93  * bits, but we are going to discard the upper 64.  In other words,
94  * we are not interested in uv, but rather in (uv mod 2^2n).  This
95  * makes some of the terms above vanish, and we get:
96  *
97  *	(2^n)(high) + (2^n)(mid) + (2^n + 1)(low)
98  *
99  * or
100  *
101  *	(2^n)(high + mid + low) + low
102  *
103  * Furthermore, `high' and `mid' can be computed mod 2^n, as any factor
104  * of 2^n in either one will also vanish.  Only `low' need be computed
105  * mod 2^2n, and only because of the final term above.
106  */
107 static quad_t __lmulq(u_long, u_long);
108 
109 quad_t
110 __muldi3(a, b)
111 	quad_t a, b;
112 {
113 	union uu u, v, low, prod;
114 	register u_long high, mid, udiff, vdiff;
115 	register int negall, negmid;
116 #define	u1	u.ul[H]
117 #define	u0	u.ul[L]
118 #define	v1	v.ul[H]
119 #define	v0	v.ul[L]
120 
121 	/*
122 	 * Get u and v such that u, v >= 0.  When this is finished,
123 	 * u1, u0, v1, and v0 will be directly accessible through the
124 	 * longword fields.
125 	 */
126 	if (a >= 0)
127 		u.q = a, negall = 0;
128 	else
129 		u.q = -a, negall = 1;
130 	if (b >= 0)
131 		v.q = b;
132 	else
133 		v.q = -b, negall ^= 1;
134 
135 	if (u1 == 0 && v1 == 0) {
136 		/*
137 		 * An (I hope) important optimization occurs when u1 and v1
138 		 * are both 0.  This should be common since most numbers
139 		 * are small.  Here the product is just u0*v0.
140 		 */
141 		prod.q = __lmulq(u0, v0);
142 	} else {
143 		/*
144 		 * Compute the three intermediate products, remembering
145 		 * whether the middle term is negative.  We can discard
146 		 * any upper bits in high and mid, so we can use native
147 		 * u_long * u_long => u_long arithmetic.
148 		 */
149 		low.q = __lmulq(u0, v0);
150 
151 		if (u1 >= u0)
152 			negmid = 0, udiff = u1 - u0;
153 		else
154 			negmid = 1, udiff = u0 - u1;
155 		if (v0 >= v1)
156 			vdiff = v0 - v1;
157 		else
158 			vdiff = v1 - v0, negmid ^= 1;
159 		mid = udiff * vdiff;
160 
161 		high = u1 * v1;
162 
163 		/*
164 		 * Assemble the final product.
165 		 */
166 		prod.ul[H] = high + (negmid ? -mid : mid) + low.ul[L] +
167 		    low.ul[H];
168 		prod.ul[L] = low.ul[L];
169 	}
170 	return (negall ? -prod.q : prod.q);
171 #undef u1
172 #undef u0
173 #undef v1
174 #undef v0
175 }
176 
177 /*
178  * Multiply two 2N-bit longs to produce a 4N-bit quad, where N is half
179  * the number of bits in a long (whatever that is---the code below
180  * does not care as long as quad.h does its part of the bargain---but
181  * typically N==16).
182  *
183  * We use the same algorithm from Knuth, but this time the modulo refinement
184  * does not apply.  On the other hand, since N is half the size of a long,
185  * we can get away with native multiplication---none of our input terms
186  * exceeds (ULONG_MAX >> 1).
187  *
188  * Note that, for u_long l, the quad-precision result
189  *
190  *	l << N
191  *
192  * splits into high and low longs as HHALF(l) and LHUP(l) respectively.
193  */
194 static quad_t
195 __lmulq(u_long u, u_long v)
196 {
197 	u_long u1, u0, v1, v0, udiff, vdiff, high, mid, low;
198 	u_long prodh, prodl, was;
199 	union uu prod;
200 	int neg;
201 
202 	u1 = HHALF(u);
203 	u0 = LHALF(u);
204 	v1 = HHALF(v);
205 	v0 = LHALF(v);
206 
207 	low = u0 * v0;
208 
209 	/* This is the same small-number optimization as before. */
210 	if (u1 == 0 && v1 == 0)
211 		return (low);
212 
213 	if (u1 >= u0)
214 		udiff = u1 - u0, neg = 0;
215 	else
216 		udiff = u0 - u1, neg = 1;
217 	if (v0 >= v1)
218 		vdiff = v0 - v1;
219 	else
220 		vdiff = v1 - v0, neg ^= 1;
221 	mid = udiff * vdiff;
222 
223 	high = u1 * v1;
224 
225 	/* prod = (high << 2N) + (high << N); */
226 	prodh = high + HHALF(high);
227 	prodl = LHUP(high);
228 
229 	/* if (neg) prod -= mid << N; else prod += mid << N; */
230 	if (neg) {
231 		was = prodl;
232 		prodl -= LHUP(mid);
233 		prodh -= HHALF(mid) + (prodl > was);
234 	} else {
235 		was = prodl;
236 		prodl += LHUP(mid);
237 		prodh += HHALF(mid) + (prodl < was);
238 	}
239 
240 	/* prod += low << N */
241 	was = prodl;
242 	prodl += LHUP(low);
243 	prodh += HHALF(low) + (prodl < was);
244 	/* ... + low; */
245 	if ((prodl += low) < low)
246 		prodh++;
247 
248 	/* return 4N-bit product */
249 	prod.ul[H] = prodh;
250 	prod.ul[L] = prodl;
251 	return (prod.q);
252 }
253