1 /*- 2 * Copyright (c) 1992, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This software was developed by the Computer Systems Engineering group 6 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 7 * contributed to Berkeley. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 #if defined(LIBC_SCCS) && !defined(lint) 35 static char rcsid[] = "$OpenBSD: qdivrem.c,v 1.8 2005/02/13 03:37:14 jsg Exp $"; 36 #endif /* LIBC_SCCS and not lint */ 37 38 /* 39 * Multiprecision divide. This algorithm is from Knuth vol. 2 (2nd ed), 40 * section 4.3.1, pp. 257--259. 41 */ 42 43 #include "quad.h" 44 45 #define B ((int)1 << HALF_BITS) /* digit base */ 46 47 /* Combine two `digits' to make a single two-digit number. */ 48 #define COMBINE(a, b) (((u_int)(a) << HALF_BITS) | (b)) 49 50 /* select a type for digits in base B: use unsigned short if they fit */ 51 #if UINT_MAX == 0xffffffffU && USHRT_MAX >= 0xffff 52 typedef unsigned short digit; 53 #else 54 typedef u_int digit; 55 #endif 56 57 static void shl(digit *p, int len, int sh); 58 59 /* 60 * __qdivrem(u, v, rem) returns u/v and, optionally, sets *rem to u%v. 61 * 62 * We do this in base 2-sup-HALF_BITS, so that all intermediate products 63 * fit within u_int. As a consequence, the maximum length dividend and 64 * divisor are 4 `digits' in this base (they are shorter if they have 65 * leading zeros). 66 */ 67 u_quad_t 68 __qdivrem(u_quad_t uq, u_quad_t vq, u_quad_t *arq) 69 { 70 union uu tmp; 71 digit *u, *v, *q; 72 digit v1, v2; 73 u_int qhat, rhat, t; 74 int m, n, d, j, i; 75 digit uspace[5], vspace[5], qspace[5]; 76 77 /* 78 * Take care of special cases: divide by zero, and u < v. 79 */ 80 if (vq == 0) { 81 /* divide by zero. */ 82 static volatile const unsigned int zero = 0; 83 84 tmp.ul[H] = tmp.ul[L] = 1 / zero; 85 if (arq) 86 *arq = uq; 87 return (tmp.q); 88 } 89 if (uq < vq) { 90 if (arq) 91 *arq = uq; 92 return (0); 93 } 94 u = &uspace[0]; 95 v = &vspace[0]; 96 q = &qspace[0]; 97 98 /* 99 * Break dividend and divisor into digits in base B, then 100 * count leading zeros to determine m and n. When done, we 101 * will have: 102 * u = (u[1]u[2]...u[m+n]) sub B 103 * v = (v[1]v[2]...v[n]) sub B 104 * v[1] != 0 105 * 1 < n <= 4 (if n = 1, we use a different division algorithm) 106 * m >= 0 (otherwise u < v, which we already checked) 107 * m + n = 4 108 * and thus 109 * m = 4 - n <= 2 110 */ 111 tmp.uq = uq; 112 u[0] = 0; 113 u[1] = (digit)HHALF(tmp.ul[H]); 114 u[2] = (digit)LHALF(tmp.ul[H]); 115 u[3] = (digit)HHALF(tmp.ul[L]); 116 u[4] = (digit)LHALF(tmp.ul[L]); 117 tmp.uq = vq; 118 v[1] = (digit)HHALF(tmp.ul[H]); 119 v[2] = (digit)LHALF(tmp.ul[H]); 120 v[3] = (digit)HHALF(tmp.ul[L]); 121 v[4] = (digit)LHALF(tmp.ul[L]); 122 for (n = 4; v[1] == 0; v++) { 123 if (--n == 1) { 124 u_int rbj; /* r*B+u[j] (not root boy jim) */ 125 digit q1, q2, q3, q4; 126 127 /* 128 * Change of plan, per exercise 16. 129 * r = 0; 130 * for j = 1..4: 131 * q[j] = floor((r*B + u[j]) / v), 132 * r = (r*B + u[j]) % v; 133 * We unroll this completely here. 134 */ 135 t = v[2]; /* nonzero, by definition */ 136 q1 = (digit)(u[1] / t); 137 rbj = COMBINE(u[1] % t, u[2]); 138 q2 = (digit)(rbj / t); 139 rbj = COMBINE(rbj % t, u[3]); 140 q3 = (digit)(rbj / t); 141 rbj = COMBINE(rbj % t, u[4]); 142 q4 = (digit)(rbj / t); 143 if (arq) 144 *arq = rbj % t; 145 tmp.ul[H] = COMBINE(q1, q2); 146 tmp.ul[L] = COMBINE(q3, q4); 147 return (tmp.q); 148 } 149 } 150 151 /* 152 * By adjusting q once we determine m, we can guarantee that 153 * there is a complete four-digit quotient at &qspace[1] when 154 * we finally stop. 155 */ 156 for (m = 4 - n; u[1] == 0; u++) 157 m--; 158 for (i = 4 - m; --i >= 0;) 159 q[i] = 0; 160 q += 4 - m; 161 162 /* 163 * Here we run Program D, translated from MIX to C and acquiring 164 * a few minor changes. 165 * 166 * D1: choose multiplier 1 << d to ensure v[1] >= B/2. 167 */ 168 d = 0; 169 for (t = v[1]; t < B / 2; t <<= 1) 170 d++; 171 if (d > 0) { 172 shl(&u[0], m + n, d); /* u <<= d */ 173 shl(&v[1], n - 1, d); /* v <<= d */ 174 } 175 /* 176 * D2: j = 0. 177 */ 178 j = 0; 179 v1 = v[1]; /* for D3 -- note that v[1..n] are constant */ 180 v2 = v[2]; /* for D3 */ 181 do { 182 digit uj0, uj1, uj2; 183 184 /* 185 * D3: Calculate qhat (\^q, in TeX notation). 186 * Let qhat = min((u[j]*B + u[j+1])/v[1], B-1), and 187 * let rhat = (u[j]*B + u[j+1]) mod v[1]. 188 * While rhat < B and v[2]*qhat > rhat*B+u[j+2], 189 * decrement qhat and increase rhat correspondingly. 190 * Note that if rhat >= B, v[2]*qhat < rhat*B. 191 */ 192 uj0 = u[j + 0]; /* for D3 only -- note that u[j+...] change */ 193 uj1 = u[j + 1]; /* for D3 only */ 194 uj2 = u[j + 2]; /* for D3 only */ 195 if (uj0 == v1) { 196 qhat = B; 197 rhat = uj1; 198 goto qhat_too_big; 199 } else { 200 u_int nn = COMBINE(uj0, uj1); 201 qhat = nn / v1; 202 rhat = nn % v1; 203 } 204 while (v2 * qhat > COMBINE(rhat, uj2)) { 205 qhat_too_big: 206 qhat--; 207 if ((rhat += v1) >= B) 208 break; 209 } 210 /* 211 * D4: Multiply and subtract. 212 * The variable `t' holds any borrows across the loop. 213 * We split this up so that we do not require v[0] = 0, 214 * and to eliminate a final special case. 215 */ 216 for (t = 0, i = n; i > 0; i--) { 217 t = u[i + j] - v[i] * qhat - t; 218 u[i + j] = (digit)LHALF(t); 219 t = (B - HHALF(t)) & (B - 1); 220 } 221 t = u[j] - t; 222 u[j] = (digit)LHALF(t); 223 /* 224 * D5: test remainder. 225 * There is a borrow if and only if HHALF(t) is nonzero; 226 * in that (rare) case, qhat was too large (by exactly 1). 227 * Fix it by adding v[1..n] to u[j..j+n]. 228 */ 229 if (HHALF(t)) { 230 qhat--; 231 for (t = 0, i = n; i > 0; i--) { /* D6: add back. */ 232 t += u[i + j] + v[i]; 233 u[i + j] = (digit)LHALF(t); 234 t = HHALF(t); 235 } 236 u[j] = (digit)LHALF(u[j] + t); 237 } 238 q[j] = (digit)qhat; 239 } while (++j <= m); /* D7: loop on j. */ 240 241 /* 242 * If caller wants the remainder, we have to calculate it as 243 * u[m..m+n] >> d (this is at most n digits and thus fits in 244 * u[m+1..m+n], but we may need more source digits). 245 */ 246 if (arq) { 247 if (d) { 248 for (i = m + n; i > m; --i) 249 u[i] = (digit)(((u_int)u[i] >> d) | 250 LHALF((u_int)u[i - 1] << (HALF_BITS - d))); 251 u[i] = 0; 252 } 253 tmp.ul[H] = COMBINE(uspace[1], uspace[2]); 254 tmp.ul[L] = COMBINE(uspace[3], uspace[4]); 255 *arq = tmp.q; 256 } 257 258 tmp.ul[H] = COMBINE(qspace[1], qspace[2]); 259 tmp.ul[L] = COMBINE(qspace[3], qspace[4]); 260 return (tmp.q); 261 } 262 263 /* 264 * Shift p[0]..p[len] left `sh' bits, ignoring any bits that 265 * `fall out' the left (there never will be any such anyway). 266 * We may assume len >= 0. NOTE THAT THIS WRITES len+1 DIGITS. 267 */ 268 static void 269 shl(digit *p, int len, int sh) 270 { 271 int i; 272 273 for (i = 0; i < len; i++) 274 p[i] = (digit)(LHALF((u_int)p[i] << sh) | 275 ((u_int)p[i + 1] >> (HALF_BITS - sh))); 276 p[i] = (digit)(LHALF((u_int)p[i] << sh)); 277 } 278