xref: /openbsd/sys/lib/libkern/qdivrem.c (revision 404b540a)
1 /*-
2  * Copyright (c) 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This software was developed by the Computer Systems Engineering group
6  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
7  * contributed to Berkeley.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 #if defined(LIBC_SCCS) && !defined(lint)
35 static char rcsid[] = "$OpenBSD: qdivrem.c,v 1.8 2005/02/13 03:37:14 jsg Exp $";
36 #endif /* LIBC_SCCS and not lint */
37 
38 /*
39  * Multiprecision divide.  This algorithm is from Knuth vol. 2 (2nd ed),
40  * section 4.3.1, pp. 257--259.
41  */
42 
43 #include "quad.h"
44 
45 #define	B	((int)1 << HALF_BITS)	/* digit base */
46 
47 /* Combine two `digits' to make a single two-digit number. */
48 #define	COMBINE(a, b) (((u_int)(a) << HALF_BITS) | (b))
49 
50 /* select a type for digits in base B: use unsigned short if they fit */
51 #if UINT_MAX == 0xffffffffU && USHRT_MAX >= 0xffff
52 typedef unsigned short digit;
53 #else
54 typedef u_int digit;
55 #endif
56 
57 static void shl(digit *p, int len, int sh);
58 
59 /*
60  * __qdivrem(u, v, rem) returns u/v and, optionally, sets *rem to u%v.
61  *
62  * We do this in base 2-sup-HALF_BITS, so that all intermediate products
63  * fit within u_int.  As a consequence, the maximum length dividend and
64  * divisor are 4 `digits' in this base (they are shorter if they have
65  * leading zeros).
66  */
67 u_quad_t
68 __qdivrem(u_quad_t uq, u_quad_t vq, u_quad_t *arq)
69 {
70 	union uu tmp;
71 	digit *u, *v, *q;
72 	digit v1, v2;
73 	u_int qhat, rhat, t;
74 	int m, n, d, j, i;
75 	digit uspace[5], vspace[5], qspace[5];
76 
77 	/*
78 	 * Take care of special cases: divide by zero, and u < v.
79 	 */
80 	if (vq == 0) {
81 		/* divide by zero. */
82 		static volatile const unsigned int zero = 0;
83 
84 		tmp.ul[H] = tmp.ul[L] = 1 / zero;
85 		if (arq)
86 			*arq = uq;
87 		return (tmp.q);
88 	}
89 	if (uq < vq) {
90 		if (arq)
91 			*arq = uq;
92 		return (0);
93 	}
94 	u = &uspace[0];
95 	v = &vspace[0];
96 	q = &qspace[0];
97 
98 	/*
99 	 * Break dividend and divisor into digits in base B, then
100 	 * count leading zeros to determine m and n.  When done, we
101 	 * will have:
102 	 *	u = (u[1]u[2]...u[m+n]) sub B
103 	 *	v = (v[1]v[2]...v[n]) sub B
104 	 *	v[1] != 0
105 	 *	1 < n <= 4 (if n = 1, we use a different division algorithm)
106 	 *	m >= 0 (otherwise u < v, which we already checked)
107 	 *	m + n = 4
108 	 * and thus
109 	 *	m = 4 - n <= 2
110 	 */
111 	tmp.uq = uq;
112 	u[0] = 0;
113 	u[1] = (digit)HHALF(tmp.ul[H]);
114 	u[2] = (digit)LHALF(tmp.ul[H]);
115 	u[3] = (digit)HHALF(tmp.ul[L]);
116 	u[4] = (digit)LHALF(tmp.ul[L]);
117 	tmp.uq = vq;
118 	v[1] = (digit)HHALF(tmp.ul[H]);
119 	v[2] = (digit)LHALF(tmp.ul[H]);
120 	v[3] = (digit)HHALF(tmp.ul[L]);
121 	v[4] = (digit)LHALF(tmp.ul[L]);
122 	for (n = 4; v[1] == 0; v++) {
123 		if (--n == 1) {
124 			u_int rbj;	/* r*B+u[j] (not root boy jim) */
125 			digit q1, q2, q3, q4;
126 
127 			/*
128 			 * Change of plan, per exercise 16.
129 			 *	r = 0;
130 			 *	for j = 1..4:
131 			 *		q[j] = floor((r*B + u[j]) / v),
132 			 *		r = (r*B + u[j]) % v;
133 			 * We unroll this completely here.
134 			 */
135 			t = v[2];	/* nonzero, by definition */
136 			q1 = (digit)(u[1] / t);
137 			rbj = COMBINE(u[1] % t, u[2]);
138 			q2 = (digit)(rbj / t);
139 			rbj = COMBINE(rbj % t, u[3]);
140 			q3 = (digit)(rbj / t);
141 			rbj = COMBINE(rbj % t, u[4]);
142 			q4 = (digit)(rbj / t);
143 			if (arq)
144 				*arq = rbj % t;
145 			tmp.ul[H] = COMBINE(q1, q2);
146 			tmp.ul[L] = COMBINE(q3, q4);
147 			return (tmp.q);
148 		}
149 	}
150 
151 	/*
152 	 * By adjusting q once we determine m, we can guarantee that
153 	 * there is a complete four-digit quotient at &qspace[1] when
154 	 * we finally stop.
155 	 */
156 	for (m = 4 - n; u[1] == 0; u++)
157 		m--;
158 	for (i = 4 - m; --i >= 0;)
159 		q[i] = 0;
160 	q += 4 - m;
161 
162 	/*
163 	 * Here we run Program D, translated from MIX to C and acquiring
164 	 * a few minor changes.
165 	 *
166 	 * D1: choose multiplier 1 << d to ensure v[1] >= B/2.
167 	 */
168 	d = 0;
169 	for (t = v[1]; t < B / 2; t <<= 1)
170 		d++;
171 	if (d > 0) {
172 		shl(&u[0], m + n, d);		/* u <<= d */
173 		shl(&v[1], n - 1, d);		/* v <<= d */
174 	}
175 	/*
176 	 * D2: j = 0.
177 	 */
178 	j = 0;
179 	v1 = v[1];	/* for D3 -- note that v[1..n] are constant */
180 	v2 = v[2];	/* for D3 */
181 	do {
182 		digit uj0, uj1, uj2;
183 
184 		/*
185 		 * D3: Calculate qhat (\^q, in TeX notation).
186 		 * Let qhat = min((u[j]*B + u[j+1])/v[1], B-1), and
187 		 * let rhat = (u[j]*B + u[j+1]) mod v[1].
188 		 * While rhat < B and v[2]*qhat > rhat*B+u[j+2],
189 		 * decrement qhat and increase rhat correspondingly.
190 		 * Note that if rhat >= B, v[2]*qhat < rhat*B.
191 		 */
192 		uj0 = u[j + 0];	/* for D3 only -- note that u[j+...] change */
193 		uj1 = u[j + 1];	/* for D3 only */
194 		uj2 = u[j + 2];	/* for D3 only */
195 		if (uj0 == v1) {
196 			qhat = B;
197 			rhat = uj1;
198 			goto qhat_too_big;
199 		} else {
200 			u_int nn = COMBINE(uj0, uj1);
201 			qhat = nn / v1;
202 			rhat = nn % v1;
203 		}
204 		while (v2 * qhat > COMBINE(rhat, uj2)) {
205 	qhat_too_big:
206 			qhat--;
207 			if ((rhat += v1) >= B)
208 				break;
209 		}
210 		/*
211 		 * D4: Multiply and subtract.
212 		 * The variable `t' holds any borrows across the loop.
213 		 * We split this up so that we do not require v[0] = 0,
214 		 * and to eliminate a final special case.
215 		 */
216 		for (t = 0, i = n; i > 0; i--) {
217 			t = u[i + j] - v[i] * qhat - t;
218 			u[i + j] = (digit)LHALF(t);
219 			t = (B - HHALF(t)) & (B - 1);
220 		}
221 		t = u[j] - t;
222 		u[j] = (digit)LHALF(t);
223 		/*
224 		 * D5: test remainder.
225 		 * There is a borrow if and only if HHALF(t) is nonzero;
226 		 * in that (rare) case, qhat was too large (by exactly 1).
227 		 * Fix it by adding v[1..n] to u[j..j+n].
228 		 */
229 		if (HHALF(t)) {
230 			qhat--;
231 			for (t = 0, i = n; i > 0; i--) { /* D6: add back. */
232 				t += u[i + j] + v[i];
233 				u[i + j] = (digit)LHALF(t);
234 				t = HHALF(t);
235 			}
236 			u[j] = (digit)LHALF(u[j] + t);
237 		}
238 		q[j] = (digit)qhat;
239 	} while (++j <= m);		/* D7: loop on j. */
240 
241 	/*
242 	 * If caller wants the remainder, we have to calculate it as
243 	 * u[m..m+n] >> d (this is at most n digits and thus fits in
244 	 * u[m+1..m+n], but we may need more source digits).
245 	 */
246 	if (arq) {
247 		if (d) {
248 			for (i = m + n; i > m; --i)
249 				u[i] = (digit)(((u_int)u[i] >> d) |
250 				    LHALF((u_int)u[i - 1] << (HALF_BITS - d)));
251 			u[i] = 0;
252 		}
253 		tmp.ul[H] = COMBINE(uspace[1], uspace[2]);
254 		tmp.ul[L] = COMBINE(uspace[3], uspace[4]);
255 		*arq = tmp.q;
256 	}
257 
258 	tmp.ul[H] = COMBINE(qspace[1], qspace[2]);
259 	tmp.ul[L] = COMBINE(qspace[3], qspace[4]);
260 	return (tmp.q);
261 }
262 
263 /*
264  * Shift p[0]..p[len] left `sh' bits, ignoring any bits that
265  * `fall out' the left (there never will be any such anyway).
266  * We may assume len >= 0.  NOTE THAT THIS WRITES len+1 DIGITS.
267  */
268 static void
269 shl(digit *p, int len, int sh)
270 {
271 	int i;
272 
273 	for (i = 0; i < len; i++)
274 		p[i] = (digit)(LHALF((u_int)p[i] << sh) |
275 		    ((u_int)p[i + 1] >> (HALF_BITS - sh)));
276 	p[i] = (digit)(LHALF((u_int)p[i] << sh));
277 }
278