xref: /openbsd/sys/lib/libz/adler32.c (revision 76d0caae)
1 /*	$OpenBSD: adler32.c,v 1.11 2021/07/04 14:24:49 tb Exp $ */
2 /* adler32.c -- compute the Adler-32 checksum of a data stream
3  * Copyright (C) 1995-2011, 2016 Mark Adler
4  * For conditions of distribution and use, see copyright notice in zlib.h
5  */
6 
7 #include "zutil.h"
8 
9 local uLong adler32_combine_ OF((uLong adler1, uLong adler2, z_off64_t len2));
10 
11 #define BASE 65521U     /* largest prime smaller than 65536 */
12 #define NMAX 5552
13 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
14 
15 #define DO1(buf,i)  {adler += (buf)[i]; sum2 += adler;}
16 #define DO2(buf,i)  DO1(buf,i); DO1(buf,i+1);
17 #define DO4(buf,i)  DO2(buf,i); DO2(buf,i+2);
18 #define DO8(buf,i)  DO4(buf,i); DO4(buf,i+4);
19 #define DO16(buf)   DO8(buf,0); DO8(buf,8);
20 
21 /* use NO_DIVIDE if your processor does not do division in hardware --
22    try it both ways to see which is faster */
23 #ifdef NO_DIVIDE
24 /* note that this assumes BASE is 65521, where 65536 % 65521 == 15
25    (thank you to John Reiser for pointing this out) */
26 #  define CHOP(a) \
27     do { \
28         unsigned long tmp = a >> 16; \
29         a &= 0xffffUL; \
30         a += (tmp << 4) - tmp; \
31     } while (0)
32 #  define MOD28(a) \
33     do { \
34         CHOP(a); \
35         if (a >= BASE) a -= BASE; \
36     } while (0)
37 #  define MOD(a) \
38     do { \
39         CHOP(a); \
40         MOD28(a); \
41     } while (0)
42 #  define MOD63(a) \
43     do { /* this assumes a is not negative */ \
44         z_off64_t tmp = a >> 32; \
45         a &= 0xffffffffL; \
46         a += (tmp << 8) - (tmp << 5) + tmp; \
47         tmp = a >> 16; \
48         a &= 0xffffL; \
49         a += (tmp << 4) - tmp; \
50         tmp = a >> 16; \
51         a &= 0xffffL; \
52         a += (tmp << 4) - tmp; \
53         if (a >= BASE) a -= BASE; \
54     } while (0)
55 #else
56 #  define MOD(a) a %= BASE
57 #  define MOD28(a) a %= BASE
58 #  define MOD63(a) a %= BASE
59 #endif
60 
61 /* ========================================================================= */
62 uLong ZEXPORT adler32_z(adler, buf, len)
63     uLong adler;
64     const Bytef *buf;
65     z_size_t len;
66 {
67     unsigned long sum2;
68     unsigned n;
69 
70     /* split Adler-32 into component sums */
71     sum2 = (adler >> 16) & 0xffff;
72     adler &= 0xffff;
73 
74     /* in case user likes doing a byte at a time, keep it fast */
75     if (len == 1) {
76         adler += buf[0];
77         if (adler >= BASE)
78             adler -= BASE;
79         sum2 += adler;
80         if (sum2 >= BASE)
81             sum2 -= BASE;
82         return adler | (sum2 << 16);
83     }
84 
85     /* initial Adler-32 value (deferred check for len == 1 speed) */
86     if (buf == Z_NULL)
87         return 1L;
88 
89     /* in case short lengths are provided, keep it somewhat fast */
90     if (len < 16) {
91         while (len--) {
92             adler += *buf++;
93             sum2 += adler;
94         }
95         if (adler >= BASE)
96             adler -= BASE;
97         MOD28(sum2);            /* only added so many BASE's */
98         return adler | (sum2 << 16);
99     }
100 
101     /* do length NMAX blocks -- requires just one modulo operation */
102     while (len >= NMAX) {
103         len -= NMAX;
104         n = NMAX / 16;          /* NMAX is divisible by 16 */
105         do {
106             DO16(buf);          /* 16 sums unrolled */
107             buf += 16;
108         } while (--n);
109         MOD(adler);
110         MOD(sum2);
111     }
112 
113     /* do remaining bytes (less than NMAX, still just one modulo) */
114     if (len) {                  /* avoid modulos if none remaining */
115         while (len >= 16) {
116             len -= 16;
117             DO16(buf);
118             buf += 16;
119         }
120         while (len--) {
121             adler += *buf++;
122             sum2 += adler;
123         }
124         MOD(adler);
125         MOD(sum2);
126     }
127 
128     /* return recombined sums */
129     return adler | (sum2 << 16);
130 }
131 
132 /* ========================================================================= */
133 uLong ZEXPORT adler32(adler, buf, len)
134     uLong adler;
135     const Bytef *buf;
136     uInt len;
137 {
138     return adler32_z(adler, buf, len);
139 }
140 
141 /* ========================================================================= */
142 local uLong adler32_combine_(adler1, adler2, len2)
143     uLong adler1;
144     uLong adler2;
145     z_off64_t len2;
146 {
147     unsigned long sum1;
148     unsigned long sum2;
149     unsigned rem;
150 
151     /* for negative len, return invalid adler32 as a clue for debugging */
152     if (len2 < 0)
153         return 0xffffffffUL;
154 
155     /* the derivation of this formula is left as an exercise for the reader */
156     MOD63(len2);                /* assumes len2 >= 0 */
157     rem = (unsigned)len2;
158     sum1 = adler1 & 0xffff;
159     sum2 = rem * sum1;
160     MOD(sum2);
161     sum1 += (adler2 & 0xffff) + BASE - 1;
162     sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;
163     if (sum1 >= BASE) sum1 -= BASE;
164     if (sum1 >= BASE) sum1 -= BASE;
165     if (sum2 >= ((unsigned long)BASE << 1)) sum2 -= ((unsigned long)BASE << 1);
166     if (sum2 >= BASE) sum2 -= BASE;
167     return sum1 | (sum2 << 16);
168 }
169 
170 /* ========================================================================= */
171 uLong ZEXPORT adler32_combine(adler1, adler2, len2)
172     uLong adler1;
173     uLong adler2;
174     z_off_t len2;
175 {
176     return adler32_combine_(adler1, adler2, len2);
177 }
178 
179 uLong ZEXPORT adler32_combine64(adler1, adler2, len2)
180     uLong adler1;
181     uLong adler2;
182     z_off64_t len2;
183 {
184     return adler32_combine_(adler1, adler2, len2);
185 }
186