xref: /openbsd/sys/lib/libz/trees.c (revision 73471bf0)
1 /*	$OpenBSD: trees.c,v 1.4 2021/07/04 14:24:49 tb Exp $ */
2 /* trees.c -- output deflated data using Huffman coding
3  * Copyright (C) 1995-2017 Jean-loup Gailly
4  * detect_data_type() function provided freely by Cosmin Truta, 2006
5  * For conditions of distribution and use, see copyright notice in zlib.h
6  */
7 
8 /*
9  *  ALGORITHM
10  *
11  *      The "deflation" process uses several Huffman trees. The more
12  *      common source values are represented by shorter bit sequences.
13  *
14  *      Each code tree is stored in a compressed form which is itself
15  * a Huffman encoding of the lengths of all the code strings (in
16  * ascending order by source values).  The actual code strings are
17  * reconstructed from the lengths in the inflate process, as described
18  * in the deflate specification.
19  *
20  *  REFERENCES
21  *
22  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
23  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
24  *
25  *      Storer, James A.
26  *          Data Compression:  Methods and Theory, pp. 49-50.
27  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
28  *
29  *      Sedgewick, R.
30  *          Algorithms, p290.
31  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
32  */
33 
34 /* #define GEN_TREES_H */
35 
36 #include "deflate.h"
37 
38 #ifdef ZLIB_DEBUG
39 #  include <ctype.h>
40 #endif
41 
42 /* ===========================================================================
43  * Constants
44  */
45 
46 #define MAX_BL_BITS 7
47 /* Bit length codes must not exceed MAX_BL_BITS bits */
48 
49 #define END_BLOCK 256
50 /* end of block literal code */
51 
52 #define REP_3_6      16
53 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
54 
55 #define REPZ_3_10    17
56 /* repeat a zero length 3-10 times  (3 bits of repeat count) */
57 
58 #define REPZ_11_138  18
59 /* repeat a zero length 11-138 times  (7 bits of repeat count) */
60 
61 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
62    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
63 
64 local const int extra_dbits[D_CODES] /* extra bits for each distance code */
65    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
66 
67 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
68    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
69 
70 local const uch bl_order[BL_CODES]
71    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
72 /* The lengths of the bit length codes are sent in order of decreasing
73  * probability, to avoid transmitting the lengths for unused bit length codes.
74  */
75 
76 /* ===========================================================================
77  * Local data. These are initialized only once.
78  */
79 
80 #define DIST_CODE_LEN  512 /* see definition of array dist_code below */
81 
82 #if defined(GEN_TREES_H) || !defined(STDC)
83 /* non ANSI compilers may not accept trees.h */
84 
85 local ct_data static_ltree[L_CODES+2];
86 /* The static literal tree. Since the bit lengths are imposed, there is no
87  * need for the L_CODES extra codes used during heap construction. However
88  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
89  * below).
90  */
91 
92 local ct_data static_dtree[D_CODES];
93 /* The static distance tree. (Actually a trivial tree since all codes use
94  * 5 bits.)
95  */
96 
97 uch _dist_code[DIST_CODE_LEN];
98 /* Distance codes. The first 256 values correspond to the distances
99  * 3 .. 258, the last 256 values correspond to the top 8 bits of
100  * the 15 bit distances.
101  */
102 
103 uch _length_code[MAX_MATCH-MIN_MATCH+1];
104 /* length code for each normalized match length (0 == MIN_MATCH) */
105 
106 local int base_length[LENGTH_CODES];
107 /* First normalized length for each code (0 = MIN_MATCH) */
108 
109 local int base_dist[D_CODES];
110 /* First normalized distance for each code (0 = distance of 1) */
111 
112 #else
113 #  include "trees.h"
114 #endif /* GEN_TREES_H */
115 
116 struct static_tree_desc_s {
117     const ct_data *static_tree;  /* static tree or NULL */
118     const intf *extra_bits;      /* extra bits for each code or NULL */
119     int     extra_base;          /* base index for extra_bits */
120     int     elems;               /* max number of elements in the tree */
121     int     max_length;          /* max bit length for the codes */
122 };
123 
124 local const static_tree_desc  static_l_desc =
125 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
126 
127 local const static_tree_desc  static_d_desc =
128 {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
129 
130 local const static_tree_desc  static_bl_desc =
131 {(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
132 
133 /* ===========================================================================
134  * Local (static) routines in this file.
135  */
136 
137 local void tr_static_init OF((void));
138 local void init_block     OF((deflate_state *s));
139 local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
140 local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
141 local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
142 local void build_tree     OF((deflate_state *s, tree_desc *desc));
143 local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
144 local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
145 local int  build_bl_tree  OF((deflate_state *s));
146 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
147                               int blcodes));
148 local void compress_block OF((deflate_state *s, const ct_data *ltree,
149                               const ct_data *dtree));
150 local int  detect_data_type OF((deflate_state *s));
151 local unsigned bi_reverse OF((unsigned value, int length));
152 local void bi_windup      OF((deflate_state *s));
153 local void bi_flush       OF((deflate_state *s));
154 
155 #ifdef GEN_TREES_H
156 local void gen_trees_header OF((void));
157 #endif
158 
159 #ifndef ZLIB_DEBUG
160 #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
161    /* Send a code of the given tree. c and tree must not have side effects */
162 
163 #else /* !ZLIB_DEBUG */
164 #  define send_code(s, c, tree) \
165      { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
166        send_bits(s, tree[c].Code, tree[c].Len); }
167 #endif
168 
169 /* ===========================================================================
170  * Output a short LSB first on the stream.
171  * IN assertion: there is enough room in pendingBuf.
172  */
173 #define put_short(s, w) { \
174     put_byte(s, (uch)((w) & 0xff)); \
175     put_byte(s, (uch)((ush)(w) >> 8)); \
176 }
177 
178 /* ===========================================================================
179  * Send a value on a given number of bits.
180  * IN assertion: length <= 16 and value fits in length bits.
181  */
182 #ifdef ZLIB_DEBUG
183 local void send_bits      OF((deflate_state *s, int value, int length));
184 
185 local void send_bits(s, value, length)
186     deflate_state *s;
187     int value;  /* value to send */
188     int length; /* number of bits */
189 {
190     Tracevv((stderr," l %2d v %4x ", length, value));
191     Assert(length > 0 && length <= 15, "invalid length");
192     s->bits_sent += (ulg)length;
193 
194     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
195      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
196      * unused bits in value.
197      */
198     if (s->bi_valid > (int)Buf_size - length) {
199         s->bi_buf |= (ush)value << s->bi_valid;
200         put_short(s, s->bi_buf);
201         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
202         s->bi_valid += length - Buf_size;
203     } else {
204         s->bi_buf |= (ush)value << s->bi_valid;
205         s->bi_valid += length;
206     }
207 }
208 #else /* !ZLIB_DEBUG */
209 
210 #define send_bits(s, value, length) \
211 { int len = length;\
212   if (s->bi_valid > (int)Buf_size - len) {\
213     int val = (int)value;\
214     s->bi_buf |= (ush)val << s->bi_valid;\
215     put_short(s, s->bi_buf);\
216     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
217     s->bi_valid += len - Buf_size;\
218   } else {\
219     s->bi_buf |= (ush)(value) << s->bi_valid;\
220     s->bi_valid += len;\
221   }\
222 }
223 #endif /* ZLIB_DEBUG */
224 
225 
226 /* the arguments must not have side effects */
227 
228 /* ===========================================================================
229  * Initialize the various 'constant' tables.
230  */
231 local void tr_static_init()
232 {
233 #if defined(GEN_TREES_H) || !defined(STDC)
234     static int static_init_done = 0;
235     int n;        /* iterates over tree elements */
236     int bits;     /* bit counter */
237     int length;   /* length value */
238     int code;     /* code value */
239     int dist;     /* distance index */
240     ush bl_count[MAX_BITS+1];
241     /* number of codes at each bit length for an optimal tree */
242 
243     if (static_init_done) return;
244 
245     /* For some embedded targets, global variables are not initialized: */
246 #ifdef NO_INIT_GLOBAL_POINTERS
247     static_l_desc.static_tree = static_ltree;
248     static_l_desc.extra_bits = extra_lbits;
249     static_d_desc.static_tree = static_dtree;
250     static_d_desc.extra_bits = extra_dbits;
251     static_bl_desc.extra_bits = extra_blbits;
252 #endif
253 
254     /* Initialize the mapping length (0..255) -> length code (0..28) */
255     length = 0;
256     for (code = 0; code < LENGTH_CODES-1; code++) {
257         base_length[code] = length;
258         for (n = 0; n < (1<<extra_lbits[code]); n++) {
259             _length_code[length++] = (uch)code;
260         }
261     }
262     Assert (length == 256, "tr_static_init: length != 256");
263     /* Note that the length 255 (match length 258) can be represented
264      * in two different ways: code 284 + 5 bits or code 285, so we
265      * overwrite length_code[255] to use the best encoding:
266      */
267     _length_code[length-1] = (uch)code;
268 
269     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
270     dist = 0;
271     for (code = 0 ; code < 16; code++) {
272         base_dist[code] = dist;
273         for (n = 0; n < (1<<extra_dbits[code]); n++) {
274             _dist_code[dist++] = (uch)code;
275         }
276     }
277     Assert (dist == 256, "tr_static_init: dist != 256");
278     dist >>= 7; /* from now on, all distances are divided by 128 */
279     for ( ; code < D_CODES; code++) {
280         base_dist[code] = dist << 7;
281         for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
282             _dist_code[256 + dist++] = (uch)code;
283         }
284     }
285     Assert (dist == 256, "tr_static_init: 256+dist != 512");
286 
287     /* Construct the codes of the static literal tree */
288     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
289     n = 0;
290     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
291     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
292     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
293     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
294     /* Codes 286 and 287 do not exist, but we must include them in the
295      * tree construction to get a canonical Huffman tree (longest code
296      * all ones)
297      */
298     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
299 
300     /* The static distance tree is trivial: */
301     for (n = 0; n < D_CODES; n++) {
302         static_dtree[n].Len = 5;
303         static_dtree[n].Code = bi_reverse((unsigned)n, 5);
304     }
305     static_init_done = 1;
306 
307 #  ifdef GEN_TREES_H
308     gen_trees_header();
309 #  endif
310 #endif /* defined(GEN_TREES_H) || !defined(STDC) */
311 }
312 
313 /* ===========================================================================
314  * Genererate the file trees.h describing the static trees.
315  */
316 #ifdef GEN_TREES_H
317 #  ifndef ZLIB_DEBUG
318 #    include <stdio.h>
319 #  endif
320 
321 #  define SEPARATOR(i, last, width) \
322       ((i) == (last)? "\n};\n\n" :    \
323        ((i) % (width) == (width)-1 ? ",\n" : ", "))
324 
325 void gen_trees_header()
326 {
327     FILE *header = fopen("trees.h", "w");
328     int i;
329 
330     Assert (header != NULL, "Can't open trees.h");
331     fprintf(header,
332             "/* header created automatically with -DGEN_TREES_H */\n\n");
333 
334     fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
335     for (i = 0; i < L_CODES+2; i++) {
336         fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
337                 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
338     }
339 
340     fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
341     for (i = 0; i < D_CODES; i++) {
342         fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
343                 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
344     }
345 
346     fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
347     for (i = 0; i < DIST_CODE_LEN; i++) {
348         fprintf(header, "%2u%s", _dist_code[i],
349                 SEPARATOR(i, DIST_CODE_LEN-1, 20));
350     }
351 
352     fprintf(header,
353         "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
354     for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
355         fprintf(header, "%2u%s", _length_code[i],
356                 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
357     }
358 
359     fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
360     for (i = 0; i < LENGTH_CODES; i++) {
361         fprintf(header, "%1u%s", base_length[i],
362                 SEPARATOR(i, LENGTH_CODES-1, 20));
363     }
364 
365     fprintf(header, "local const int base_dist[D_CODES] = {\n");
366     for (i = 0; i < D_CODES; i++) {
367         fprintf(header, "%5u%s", base_dist[i],
368                 SEPARATOR(i, D_CODES-1, 10));
369     }
370 
371     fclose(header);
372 }
373 #endif /* GEN_TREES_H */
374 
375 /* ===========================================================================
376  * Initialize the tree data structures for a new zlib stream.
377  */
378 void ZLIB_INTERNAL _tr_init(s)
379     deflate_state *s;
380 {
381     tr_static_init();
382 
383     s->l_desc.dyn_tree = s->dyn_ltree;
384     s->l_desc.stat_desc = &static_l_desc;
385 
386     s->d_desc.dyn_tree = s->dyn_dtree;
387     s->d_desc.stat_desc = &static_d_desc;
388 
389     s->bl_desc.dyn_tree = s->bl_tree;
390     s->bl_desc.stat_desc = &static_bl_desc;
391 
392     s->bi_buf = 0;
393     s->bi_valid = 0;
394 #ifdef ZLIB_DEBUG
395     s->compressed_len = 0L;
396     s->bits_sent = 0L;
397 #endif
398 
399     /* Initialize the first block of the first file: */
400     init_block(s);
401 }
402 
403 /* ===========================================================================
404  * Initialize a new block.
405  */
406 local void init_block(s)
407     deflate_state *s;
408 {
409     int n; /* iterates over tree elements */
410 
411     /* Initialize the trees. */
412     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
413     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
414     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
415 
416     s->dyn_ltree[END_BLOCK].Freq = 1;
417     s->opt_len = s->static_len = 0L;
418     s->last_lit = s->matches = 0;
419 }
420 
421 #define SMALLEST 1
422 /* Index within the heap array of least frequent node in the Huffman tree */
423 
424 
425 /* ===========================================================================
426  * Remove the smallest element from the heap and recreate the heap with
427  * one less element. Updates heap and heap_len.
428  */
429 #define pqremove(s, tree, top) \
430 {\
431     top = s->heap[SMALLEST]; \
432     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
433     pqdownheap(s, tree, SMALLEST); \
434 }
435 
436 /* ===========================================================================
437  * Compares to subtrees, using the tree depth as tie breaker when
438  * the subtrees have equal frequency. This minimizes the worst case length.
439  */
440 #define smaller(tree, n, m, depth) \
441    (tree[n].Freq < tree[m].Freq || \
442    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
443 
444 /* ===========================================================================
445  * Restore the heap property by moving down the tree starting at node k,
446  * exchanging a node with the smallest of its two sons if necessary, stopping
447  * when the heap property is re-established (each father smaller than its
448  * two sons).
449  */
450 local void pqdownheap(s, tree, k)
451     deflate_state *s;
452     ct_data *tree;  /* the tree to restore */
453     int k;               /* node to move down */
454 {
455     int v = s->heap[k];
456     int j = k << 1;  /* left son of k */
457     while (j <= s->heap_len) {
458         /* Set j to the smallest of the two sons: */
459         if (j < s->heap_len &&
460             smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
461             j++;
462         }
463         /* Exit if v is smaller than both sons */
464         if (smaller(tree, v, s->heap[j], s->depth)) break;
465 
466         /* Exchange v with the smallest son */
467         s->heap[k] = s->heap[j];  k = j;
468 
469         /* And continue down the tree, setting j to the left son of k */
470         j <<= 1;
471     }
472     s->heap[k] = v;
473 }
474 
475 /* ===========================================================================
476  * Compute the optimal bit lengths for a tree and update the total bit length
477  * for the current block.
478  * IN assertion: the fields freq and dad are set, heap[heap_max] and
479  *    above are the tree nodes sorted by increasing frequency.
480  * OUT assertions: the field len is set to the optimal bit length, the
481  *     array bl_count contains the frequencies for each bit length.
482  *     The length opt_len is updated; static_len is also updated if stree is
483  *     not null.
484  */
485 local void gen_bitlen(s, desc)
486     deflate_state *s;
487     tree_desc *desc;    /* the tree descriptor */
488 {
489     ct_data *tree        = desc->dyn_tree;
490     int max_code         = desc->max_code;
491     const ct_data *stree = desc->stat_desc->static_tree;
492     const intf *extra    = desc->stat_desc->extra_bits;
493     int base             = desc->stat_desc->extra_base;
494     int max_length       = desc->stat_desc->max_length;
495     int h;              /* heap index */
496     int n, m;           /* iterate over the tree elements */
497     int bits;           /* bit length */
498     int xbits;          /* extra bits */
499     ush f;              /* frequency */
500     int overflow = 0;   /* number of elements with bit length too large */
501 
502     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
503 
504     /* In a first pass, compute the optimal bit lengths (which may
505      * overflow in the case of the bit length tree).
506      */
507     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
508 
509     for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
510         n = s->heap[h];
511         bits = tree[tree[n].Dad].Len + 1;
512         if (bits > max_length) bits = max_length, overflow++;
513         tree[n].Len = (ush)bits;
514         /* We overwrite tree[n].Dad which is no longer needed */
515 
516         if (n > max_code) continue; /* not a leaf node */
517 
518         s->bl_count[bits]++;
519         xbits = 0;
520         if (n >= base) xbits = extra[n-base];
521         f = tree[n].Freq;
522         s->opt_len += (ulg)f * (unsigned)(bits + xbits);
523         if (stree) s->static_len += (ulg)f * (unsigned)(stree[n].Len + xbits);
524     }
525     if (overflow == 0) return;
526 
527     Tracev((stderr,"\nbit length overflow\n"));
528     /* This happens for example on obj2 and pic of the Calgary corpus */
529 
530     /* Find the first bit length which could increase: */
531     do {
532         bits = max_length-1;
533         while (s->bl_count[bits] == 0) bits--;
534         s->bl_count[bits]--;      /* move one leaf down the tree */
535         s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
536         s->bl_count[max_length]--;
537         /* The brother of the overflow item also moves one step up,
538          * but this does not affect bl_count[max_length]
539          */
540         overflow -= 2;
541     } while (overflow > 0);
542 
543     /* Now recompute all bit lengths, scanning in increasing frequency.
544      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
545      * lengths instead of fixing only the wrong ones. This idea is taken
546      * from 'ar' written by Haruhiko Okumura.)
547      */
548     for (bits = max_length; bits != 0; bits--) {
549         n = s->bl_count[bits];
550         while (n != 0) {
551             m = s->heap[--h];
552             if (m > max_code) continue;
553             if ((unsigned) tree[m].Len != (unsigned) bits) {
554                 Tracev((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
555                 s->opt_len += ((ulg)bits - tree[m].Len) * tree[m].Freq;
556                 tree[m].Len = (ush)bits;
557             }
558             n--;
559         }
560     }
561 }
562 
563 /* ===========================================================================
564  * Generate the codes for a given tree and bit counts (which need not be
565  * optimal).
566  * IN assertion: the array bl_count contains the bit length statistics for
567  * the given tree and the field len is set for all tree elements.
568  * OUT assertion: the field code is set for all tree elements of non
569  *     zero code length.
570  */
571 local void gen_codes (tree, max_code, bl_count)
572     ct_data *tree;             /* the tree to decorate */
573     int max_code;              /* largest code with non zero frequency */
574     ushf *bl_count;            /* number of codes at each bit length */
575 {
576     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
577     unsigned code = 0;         /* running code value */
578     int bits;                  /* bit index */
579     int n;                     /* code index */
580 
581     /* The distribution counts are first used to generate the code values
582      * without bit reversal.
583      */
584     for (bits = 1; bits <= MAX_BITS; bits++) {
585         code = (code + bl_count[bits-1]) << 1;
586         next_code[bits] = (ush)code;
587     }
588     /* Check that the bit counts in bl_count are consistent. The last code
589      * must be all ones.
590      */
591     Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
592             "inconsistent bit counts");
593     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
594 
595     for (n = 0;  n <= max_code; n++) {
596         int len = tree[n].Len;
597         if (len == 0) continue;
598         /* Now reverse the bits */
599         tree[n].Code = (ush)bi_reverse(next_code[len]++, len);
600 
601         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
602              n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
603     }
604 }
605 
606 /* ===========================================================================
607  * Construct one Huffman tree and assigns the code bit strings and lengths.
608  * Update the total bit length for the current block.
609  * IN assertion: the field freq is set for all tree elements.
610  * OUT assertions: the fields len and code are set to the optimal bit length
611  *     and corresponding code. The length opt_len is updated; static_len is
612  *     also updated if stree is not null. The field max_code is set.
613  */
614 local void build_tree(s, desc)
615     deflate_state *s;
616     tree_desc *desc; /* the tree descriptor */
617 {
618     ct_data *tree         = desc->dyn_tree;
619     const ct_data *stree  = desc->stat_desc->static_tree;
620     int elems             = desc->stat_desc->elems;
621     int n, m;          /* iterate over heap elements */
622     int max_code = -1; /* largest code with non zero frequency */
623     int node;          /* new node being created */
624 
625     /* Construct the initial heap, with least frequent element in
626      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
627      * heap[0] is not used.
628      */
629     s->heap_len = 0, s->heap_max = HEAP_SIZE;
630 
631     for (n = 0; n < elems; n++) {
632         if (tree[n].Freq != 0) {
633             s->heap[++(s->heap_len)] = max_code = n;
634             s->depth[n] = 0;
635         } else {
636             tree[n].Len = 0;
637         }
638     }
639 
640     /* The pkzip format requires that at least one distance code exists,
641      * and that at least one bit should be sent even if there is only one
642      * possible code. So to avoid special checks later on we force at least
643      * two codes of non zero frequency.
644      */
645     while (s->heap_len < 2) {
646         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
647         tree[node].Freq = 1;
648         s->depth[node] = 0;
649         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
650         /* node is 0 or 1 so it does not have extra bits */
651     }
652     desc->max_code = max_code;
653 
654     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
655      * establish sub-heaps of increasing lengths:
656      */
657     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
658 
659     /* Construct the Huffman tree by repeatedly combining the least two
660      * frequent nodes.
661      */
662     node = elems;              /* next internal node of the tree */
663     do {
664         pqremove(s, tree, n);  /* n = node of least frequency */
665         m = s->heap[SMALLEST]; /* m = node of next least frequency */
666 
667         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
668         s->heap[--(s->heap_max)] = m;
669 
670         /* Create a new node father of n and m */
671         tree[node].Freq = tree[n].Freq + tree[m].Freq;
672         s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
673                                 s->depth[n] : s->depth[m]) + 1);
674         tree[n].Dad = tree[m].Dad = (ush)node;
675 #ifdef DUMP_BL_TREE
676         if (tree == s->bl_tree) {
677             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
678                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
679         }
680 #endif
681         /* and insert the new node in the heap */
682         s->heap[SMALLEST] = node++;
683         pqdownheap(s, tree, SMALLEST);
684 
685     } while (s->heap_len >= 2);
686 
687     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
688 
689     /* At this point, the fields freq and dad are set. We can now
690      * generate the bit lengths.
691      */
692     gen_bitlen(s, (tree_desc *)desc);
693 
694     /* The field len is now set, we can generate the bit codes */
695     gen_codes ((ct_data *)tree, max_code, s->bl_count);
696 }
697 
698 /* ===========================================================================
699  * Scan a literal or distance tree to determine the frequencies of the codes
700  * in the bit length tree.
701  */
702 local void scan_tree (s, tree, max_code)
703     deflate_state *s;
704     ct_data *tree;   /* the tree to be scanned */
705     int max_code;    /* and its largest code of non zero frequency */
706 {
707     int n;                     /* iterates over all tree elements */
708     int prevlen = -1;          /* last emitted length */
709     int curlen;                /* length of current code */
710     int nextlen = tree[0].Len; /* length of next code */
711     int count = 0;             /* repeat count of the current code */
712     int max_count = 7;         /* max repeat count */
713     int min_count = 4;         /* min repeat count */
714 
715     if (nextlen == 0) max_count = 138, min_count = 3;
716     tree[max_code+1].Len = (ush)0xffff; /* guard */
717 
718     for (n = 0; n <= max_code; n++) {
719         curlen = nextlen; nextlen = tree[n+1].Len;
720         if (++count < max_count && curlen == nextlen) {
721             continue;
722         } else if (count < min_count) {
723             s->bl_tree[curlen].Freq += count;
724         } else if (curlen != 0) {
725             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
726             s->bl_tree[REP_3_6].Freq++;
727         } else if (count <= 10) {
728             s->bl_tree[REPZ_3_10].Freq++;
729         } else {
730             s->bl_tree[REPZ_11_138].Freq++;
731         }
732         count = 0; prevlen = curlen;
733         if (nextlen == 0) {
734             max_count = 138, min_count = 3;
735         } else if (curlen == nextlen) {
736             max_count = 6, min_count = 3;
737         } else {
738             max_count = 7, min_count = 4;
739         }
740     }
741 }
742 
743 /* ===========================================================================
744  * Send a literal or distance tree in compressed form, using the codes in
745  * bl_tree.
746  */
747 local void send_tree (s, tree, max_code)
748     deflate_state *s;
749     ct_data *tree; /* the tree to be scanned */
750     int max_code;       /* and its largest code of non zero frequency */
751 {
752     int n;                     /* iterates over all tree elements */
753     int prevlen = -1;          /* last emitted length */
754     int curlen;                /* length of current code */
755     int nextlen = tree[0].Len; /* length of next code */
756     int count = 0;             /* repeat count of the current code */
757     int max_count = 7;         /* max repeat count */
758     int min_count = 4;         /* min repeat count */
759 
760     /* tree[max_code+1].Len = -1; */  /* guard already set */
761     if (nextlen == 0) max_count = 138, min_count = 3;
762 
763     for (n = 0; n <= max_code; n++) {
764         curlen = nextlen; nextlen = tree[n+1].Len;
765         if (++count < max_count && curlen == nextlen) {
766             continue;
767         } else if (count < min_count) {
768             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
769 
770         } else if (curlen != 0) {
771             if (curlen != prevlen) {
772                 send_code(s, curlen, s->bl_tree); count--;
773             }
774             Assert(count >= 3 && count <= 6, " 3_6?");
775             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
776 
777         } else if (count <= 10) {
778             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
779 
780         } else {
781             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
782         }
783         count = 0; prevlen = curlen;
784         if (nextlen == 0) {
785             max_count = 138, min_count = 3;
786         } else if (curlen == nextlen) {
787             max_count = 6, min_count = 3;
788         } else {
789             max_count = 7, min_count = 4;
790         }
791     }
792 }
793 
794 /* ===========================================================================
795  * Construct the Huffman tree for the bit lengths and return the index in
796  * bl_order of the last bit length code to send.
797  */
798 local int build_bl_tree(s)
799     deflate_state *s;
800 {
801     int max_blindex;  /* index of last bit length code of non zero freq */
802 
803     /* Determine the bit length frequencies for literal and distance trees */
804     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
805     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
806 
807     /* Build the bit length tree: */
808     build_tree(s, (tree_desc *)(&(s->bl_desc)));
809     /* opt_len now includes the length of the tree representations, except
810      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
811      */
812 
813     /* Determine the number of bit length codes to send. The pkzip format
814      * requires that at least 4 bit length codes be sent. (appnote.txt says
815      * 3 but the actual value used is 4.)
816      */
817     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
818         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
819     }
820     /* Update opt_len to include the bit length tree and counts */
821     s->opt_len += 3*((ulg)max_blindex+1) + 5+5+4;
822     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
823             s->opt_len, s->static_len));
824 
825     return max_blindex;
826 }
827 
828 /* ===========================================================================
829  * Send the header for a block using dynamic Huffman trees: the counts, the
830  * lengths of the bit length codes, the literal tree and the distance tree.
831  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
832  */
833 local void send_all_trees(s, lcodes, dcodes, blcodes)
834     deflate_state *s;
835     int lcodes, dcodes, blcodes; /* number of codes for each tree */
836 {
837     int rank;                    /* index in bl_order */
838 
839     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
840     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
841             "too many codes");
842     Tracev((stderr, "\nbl counts: "));
843     send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
844     send_bits(s, dcodes-1,   5);
845     send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
846     for (rank = 0; rank < blcodes; rank++) {
847         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
848         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
849     }
850     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
851 
852     send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
853     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
854 
855     send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
856     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
857 }
858 
859 /* ===========================================================================
860  * Send a stored block
861  */
862 void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last)
863     deflate_state *s;
864     charf *buf;       /* input block */
865     ulg stored_len;   /* length of input block */
866     int last;         /* one if this is the last block for a file */
867 {
868     send_bits(s, (STORED_BLOCK<<1)+last, 3);    /* send block type */
869     bi_windup(s);        /* align on byte boundary */
870     put_short(s, (ush)stored_len);
871     put_short(s, (ush)~stored_len);
872     zmemcpy(s->pending_buf + s->pending, (Bytef *)buf, stored_len);
873     s->pending += stored_len;
874 #ifdef ZLIB_DEBUG
875     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
876     s->compressed_len += (stored_len + 4) << 3;
877     s->bits_sent += 2*16;
878     s->bits_sent += stored_len<<3;
879 #endif
880 }
881 
882 /* ===========================================================================
883  * Flush the bits in the bit buffer to pending output (leaves at most 7 bits)
884  */
885 void ZLIB_INTERNAL _tr_flush_bits(s)
886     deflate_state *s;
887 {
888     bi_flush(s);
889 }
890 
891 /* ===========================================================================
892  * Send one empty static block to give enough lookahead for inflate.
893  * This takes 10 bits, of which 7 may remain in the bit buffer.
894  */
895 void ZLIB_INTERNAL _tr_align(s)
896     deflate_state *s;
897 {
898     send_bits(s, STATIC_TREES<<1, 3);
899     send_code(s, END_BLOCK, static_ltree);
900 #ifdef ZLIB_DEBUG
901     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
902 #endif
903     bi_flush(s);
904 }
905 
906 /* ===========================================================================
907  * Determine the best encoding for the current block: dynamic trees, static
908  * trees or store, and write out the encoded block.
909  */
910 void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last)
911     deflate_state *s;
912     charf *buf;       /* input block, or NULL if too old */
913     ulg stored_len;   /* length of input block */
914     int last;         /* one if this is the last block for a file */
915 {
916     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
917     int max_blindex = 0;  /* index of last bit length code of non zero freq */
918 
919     /* Build the Huffman trees unless a stored block is forced */
920     if (s->level > 0) {
921 
922         /* Check if the file is binary or text */
923         if (s->strm->data_type == Z_UNKNOWN)
924             s->strm->data_type = detect_data_type(s);
925 
926         /* Construct the literal and distance trees */
927         build_tree(s, (tree_desc *)(&(s->l_desc)));
928         Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
929                 s->static_len));
930 
931         build_tree(s, (tree_desc *)(&(s->d_desc)));
932         Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
933                 s->static_len));
934         /* At this point, opt_len and static_len are the total bit lengths of
935          * the compressed block data, excluding the tree representations.
936          */
937 
938         /* Build the bit length tree for the above two trees, and get the index
939          * in bl_order of the last bit length code to send.
940          */
941         max_blindex = build_bl_tree(s);
942 
943         /* Determine the best encoding. Compute the block lengths in bytes. */
944         opt_lenb = (s->opt_len+3+7)>>3;
945         static_lenb = (s->static_len+3+7)>>3;
946 
947         Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
948                 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
949                 s->last_lit));
950 
951         if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
952 
953     } else {
954         Assert(buf != (char*)0, "lost buf");
955         opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
956     }
957 
958 #ifdef FORCE_STORED
959     if (buf != (char*)0) { /* force stored block */
960 #else
961     if (stored_len+4 <= opt_lenb && buf != (char*)0) {
962                        /* 4: two words for the lengths */
963 #endif
964         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
965          * Otherwise we can't have processed more than WSIZE input bytes since
966          * the last block flush, because compression would have been
967          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
968          * transform a block into a stored block.
969          */
970         _tr_stored_block(s, buf, stored_len, last);
971 
972 #ifdef FORCE_STATIC
973     } else if (static_lenb >= 0) { /* force static trees */
974 #else
975     } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
976 #endif
977         send_bits(s, (STATIC_TREES<<1)+last, 3);
978         compress_block(s, (const ct_data *)static_ltree,
979                        (const ct_data *)static_dtree);
980 #ifdef ZLIB_DEBUG
981         s->compressed_len += 3 + s->static_len;
982 #endif
983     } else {
984         send_bits(s, (DYN_TREES<<1)+last, 3);
985         send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
986                        max_blindex+1);
987         compress_block(s, (const ct_data *)s->dyn_ltree,
988                        (const ct_data *)s->dyn_dtree);
989 #ifdef ZLIB_DEBUG
990         s->compressed_len += 3 + s->opt_len;
991 #endif
992     }
993     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
994     /* The above check is made mod 2^32, for files larger than 512 MB
995      * and uLong implemented on 32 bits.
996      */
997     init_block(s);
998 
999     if (last) {
1000         bi_windup(s);
1001 #ifdef ZLIB_DEBUG
1002         s->compressed_len += 7;  /* align on byte boundary */
1003 #endif
1004     }
1005     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
1006            s->compressed_len-7*last));
1007 }
1008 
1009 /* ===========================================================================
1010  * Save the match info and tally the frequency counts. Return true if
1011  * the current block must be flushed.
1012  */
1013 int ZLIB_INTERNAL _tr_tally (s, dist, lc)
1014     deflate_state *s;
1015     unsigned dist;  /* distance of matched string */
1016     unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
1017 {
1018     s->d_buf[s->last_lit] = (ush)dist;
1019     s->l_buf[s->last_lit++] = (uch)lc;
1020     if (dist == 0) {
1021         /* lc is the unmatched char */
1022         s->dyn_ltree[lc].Freq++;
1023     } else {
1024         s->matches++;
1025         /* Here, lc is the match length - MIN_MATCH */
1026         dist--;             /* dist = match distance - 1 */
1027         Assert((ush)dist < (ush)MAX_DIST(s) &&
1028                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1029                (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
1030 
1031         s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
1032         s->dyn_dtree[d_code(dist)].Freq++;
1033     }
1034 
1035 #ifdef TRUNCATE_BLOCK
1036     /* Try to guess if it is profitable to stop the current block here */
1037     if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
1038         /* Compute an upper bound for the compressed length */
1039         ulg out_length = (ulg)s->last_lit*8L;
1040         ulg in_length = (ulg)((long)s->strstart - s->block_start);
1041         int dcode;
1042         for (dcode = 0; dcode < D_CODES; dcode++) {
1043             out_length += (ulg)s->dyn_dtree[dcode].Freq *
1044                 (5L+extra_dbits[dcode]);
1045         }
1046         out_length >>= 3;
1047         Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
1048                s->last_lit, in_length, out_length,
1049                100L - out_length*100L/in_length));
1050         if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
1051     }
1052 #endif
1053     return (s->last_lit == s->lit_bufsize-1);
1054     /* We avoid equality with lit_bufsize because of wraparound at 64K
1055      * on 16 bit machines and because stored blocks are restricted to
1056      * 64K-1 bytes.
1057      */
1058 }
1059 
1060 /* ===========================================================================
1061  * Send the block data compressed using the given Huffman trees
1062  */
1063 local void compress_block(s, ltree, dtree)
1064     deflate_state *s;
1065     const ct_data *ltree; /* literal tree */
1066     const ct_data *dtree; /* distance tree */
1067 {
1068     unsigned dist;      /* distance of matched string */
1069     int lc;             /* match length or unmatched char (if dist == 0) */
1070     unsigned lx = 0;    /* running index in l_buf */
1071     unsigned code;      /* the code to send */
1072     int extra;          /* number of extra bits to send */
1073 
1074     if (s->last_lit != 0) do {
1075         dist = s->d_buf[lx];
1076         lc = s->l_buf[lx++];
1077         if (dist == 0) {
1078             send_code(s, lc, ltree); /* send a literal byte */
1079             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
1080         } else {
1081             /* Here, lc is the match length - MIN_MATCH */
1082             code = _length_code[lc];
1083             send_code(s, code+LITERALS+1, ltree); /* send the length code */
1084             extra = extra_lbits[code];
1085             if (extra != 0) {
1086                 lc -= base_length[code];
1087                 send_bits(s, lc, extra);       /* send the extra length bits */
1088             }
1089             dist--; /* dist is now the match distance - 1 */
1090             code = d_code(dist);
1091             Assert (code < D_CODES, "bad d_code");
1092 
1093             send_code(s, code, dtree);       /* send the distance code */
1094             extra = extra_dbits[code];
1095             if (extra != 0) {
1096                 dist -= (unsigned)base_dist[code];
1097                 send_bits(s, dist, extra);   /* send the extra distance bits */
1098             }
1099         } /* literal or match pair ? */
1100 
1101         /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
1102         Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
1103                "pendingBuf overflow");
1104 
1105     } while (lx < s->last_lit);
1106 
1107     send_code(s, END_BLOCK, ltree);
1108 }
1109 
1110 /* ===========================================================================
1111  * Check if the data type is TEXT or BINARY, using the following algorithm:
1112  * - TEXT if the two conditions below are satisfied:
1113  *    a) There are no non-portable control characters belonging to the
1114  *       "black list" (0..6, 14..25, 28..31).
1115  *    b) There is at least one printable character belonging to the
1116  *       "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
1117  * - BINARY otherwise.
1118  * - The following partially-portable control characters form a
1119  *   "gray list" that is ignored in this detection algorithm:
1120  *   (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
1121  * IN assertion: the fields Freq of dyn_ltree are set.
1122  */
1123 local int detect_data_type(s)
1124     deflate_state *s;
1125 {
1126     /* black_mask is the bit mask of black-listed bytes
1127      * set bits 0..6, 14..25, and 28..31
1128      * 0xf3ffc07f = binary 11110011111111111100000001111111
1129      */
1130     unsigned long black_mask = 0xf3ffc07fUL;
1131     int n;
1132 
1133     /* Check for non-textual ("black-listed") bytes. */
1134     for (n = 0; n <= 31; n++, black_mask >>= 1)
1135         if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0))
1136             return Z_BINARY;
1137 
1138     /* Check for textual ("white-listed") bytes. */
1139     if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
1140             || s->dyn_ltree[13].Freq != 0)
1141         return Z_TEXT;
1142     for (n = 32; n < LITERALS; n++)
1143         if (s->dyn_ltree[n].Freq != 0)
1144             return Z_TEXT;
1145 
1146     /* There are no "black-listed" or "white-listed" bytes:
1147      * this stream either is empty or has tolerated ("gray-listed") bytes only.
1148      */
1149     return Z_BINARY;
1150 }
1151 
1152 /* ===========================================================================
1153  * Reverse the first len bits of a code, using straightforward code (a faster
1154  * method would use a table)
1155  * IN assertion: 1 <= len <= 15
1156  */
1157 local unsigned bi_reverse(code, len)
1158     unsigned code; /* the value to invert */
1159     int len;       /* its bit length */
1160 {
1161     register unsigned res = 0;
1162     do {
1163         res |= code & 1;
1164         code >>= 1, res <<= 1;
1165     } while (--len > 0);
1166     return res >> 1;
1167 }
1168 
1169 /* ===========================================================================
1170  * Flush the bit buffer, keeping at most 7 bits in it.
1171  */
1172 local void bi_flush(s)
1173     deflate_state *s;
1174 {
1175     if (s->bi_valid == 16) {
1176         put_short(s, s->bi_buf);
1177         s->bi_buf = 0;
1178         s->bi_valid = 0;
1179     } else if (s->bi_valid >= 8) {
1180         put_byte(s, (Byte)s->bi_buf);
1181         s->bi_buf >>= 8;
1182         s->bi_valid -= 8;
1183     }
1184 }
1185 
1186 /* ===========================================================================
1187  * Flush the bit buffer and align the output on a byte boundary
1188  */
1189 local void bi_windup(s)
1190     deflate_state *s;
1191 {
1192     if (s->bi_valid > 8) {
1193         put_short(s, s->bi_buf);
1194     } else if (s->bi_valid > 0) {
1195         put_byte(s, (Byte)s->bi_buf);
1196     }
1197     s->bi_buf = 0;
1198     s->bi_valid = 0;
1199 #ifdef ZLIB_DEBUG
1200     s->bits_sent = (s->bits_sent+7) & ~7;
1201 #endif
1202 }
1203