1 /* $OpenBSD: route.c,v 1.426 2023/11/13 17:18:27 bluhm Exp $ */ 2 /* $NetBSD: route.c,v 1.14 1996/02/13 22:00:46 christos Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1980, 1986, 1991, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)route.c 8.2 (Berkeley) 11/15/93 62 */ 63 64 /* 65 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995 66 * 67 * NRL grants permission for redistribution and use in source and binary 68 * forms, with or without modification, of the software and documentation 69 * created at NRL provided that the following conditions are met: 70 * 71 * 1. Redistributions of source code must retain the above copyright 72 * notice, this list of conditions and the following disclaimer. 73 * 2. Redistributions in binary form must reproduce the above copyright 74 * notice, this list of conditions and the following disclaimer in the 75 * documentation and/or other materials provided with the distribution. 76 * 3. All advertising materials mentioning features or use of this software 77 * must display the following acknowledgements: 78 * This product includes software developed by the University of 79 * California, Berkeley and its contributors. 80 * This product includes software developed at the Information 81 * Technology Division, US Naval Research Laboratory. 82 * 4. Neither the name of the NRL nor the names of its contributors 83 * may be used to endorse or promote products derived from this software 84 * without specific prior written permission. 85 * 86 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS 87 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 88 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 89 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR 90 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 91 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 92 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 93 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 94 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 95 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 96 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 97 * 98 * The views and conclusions contained in the software and documentation 99 * are those of the authors and should not be interpreted as representing 100 * official policies, either expressed or implied, of the US Naval 101 * Research Laboratory (NRL). 102 */ 103 104 #include <sys/param.h> 105 #include <sys/systm.h> 106 #include <sys/mbuf.h> 107 #include <sys/socket.h> 108 #include <sys/socketvar.h> 109 #include <sys/timeout.h> 110 #include <sys/domain.h> 111 #include <sys/ioctl.h> 112 #include <sys/kernel.h> 113 #include <sys/queue.h> 114 #include <sys/pool.h> 115 #include <sys/atomic.h> 116 #include <sys/mutex.h> 117 118 #include <net/if.h> 119 #include <net/if_var.h> 120 #include <net/if_dl.h> 121 #include <net/route.h> 122 123 #include <netinet/in.h> 124 #include <netinet/ip_var.h> 125 #include <netinet/in_var.h> 126 127 #ifdef INET6 128 #include <netinet/ip6.h> 129 #include <netinet6/ip6_var.h> 130 #include <netinet6/in6_var.h> 131 #endif 132 133 #ifdef MPLS 134 #include <netmpls/mpls.h> 135 #endif 136 137 #ifdef BFD 138 #include <net/bfd.h> 139 #endif 140 141 /* 142 * Locks used to protect struct members: 143 * I immutable after creation 144 * L rtlabel_mtx 145 * T rttimer_mtx 146 */ 147 148 #define ROUNDUP(a) (a>0 ? (1 + (((a) - 1) | (sizeof(long) - 1))) : sizeof(long)) 149 150 /* Give some jitter to hash, to avoid synchronization between routers. */ 151 static uint32_t rt_hashjitter; 152 153 extern unsigned int rtmap_limit; 154 155 struct cpumem * rtcounters; 156 int rttrash; /* routes not in table but not freed */ 157 158 struct pool rtentry_pool; /* pool for rtentry structures */ 159 struct pool rttimer_pool; /* pool for rttimer structures */ 160 161 int rt_setgwroute(struct rtentry *, const struct sockaddr *, u_int); 162 void rt_putgwroute(struct rtentry *, struct rtentry *); 163 int rtflushclone1(struct rtentry *, void *, u_int); 164 int rtflushclone(struct rtentry *, unsigned int); 165 int rt_ifa_purge_walker(struct rtentry *, void *, unsigned int); 166 struct rtentry *rt_match(const struct sockaddr *, uint32_t *, int, 167 unsigned int); 168 int rt_clone(struct rtentry **, const struct sockaddr *, unsigned int); 169 struct sockaddr *rt_plentosa(sa_family_t, int, struct sockaddr_in6 *); 170 static int rt_copysa(const struct sockaddr *, const struct sockaddr *, 171 struct sockaddr **); 172 173 #define LABELID_MAX 50000 174 175 struct rt_label { 176 TAILQ_ENTRY(rt_label) rtl_entry; /* [L] */ 177 char rtl_name[RTLABEL_LEN]; /* [I] */ 178 u_int16_t rtl_id; /* [I] */ 179 int rtl_ref; /* [L] */ 180 }; 181 182 TAILQ_HEAD(rt_labels, rt_label) rt_labels = 183 TAILQ_HEAD_INITIALIZER(rt_labels); /* [L] */ 184 struct mutex rtlabel_mtx = MUTEX_INITIALIZER(IPL_NET); 185 186 void 187 route_init(void) 188 { 189 rtcounters = counters_alloc(rts_ncounters); 190 191 pool_init(&rtentry_pool, sizeof(struct rtentry), 0, IPL_MPFLOOR, 0, 192 "rtentry", NULL); 193 194 while (rt_hashjitter == 0) 195 rt_hashjitter = arc4random(); 196 197 #ifdef BFD 198 bfdinit(); 199 #endif 200 } 201 202 /* 203 * Returns 1 if the (cached) ``rt'' entry is still valid, 0 otherwise. 204 */ 205 int 206 rtisvalid(struct rtentry *rt) 207 { 208 if (rt == NULL) 209 return (0); 210 211 if (!ISSET(rt->rt_flags, RTF_UP)) 212 return (0); 213 214 if (ISSET(rt->rt_flags, RTF_GATEWAY)) { 215 KASSERT(rt->rt_gwroute != NULL); 216 KASSERT(!ISSET(rt->rt_gwroute->rt_flags, RTF_GATEWAY)); 217 if (!ISSET(rt->rt_gwroute->rt_flags, RTF_UP)) 218 return (0); 219 } 220 221 return (1); 222 } 223 224 /* 225 * Do the actual lookup for rtalloc(9), do not use directly! 226 * 227 * Return the best matching entry for the destination ``dst''. 228 * 229 * "RT_RESOLVE" means that a corresponding L2 entry should 230 * be added to the routing table and resolved (via ARP or 231 * NDP), if it does not exist. 232 */ 233 struct rtentry * 234 rt_match(const struct sockaddr *dst, uint32_t *src, int flags, 235 unsigned int tableid) 236 { 237 struct rtentry *rt = NULL; 238 239 rt = rtable_match(tableid, dst, src); 240 if (rt == NULL) { 241 rtstat_inc(rts_unreach); 242 return (NULL); 243 } 244 245 if (ISSET(rt->rt_flags, RTF_CLONING) && ISSET(flags, RT_RESOLVE)) 246 rt_clone(&rt, dst, tableid); 247 248 rt->rt_use++; 249 return (rt); 250 } 251 252 int 253 rt_clone(struct rtentry **rtp, const struct sockaddr *dst, 254 unsigned int rtableid) 255 { 256 struct rt_addrinfo info; 257 struct rtentry *rt = *rtp; 258 int error = 0; 259 260 memset(&info, 0, sizeof(info)); 261 info.rti_info[RTAX_DST] = dst; 262 263 /* 264 * The priority of cloned route should be different 265 * to avoid conflict with /32 cloning routes. 266 * 267 * It should also be higher to let the ARP layer find 268 * cloned routes instead of the cloning one. 269 */ 270 KERNEL_LOCK(); 271 error = rtrequest(RTM_RESOLVE, &info, rt->rt_priority - 1, &rt, 272 rtableid); 273 KERNEL_UNLOCK(); 274 if (error) { 275 rtm_miss(RTM_MISS, &info, 0, RTP_NONE, 0, error, rtableid); 276 } else { 277 /* Inform listeners of the new route */ 278 rtm_send(rt, RTM_ADD, 0, rtableid); 279 rtfree(*rtp); 280 *rtp = rt; 281 } 282 return (error); 283 } 284 285 /* 286 * Originated from bridge_hash() in if_bridge.c 287 */ 288 #define mix(a, b, c) do { \ 289 a -= b; a -= c; a ^= (c >> 13); \ 290 b -= c; b -= a; b ^= (a << 8); \ 291 c -= a; c -= b; c ^= (b >> 13); \ 292 a -= b; a -= c; a ^= (c >> 12); \ 293 b -= c; b -= a; b ^= (a << 16); \ 294 c -= a; c -= b; c ^= (b >> 5); \ 295 a -= b; a -= c; a ^= (c >> 3); \ 296 b -= c; b -= a; b ^= (a << 10); \ 297 c -= a; c -= b; c ^= (b >> 15); \ 298 } while (0) 299 300 int 301 rt_hash(struct rtentry *rt, const struct sockaddr *dst, uint32_t *src) 302 { 303 uint32_t a, b, c; 304 305 if (src == NULL || !rtisvalid(rt) || !ISSET(rt->rt_flags, RTF_MPATH)) 306 return (-1); 307 308 a = b = 0x9e3779b9; 309 c = rt_hashjitter; 310 311 switch (dst->sa_family) { 312 case AF_INET: 313 { 314 const struct sockaddr_in *sin; 315 316 if (!ipmultipath) 317 return (-1); 318 319 sin = satosin_const(dst); 320 a += sin->sin_addr.s_addr; 321 b += src[0]; 322 mix(a, b, c); 323 break; 324 } 325 #ifdef INET6 326 case AF_INET6: 327 { 328 const struct sockaddr_in6 *sin6; 329 330 if (!ip6_multipath) 331 return (-1); 332 333 sin6 = satosin6_const(dst); 334 a += sin6->sin6_addr.s6_addr32[0]; 335 b += sin6->sin6_addr.s6_addr32[2]; 336 c += src[0]; 337 mix(a, b, c); 338 a += sin6->sin6_addr.s6_addr32[1]; 339 b += sin6->sin6_addr.s6_addr32[3]; 340 c += src[1]; 341 mix(a, b, c); 342 a += sin6->sin6_addr.s6_addr32[2]; 343 b += sin6->sin6_addr.s6_addr32[1]; 344 c += src[2]; 345 mix(a, b, c); 346 a += sin6->sin6_addr.s6_addr32[3]; 347 b += sin6->sin6_addr.s6_addr32[0]; 348 c += src[3]; 349 mix(a, b, c); 350 break; 351 } 352 #endif /* INET6 */ 353 } 354 355 return (c & 0xffff); 356 } 357 358 /* 359 * Allocate a route, potentially using multipath to select the peer. 360 */ 361 struct rtentry * 362 rtalloc_mpath(const struct sockaddr *dst, uint32_t *src, unsigned int rtableid) 363 { 364 return (rt_match(dst, src, RT_RESOLVE, rtableid)); 365 } 366 367 /* 368 * Look in the routing table for the best matching entry for 369 * ``dst''. 370 * 371 * If a route with a gateway is found and its next hop is no 372 * longer valid, try to cache it. 373 */ 374 struct rtentry * 375 rtalloc(const struct sockaddr *dst, int flags, unsigned int rtableid) 376 { 377 return (rt_match(dst, NULL, flags, rtableid)); 378 } 379 380 /* 381 * Cache the route entry corresponding to a reachable next hop in 382 * the gateway entry ``rt''. 383 */ 384 int 385 rt_setgwroute(struct rtentry *rt, const struct sockaddr *gate, u_int rtableid) 386 { 387 struct rtentry *prt, *nhrt; 388 unsigned int rdomain = rtable_l2(rtableid); 389 int error; 390 391 NET_ASSERT_LOCKED(); 392 393 /* If we cannot find a valid next hop bail. */ 394 nhrt = rt_match(gate, NULL, RT_RESOLVE, rdomain); 395 if (nhrt == NULL) 396 return (ENOENT); 397 398 /* Next hop entry must be on the same interface. */ 399 if (nhrt->rt_ifidx != rt->rt_ifidx) { 400 struct sockaddr_in6 sa_mask; 401 402 if (!ISSET(nhrt->rt_flags, RTF_LLINFO) || 403 !ISSET(nhrt->rt_flags, RTF_CLONED)) { 404 rtfree(nhrt); 405 return (EHOSTUNREACH); 406 } 407 408 /* 409 * We found a L2 entry, so we might have multiple 410 * RTF_CLONING routes for the same subnet. Query 411 * the first route of the multipath chain and iterate 412 * until we find the correct one. 413 */ 414 prt = rtable_lookup(rdomain, rt_key(nhrt->rt_parent), 415 rt_plen2mask(nhrt->rt_parent, &sa_mask), NULL, RTP_ANY); 416 rtfree(nhrt); 417 418 while (prt != NULL && prt->rt_ifidx != rt->rt_ifidx) 419 prt = rtable_iterate(prt); 420 421 /* We found nothing or a non-cloning MPATH route. */ 422 if (prt == NULL || !ISSET(prt->rt_flags, RTF_CLONING)) { 423 rtfree(prt); 424 return (EHOSTUNREACH); 425 } 426 427 error = rt_clone(&prt, gate, rdomain); 428 if (error) { 429 rtfree(prt); 430 return (error); 431 } 432 nhrt = prt; 433 } 434 435 /* 436 * Next hop must be reachable, this also prevents rtentry 437 * loops for example when rt->rt_gwroute points to rt. 438 */ 439 if (ISSET(nhrt->rt_flags, RTF_CLONING|RTF_GATEWAY)) { 440 rtfree(nhrt); 441 return (ENETUNREACH); 442 } 443 444 /* 445 * If the MTU of next hop is 0, this will reset the MTU of the 446 * route to run PMTUD again from scratch. 447 */ 448 if (!ISSET(rt->rt_locks, RTV_MTU) && (rt->rt_mtu > nhrt->rt_mtu)) 449 rt->rt_mtu = nhrt->rt_mtu; 450 451 /* 452 * To avoid reference counting problems when writing link-layer 453 * addresses in an outgoing packet, we ensure that the lifetime 454 * of a cached entry is greater than the bigger lifetime of the 455 * gateway entries it is pointed by. 456 */ 457 nhrt->rt_flags |= RTF_CACHED; 458 nhrt->rt_cachecnt++; 459 460 /* commit */ 461 rt_putgwroute(rt, nhrt); 462 463 return (0); 464 } 465 466 /* 467 * Invalidate the cached route entry of the gateway entry ``rt''. 468 */ 469 void 470 rt_putgwroute(struct rtentry *rt, struct rtentry *nhrt) 471 { 472 struct rtentry *onhrt; 473 474 NET_ASSERT_LOCKED(); 475 476 if (!ISSET(rt->rt_flags, RTF_GATEWAY)) 477 return; 478 479 /* this is protected as per [X] in route.h */ 480 onhrt = rt->rt_gwroute; 481 rt->rt_gwroute = nhrt; 482 483 if (onhrt != NULL) { 484 KASSERT(onhrt->rt_cachecnt > 0); 485 KASSERT(ISSET(onhrt->rt_flags, RTF_CACHED)); 486 487 --onhrt->rt_cachecnt; 488 if (onhrt->rt_cachecnt == 0) 489 CLR(onhrt->rt_flags, RTF_CACHED); 490 491 rtfree(onhrt); 492 } 493 } 494 495 void 496 rtref(struct rtentry *rt) 497 { 498 refcnt_take(&rt->rt_refcnt); 499 } 500 501 void 502 rtfree(struct rtentry *rt) 503 { 504 if (rt == NULL) 505 return; 506 507 if (refcnt_rele(&rt->rt_refcnt) == 0) 508 return; 509 510 KASSERT(!ISSET(rt->rt_flags, RTF_UP)); 511 KASSERT(!RT_ROOT(rt)); 512 atomic_dec_int(&rttrash); 513 514 rt_timer_remove_all(rt); 515 ifafree(rt->rt_ifa); 516 rtlabel_unref(rt->rt_labelid); 517 #ifdef MPLS 518 rt_mpls_clear(rt); 519 #endif 520 if (rt->rt_gateway != NULL) { 521 free(rt->rt_gateway, M_RTABLE, 522 ROUNDUP(rt->rt_gateway->sa_len)); 523 } 524 free(rt_key(rt), M_RTABLE, rt_key(rt)->sa_len); 525 526 pool_put(&rtentry_pool, rt); 527 } 528 529 struct ifaddr * 530 ifaref(struct ifaddr *ifa) 531 { 532 refcnt_take(&ifa->ifa_refcnt); 533 return ifa; 534 } 535 536 void 537 ifafree(struct ifaddr *ifa) 538 { 539 if (refcnt_rele(&ifa->ifa_refcnt) == 0) 540 return; 541 free(ifa, M_IFADDR, 0); 542 } 543 544 /* 545 * Force a routing table entry to the specified 546 * destination to go through the given gateway. 547 * Normally called as a result of a routing redirect 548 * message from the network layer. 549 */ 550 void 551 rtredirect(struct sockaddr *dst, struct sockaddr *gateway, 552 struct sockaddr *src, struct rtentry **rtp, unsigned int rdomain) 553 { 554 struct rtentry *rt; 555 int error = 0; 556 enum rtstat_counters stat = rts_ncounters; 557 struct rt_addrinfo info; 558 struct ifaddr *ifa; 559 unsigned int ifidx = 0; 560 int flags = RTF_GATEWAY|RTF_HOST; 561 uint8_t prio = RTP_NONE; 562 563 NET_ASSERT_LOCKED(); 564 565 /* verify the gateway is directly reachable */ 566 rt = rtalloc(gateway, 0, rdomain); 567 if (!rtisvalid(rt) || ISSET(rt->rt_flags, RTF_GATEWAY)) { 568 rtfree(rt); 569 error = ENETUNREACH; 570 goto out; 571 } 572 ifidx = rt->rt_ifidx; 573 ifa = rt->rt_ifa; 574 rtfree(rt); 575 rt = NULL; 576 577 rt = rtable_lookup(rdomain, dst, NULL, NULL, RTP_ANY); 578 /* 579 * If the redirect isn't from our current router for this dst, 580 * it's either old or wrong. If it redirects us to ourselves, 581 * we have a routing loop, perhaps as a result of an interface 582 * going down recently. 583 */ 584 #define equal(a1, a2) \ 585 ((a1)->sa_len == (a2)->sa_len && \ 586 bcmp((caddr_t)(a1), (caddr_t)(a2), (a1)->sa_len) == 0) 587 if (rt != NULL && (!equal(src, rt->rt_gateway) || rt->rt_ifa != ifa)) 588 error = EINVAL; 589 else if (ifa_ifwithaddr(gateway, rdomain) != NULL || 590 (gateway->sa_family == AF_INET && 591 in_broadcast(satosin(gateway)->sin_addr, rdomain))) 592 error = EHOSTUNREACH; 593 if (error) 594 goto done; 595 /* 596 * Create a new entry if we just got back a wildcard entry 597 * or the lookup failed. This is necessary for hosts 598 * which use routing redirects generated by smart gateways 599 * to dynamically build the routing tables. 600 */ 601 if (rt == NULL) 602 goto create; 603 /* 604 * Don't listen to the redirect if it's 605 * for a route to an interface. 606 */ 607 if (ISSET(rt->rt_flags, RTF_GATEWAY)) { 608 if (!ISSET(rt->rt_flags, RTF_HOST)) { 609 /* 610 * Changing from route to net => route to host. 611 * Create new route, rather than smashing route to net. 612 */ 613 create: 614 rtfree(rt); 615 flags |= RTF_DYNAMIC; 616 bzero(&info, sizeof(info)); 617 info.rti_info[RTAX_DST] = dst; 618 info.rti_info[RTAX_GATEWAY] = gateway; 619 info.rti_ifa = ifa; 620 info.rti_flags = flags; 621 rt = NULL; 622 error = rtrequest(RTM_ADD, &info, RTP_DEFAULT, &rt, 623 rdomain); 624 if (error == 0) { 625 flags = rt->rt_flags; 626 prio = rt->rt_priority; 627 } 628 stat = rts_dynamic; 629 } else { 630 /* 631 * Smash the current notion of the gateway to 632 * this destination. Should check about netmask!!! 633 */ 634 rt->rt_flags |= RTF_MODIFIED; 635 flags |= RTF_MODIFIED; 636 prio = rt->rt_priority; 637 stat = rts_newgateway; 638 rt_setgate(rt, gateway, rdomain); 639 } 640 } else 641 error = EHOSTUNREACH; 642 done: 643 if (rt) { 644 if (rtp && !error) 645 *rtp = rt; 646 else 647 rtfree(rt); 648 } 649 out: 650 if (error) 651 rtstat_inc(rts_badredirect); 652 else if (stat != rts_ncounters) 653 rtstat_inc(stat); 654 bzero((caddr_t)&info, sizeof(info)); 655 info.rti_info[RTAX_DST] = dst; 656 info.rti_info[RTAX_GATEWAY] = gateway; 657 info.rti_info[RTAX_AUTHOR] = src; 658 rtm_miss(RTM_REDIRECT, &info, flags, prio, ifidx, error, rdomain); 659 } 660 661 /* 662 * Delete a route and generate a message 663 */ 664 int 665 rtdeletemsg(struct rtentry *rt, struct ifnet *ifp, u_int tableid) 666 { 667 int error; 668 struct rt_addrinfo info; 669 struct sockaddr_rtlabel sa_rl; 670 struct sockaddr_in6 sa_mask; 671 672 KASSERT(rt->rt_ifidx == ifp->if_index); 673 674 /* 675 * Request the new route so that the entry is not actually 676 * deleted. That will allow the information being reported to 677 * be accurate (and consistent with route_output()). 678 */ 679 memset(&info, 0, sizeof(info)); 680 info.rti_info[RTAX_DST] = rt_key(rt); 681 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 682 if (!ISSET(rt->rt_flags, RTF_HOST)) 683 info.rti_info[RTAX_NETMASK] = rt_plen2mask(rt, &sa_mask); 684 info.rti_info[RTAX_LABEL] = rtlabel_id2sa(rt->rt_labelid, &sa_rl); 685 info.rti_flags = rt->rt_flags; 686 info.rti_info[RTAX_IFP] = sdltosa(ifp->if_sadl); 687 info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 688 error = rtrequest_delete(&info, rt->rt_priority, ifp, &rt, tableid); 689 rtm_miss(RTM_DELETE, &info, info.rti_flags, rt->rt_priority, 690 rt->rt_ifidx, error, tableid); 691 if (error == 0) 692 rtfree(rt); 693 return (error); 694 } 695 696 static inline int 697 rtequal(struct rtentry *a, struct rtentry *b) 698 { 699 if (a == b) 700 return 1; 701 702 if (memcmp(rt_key(a), rt_key(b), rt_key(a)->sa_len) == 0 && 703 rt_plen(a) == rt_plen(b)) 704 return 1; 705 else 706 return 0; 707 } 708 709 int 710 rtflushclone1(struct rtentry *rt, void *arg, u_int id) 711 { 712 struct rtentry *cloningrt = arg; 713 struct ifnet *ifp; 714 715 if (!ISSET(rt->rt_flags, RTF_CLONED)) 716 return 0; 717 718 /* Cached route must stay alive as long as their parent are alive. */ 719 if (ISSET(rt->rt_flags, RTF_CACHED) && (rt->rt_parent != cloningrt)) 720 return 0; 721 722 if (!rtequal(rt->rt_parent, cloningrt)) 723 return 0; 724 /* 725 * This happens when an interface with a RTF_CLONING route is 726 * being detached. In this case it's safe to bail because all 727 * the routes are being purged by rt_ifa_purge(). 728 */ 729 ifp = if_get(rt->rt_ifidx); 730 if (ifp == NULL) 731 return 0; 732 733 if_put(ifp); 734 return EEXIST; 735 } 736 737 int 738 rtflushclone(struct rtentry *parent, unsigned int rtableid) 739 { 740 struct rtentry *rt = NULL; 741 struct ifnet *ifp; 742 int error; 743 744 #ifdef DIAGNOSTIC 745 if (!parent || (parent->rt_flags & RTF_CLONING) == 0) 746 panic("rtflushclone: called with a non-cloning route"); 747 #endif 748 749 do { 750 error = rtable_walk(rtableid, rt_key(parent)->sa_family, &rt, 751 rtflushclone1, parent); 752 if (rt != NULL && error == EEXIST) { 753 ifp = if_get(rt->rt_ifidx); 754 if (ifp == NULL) { 755 error = EAGAIN; 756 } else { 757 error = rtdeletemsg(rt, ifp, rtableid); 758 if (error == 0) 759 error = EAGAIN; 760 if_put(ifp); 761 } 762 } 763 rtfree(rt); 764 rt = NULL; 765 } while (error == EAGAIN); 766 767 return error; 768 769 } 770 771 int 772 rtrequest_delete(struct rt_addrinfo *info, u_int8_t prio, struct ifnet *ifp, 773 struct rtentry **ret_nrt, u_int tableid) 774 { 775 struct rtentry *rt; 776 int error; 777 778 NET_ASSERT_LOCKED(); 779 780 if (!rtable_exists(tableid)) 781 return (EAFNOSUPPORT); 782 rt = rtable_lookup(tableid, info->rti_info[RTAX_DST], 783 info->rti_info[RTAX_NETMASK], info->rti_info[RTAX_GATEWAY], prio); 784 if (rt == NULL) 785 return (ESRCH); 786 787 /* Make sure that's the route the caller want to delete. */ 788 if (ifp != NULL && ifp->if_index != rt->rt_ifidx) { 789 rtfree(rt); 790 return (ESRCH); 791 } 792 793 #ifdef BFD 794 if (ISSET(rt->rt_flags, RTF_BFD)) 795 bfdclear(rt); 796 #endif 797 798 error = rtable_delete(tableid, info->rti_info[RTAX_DST], 799 info->rti_info[RTAX_NETMASK], rt); 800 if (error != 0) { 801 rtfree(rt); 802 return (ESRCH); 803 } 804 805 /* Release next hop cache before flushing cloned entries. */ 806 rt_putgwroute(rt, NULL); 807 808 /* Clean up any cloned children. */ 809 if (ISSET(rt->rt_flags, RTF_CLONING)) 810 rtflushclone(rt, tableid); 811 812 rtfree(rt->rt_parent); 813 rt->rt_parent = NULL; 814 815 rt->rt_flags &= ~RTF_UP; 816 817 KASSERT(ifp->if_index == rt->rt_ifidx); 818 ifp->if_rtrequest(ifp, RTM_DELETE, rt); 819 820 atomic_inc_int(&rttrash); 821 822 if (ret_nrt != NULL) 823 *ret_nrt = rt; 824 else 825 rtfree(rt); 826 827 return (0); 828 } 829 830 int 831 rtrequest(int req, struct rt_addrinfo *info, u_int8_t prio, 832 struct rtentry **ret_nrt, u_int tableid) 833 { 834 struct ifnet *ifp; 835 struct rtentry *rt, *crt; 836 struct ifaddr *ifa; 837 struct sockaddr *ndst; 838 struct sockaddr_rtlabel *sa_rl, sa_rl2; 839 struct sockaddr_dl sa_dl = { sizeof(sa_dl), AF_LINK }; 840 int error; 841 842 NET_ASSERT_LOCKED(); 843 844 if (!rtable_exists(tableid)) 845 return (EAFNOSUPPORT); 846 if (info->rti_flags & RTF_HOST) 847 info->rti_info[RTAX_NETMASK] = NULL; 848 switch (req) { 849 case RTM_DELETE: 850 return (EINVAL); 851 852 case RTM_RESOLVE: 853 if (ret_nrt == NULL || (rt = *ret_nrt) == NULL) 854 return (EINVAL); 855 if ((rt->rt_flags & RTF_CLONING) == 0) 856 return (EINVAL); 857 KASSERT(rt->rt_ifa->ifa_ifp != NULL); 858 info->rti_ifa = rt->rt_ifa; 859 info->rti_flags = rt->rt_flags | (RTF_CLONED|RTF_HOST); 860 info->rti_flags &= ~(RTF_CLONING|RTF_CONNECTED|RTF_STATIC); 861 info->rti_info[RTAX_GATEWAY] = sdltosa(&sa_dl); 862 info->rti_info[RTAX_LABEL] = 863 rtlabel_id2sa(rt->rt_labelid, &sa_rl2); 864 /* FALLTHROUGH */ 865 866 case RTM_ADD: 867 if (info->rti_ifa == NULL) 868 return (EINVAL); 869 ifa = info->rti_ifa; 870 ifp = ifa->ifa_ifp; 871 if (prio == 0) 872 prio = ifp->if_priority + RTP_STATIC; 873 874 error = rt_copysa(info->rti_info[RTAX_DST], 875 info->rti_info[RTAX_NETMASK], &ndst); 876 if (error) 877 return (error); 878 879 rt = pool_get(&rtentry_pool, PR_NOWAIT | PR_ZERO); 880 if (rt == NULL) { 881 free(ndst, M_RTABLE, ndst->sa_len); 882 return (ENOBUFS); 883 } 884 885 refcnt_init_trace(&rt->rt_refcnt, DT_REFCNT_IDX_RTENTRY); 886 rt->rt_flags = info->rti_flags | RTF_UP; 887 rt->rt_priority = prio; /* init routing priority */ 888 LIST_INIT(&rt->rt_timer); 889 890 /* Check the link state if the table supports it. */ 891 if (rtable_mpath_capable(tableid, ndst->sa_family) && 892 !ISSET(rt->rt_flags, RTF_LOCAL) && 893 (!LINK_STATE_IS_UP(ifp->if_link_state) || 894 !ISSET(ifp->if_flags, IFF_UP))) { 895 rt->rt_flags &= ~RTF_UP; 896 rt->rt_priority |= RTP_DOWN; 897 } 898 899 if (info->rti_info[RTAX_LABEL] != NULL) { 900 sa_rl = (struct sockaddr_rtlabel *) 901 info->rti_info[RTAX_LABEL]; 902 rt->rt_labelid = rtlabel_name2id(sa_rl->sr_label); 903 } 904 905 #ifdef MPLS 906 /* We have to allocate additional space for MPLS infos */ 907 if (info->rti_flags & RTF_MPLS && 908 (info->rti_info[RTAX_SRC] != NULL || 909 info->rti_info[RTAX_DST]->sa_family == AF_MPLS)) { 910 error = rt_mpls_set(rt, info->rti_info[RTAX_SRC], 911 info->rti_mpls); 912 if (error) { 913 free(ndst, M_RTABLE, ndst->sa_len); 914 pool_put(&rtentry_pool, rt); 915 return (error); 916 } 917 } else 918 rt_mpls_clear(rt); 919 #endif 920 921 rt->rt_ifa = ifaref(ifa); 922 rt->rt_ifidx = ifp->if_index; 923 /* 924 * Copy metrics and a back pointer from the cloned 925 * route's parent. 926 */ 927 if (ISSET(rt->rt_flags, RTF_CLONED)) { 928 rtref(*ret_nrt); 929 rt->rt_parent = *ret_nrt; 930 rt->rt_rmx = (*ret_nrt)->rt_rmx; 931 } 932 933 /* 934 * We must set rt->rt_gateway before adding ``rt'' to 935 * the routing table because the radix MPATH code use 936 * it to (re)order routes. 937 */ 938 if ((error = rt_setgate(rt, info->rti_info[RTAX_GATEWAY], 939 tableid))) { 940 ifafree(ifa); 941 rtfree(rt->rt_parent); 942 rt_putgwroute(rt, NULL); 943 if (rt->rt_gateway != NULL) { 944 free(rt->rt_gateway, M_RTABLE, 945 ROUNDUP(rt->rt_gateway->sa_len)); 946 } 947 free(ndst, M_RTABLE, ndst->sa_len); 948 pool_put(&rtentry_pool, rt); 949 return (error); 950 } 951 952 error = rtable_insert(tableid, ndst, 953 info->rti_info[RTAX_NETMASK], info->rti_info[RTAX_GATEWAY], 954 rt->rt_priority, rt); 955 if (error != 0 && 956 (crt = rtable_match(tableid, ndst, NULL)) != NULL) { 957 /* overwrite cloned route */ 958 if (ISSET(crt->rt_flags, RTF_CLONED) && 959 !ISSET(crt->rt_flags, RTF_CACHED)) { 960 struct ifnet *cifp; 961 962 cifp = if_get(crt->rt_ifidx); 963 KASSERT(cifp != NULL); 964 rtdeletemsg(crt, cifp, tableid); 965 if_put(cifp); 966 967 error = rtable_insert(tableid, ndst, 968 info->rti_info[RTAX_NETMASK], 969 info->rti_info[RTAX_GATEWAY], 970 rt->rt_priority, rt); 971 } 972 rtfree(crt); 973 } 974 if (error != 0) { 975 ifafree(ifa); 976 rtfree(rt->rt_parent); 977 rt_putgwroute(rt, NULL); 978 if (rt->rt_gateway != NULL) { 979 free(rt->rt_gateway, M_RTABLE, 980 ROUNDUP(rt->rt_gateway->sa_len)); 981 } 982 free(ndst, M_RTABLE, ndst->sa_len); 983 pool_put(&rtentry_pool, rt); 984 return (EEXIST); 985 } 986 ifp->if_rtrequest(ifp, req, rt); 987 988 if_group_routechange(info->rti_info[RTAX_DST], 989 info->rti_info[RTAX_NETMASK]); 990 991 if (ret_nrt != NULL) 992 *ret_nrt = rt; 993 else 994 rtfree(rt); 995 break; 996 } 997 998 return (0); 999 } 1000 1001 int 1002 rt_setgate(struct rtentry *rt, const struct sockaddr *gate, u_int rtableid) 1003 { 1004 int glen = ROUNDUP(gate->sa_len); 1005 struct sockaddr *sa, *osa; 1006 int error = 0; 1007 1008 KASSERT(gate != NULL); 1009 if (rt->rt_gateway == gate) { 1010 /* nop */ 1011 return (0); 1012 }; 1013 1014 sa = malloc(glen, M_RTABLE, M_NOWAIT | M_ZERO); 1015 if (sa == NULL) 1016 return (ENOBUFS); 1017 memcpy(sa, gate, gate->sa_len); 1018 1019 KERNEL_LOCK(); /* see [X] in route.h */ 1020 osa = rt->rt_gateway; 1021 rt->rt_gateway = sa; 1022 1023 if (ISSET(rt->rt_flags, RTF_GATEWAY)) 1024 error = rt_setgwroute(rt, gate, rtableid); 1025 KERNEL_UNLOCK(); 1026 1027 if (osa != NULL) 1028 free(osa, M_RTABLE, ROUNDUP(osa->sa_len)); 1029 1030 return (error); 1031 } 1032 1033 /* 1034 * Return the route entry containing the next hop link-layer 1035 * address corresponding to ``rt''. 1036 */ 1037 struct rtentry * 1038 rt_getll(struct rtentry *rt) 1039 { 1040 if (ISSET(rt->rt_flags, RTF_GATEWAY)) { 1041 KASSERT(rt->rt_gwroute != NULL); 1042 return (rt->rt_gwroute); 1043 } 1044 1045 return (rt); 1046 } 1047 1048 void 1049 rt_maskedcopy(struct sockaddr *src, struct sockaddr *dst, 1050 struct sockaddr *netmask) 1051 { 1052 u_char *cp1 = (u_char *)src; 1053 u_char *cp2 = (u_char *)dst; 1054 u_char *cp3 = (u_char *)netmask; 1055 u_char *cplim = cp2 + *cp3; 1056 u_char *cplim2 = cp2 + *cp1; 1057 1058 *cp2++ = *cp1++; *cp2++ = *cp1++; /* copies sa_len & sa_family */ 1059 cp3 += 2; 1060 if (cplim > cplim2) 1061 cplim = cplim2; 1062 while (cp2 < cplim) 1063 *cp2++ = *cp1++ & *cp3++; 1064 if (cp2 < cplim2) 1065 bzero(cp2, cplim2 - cp2); 1066 } 1067 1068 /* 1069 * allocate new sockaddr structure based on the user supplied src and mask 1070 * that is useable for the routing table. 1071 */ 1072 static int 1073 rt_copysa(const struct sockaddr *src, const struct sockaddr *mask, 1074 struct sockaddr **dst) 1075 { 1076 static const u_char maskarray[] = { 1077 0x0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe }; 1078 struct sockaddr *ndst; 1079 const struct domain *dp; 1080 u_char *csrc, *cdst; 1081 int i, plen; 1082 1083 for (i = 0; (dp = domains[i]) != NULL; i++) { 1084 if (dp->dom_rtoffset == 0) 1085 continue; 1086 if (src->sa_family == dp->dom_family) 1087 break; 1088 } 1089 if (dp == NULL) 1090 return (EAFNOSUPPORT); 1091 1092 if (src->sa_len < dp->dom_sasize) 1093 return (EINVAL); 1094 1095 plen = rtable_satoplen(src->sa_family, mask); 1096 if (plen == -1) 1097 return (EINVAL); 1098 1099 ndst = malloc(dp->dom_sasize, M_RTABLE, M_NOWAIT|M_ZERO); 1100 if (ndst == NULL) 1101 return (ENOBUFS); 1102 1103 ndst->sa_family = src->sa_family; 1104 ndst->sa_len = dp->dom_sasize; 1105 1106 csrc = (u_char *)src + dp->dom_rtoffset; 1107 cdst = (u_char *)ndst + dp->dom_rtoffset; 1108 1109 memcpy(cdst, csrc, plen / 8); 1110 if (plen % 8 != 0) 1111 cdst[plen / 8] = csrc[plen / 8] & maskarray[plen % 8]; 1112 1113 *dst = ndst; 1114 return (0); 1115 } 1116 1117 int 1118 rt_ifa_add(struct ifaddr *ifa, int flags, struct sockaddr *dst, 1119 unsigned int rdomain) 1120 { 1121 struct ifnet *ifp = ifa->ifa_ifp; 1122 struct rtentry *rt; 1123 struct sockaddr_rtlabel sa_rl; 1124 struct rt_addrinfo info; 1125 uint8_t prio = ifp->if_priority + RTP_STATIC; 1126 int error; 1127 1128 KASSERT(rdomain == rtable_l2(rdomain)); 1129 1130 memset(&info, 0, sizeof(info)); 1131 info.rti_ifa = ifa; 1132 info.rti_flags = flags; 1133 info.rti_info[RTAX_DST] = dst; 1134 if (flags & RTF_LLINFO) 1135 info.rti_info[RTAX_GATEWAY] = sdltosa(ifp->if_sadl); 1136 else 1137 info.rti_info[RTAX_GATEWAY] = ifa->ifa_addr; 1138 info.rti_info[RTAX_LABEL] = rtlabel_id2sa(ifp->if_rtlabelid, &sa_rl); 1139 1140 #ifdef MPLS 1141 if ((flags & RTF_MPLS) == RTF_MPLS) 1142 info.rti_mpls = MPLS_OP_POP; 1143 #endif /* MPLS */ 1144 1145 if ((flags & RTF_HOST) == 0) 1146 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 1147 1148 if (flags & (RTF_LOCAL|RTF_BROADCAST)) 1149 prio = RTP_LOCAL; 1150 1151 if (flags & RTF_CONNECTED) 1152 prio = ifp->if_priority + RTP_CONNECTED; 1153 1154 error = rtrequest(RTM_ADD, &info, prio, &rt, rdomain); 1155 if (error == 0) { 1156 /* 1157 * A local route is created for every address configured 1158 * on an interface, so use this information to notify 1159 * userland that a new address has been added. 1160 */ 1161 if (flags & RTF_LOCAL) 1162 rtm_addr(RTM_NEWADDR, ifa); 1163 rtm_send(rt, RTM_ADD, 0, rdomain); 1164 rtfree(rt); 1165 } 1166 return (error); 1167 } 1168 1169 int 1170 rt_ifa_del(struct ifaddr *ifa, int flags, struct sockaddr *dst, 1171 unsigned int rdomain) 1172 { 1173 struct ifnet *ifp = ifa->ifa_ifp; 1174 struct rtentry *rt; 1175 struct mbuf *m = NULL; 1176 struct sockaddr *deldst; 1177 struct rt_addrinfo info; 1178 struct sockaddr_rtlabel sa_rl; 1179 uint8_t prio = ifp->if_priority + RTP_STATIC; 1180 int error; 1181 1182 KASSERT(rdomain == rtable_l2(rdomain)); 1183 1184 if ((flags & RTF_HOST) == 0 && ifa->ifa_netmask) { 1185 m = m_get(M_DONTWAIT, MT_SONAME); 1186 if (m == NULL) 1187 return (ENOBUFS); 1188 deldst = mtod(m, struct sockaddr *); 1189 rt_maskedcopy(dst, deldst, ifa->ifa_netmask); 1190 dst = deldst; 1191 } 1192 1193 memset(&info, 0, sizeof(info)); 1194 info.rti_ifa = ifa; 1195 info.rti_flags = flags; 1196 info.rti_info[RTAX_DST] = dst; 1197 if ((flags & RTF_LLINFO) == 0) 1198 info.rti_info[RTAX_GATEWAY] = ifa->ifa_addr; 1199 info.rti_info[RTAX_LABEL] = rtlabel_id2sa(ifp->if_rtlabelid, &sa_rl); 1200 1201 if ((flags & RTF_HOST) == 0) 1202 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 1203 1204 if (flags & (RTF_LOCAL|RTF_BROADCAST)) 1205 prio = RTP_LOCAL; 1206 1207 if (flags & RTF_CONNECTED) 1208 prio = ifp->if_priority + RTP_CONNECTED; 1209 1210 rtable_clearsource(rdomain, ifa->ifa_addr); 1211 error = rtrequest_delete(&info, prio, ifp, &rt, rdomain); 1212 if (error == 0) { 1213 rtm_send(rt, RTM_DELETE, 0, rdomain); 1214 if (flags & RTF_LOCAL) 1215 rtm_addr(RTM_DELADDR, ifa); 1216 rtfree(rt); 1217 } 1218 m_free(m); 1219 1220 return (error); 1221 } 1222 1223 /* 1224 * Add ifa's address as a local rtentry. 1225 */ 1226 int 1227 rt_ifa_addlocal(struct ifaddr *ifa) 1228 { 1229 struct ifnet *ifp = ifa->ifa_ifp; 1230 struct rtentry *rt; 1231 u_int flags = RTF_HOST|RTF_LOCAL; 1232 int error = 0; 1233 1234 /* 1235 * If the configured address correspond to the magical "any" 1236 * address do not add a local route entry because that might 1237 * corrupt the routing tree which uses this value for the 1238 * default routes. 1239 */ 1240 switch (ifa->ifa_addr->sa_family) { 1241 case AF_INET: 1242 if (satosin(ifa->ifa_addr)->sin_addr.s_addr == INADDR_ANY) 1243 return (0); 1244 break; 1245 #ifdef INET6 1246 case AF_INET6: 1247 if (IN6_ARE_ADDR_EQUAL(&satosin6(ifa->ifa_addr)->sin6_addr, 1248 &in6addr_any)) 1249 return (0); 1250 break; 1251 #endif 1252 default: 1253 break; 1254 } 1255 1256 if (!ISSET(ifp->if_flags, (IFF_LOOPBACK|IFF_POINTOPOINT))) 1257 flags |= RTF_LLINFO; 1258 1259 /* If there is no local entry, allocate one. */ 1260 rt = rtalloc(ifa->ifa_addr, 0, ifp->if_rdomain); 1261 if (rt == NULL || ISSET(rt->rt_flags, flags) != flags) { 1262 error = rt_ifa_add(ifa, flags | RTF_MPATH, ifa->ifa_addr, 1263 ifp->if_rdomain); 1264 } 1265 rtfree(rt); 1266 1267 return (error); 1268 } 1269 1270 /* 1271 * Remove local rtentry of ifa's address if it exists. 1272 */ 1273 int 1274 rt_ifa_dellocal(struct ifaddr *ifa) 1275 { 1276 struct ifnet *ifp = ifa->ifa_ifp; 1277 struct rtentry *rt; 1278 u_int flags = RTF_HOST|RTF_LOCAL; 1279 int error = 0; 1280 1281 /* 1282 * We do not add local routes for such address, so do not bother 1283 * removing them. 1284 */ 1285 switch (ifa->ifa_addr->sa_family) { 1286 case AF_INET: 1287 if (satosin(ifa->ifa_addr)->sin_addr.s_addr == INADDR_ANY) 1288 return (0); 1289 break; 1290 #ifdef INET6 1291 case AF_INET6: 1292 if (IN6_ARE_ADDR_EQUAL(&satosin6(ifa->ifa_addr)->sin6_addr, 1293 &in6addr_any)) 1294 return (0); 1295 break; 1296 #endif 1297 default: 1298 break; 1299 } 1300 1301 if (!ISSET(ifp->if_flags, (IFF_LOOPBACK|IFF_POINTOPOINT))) 1302 flags |= RTF_LLINFO; 1303 1304 /* 1305 * Before deleting, check if a corresponding local host 1306 * route surely exists. With this check, we can avoid to 1307 * delete an interface direct route whose destination is same 1308 * as the address being removed. This can happen when removing 1309 * a subnet-router anycast address on an interface attached 1310 * to a shared medium. 1311 */ 1312 rt = rtalloc(ifa->ifa_addr, 0, ifp->if_rdomain); 1313 if (rt != NULL && ISSET(rt->rt_flags, flags) == flags) { 1314 error = rt_ifa_del(ifa, flags, ifa->ifa_addr, 1315 ifp->if_rdomain); 1316 } 1317 rtfree(rt); 1318 1319 return (error); 1320 } 1321 1322 /* 1323 * Remove all addresses attached to ``ifa''. 1324 */ 1325 void 1326 rt_ifa_purge(struct ifaddr *ifa) 1327 { 1328 struct ifnet *ifp = ifa->ifa_ifp; 1329 struct rtentry *rt = NULL; 1330 unsigned int rtableid; 1331 int error, af = ifa->ifa_addr->sa_family; 1332 1333 KASSERT(ifp != NULL); 1334 1335 for (rtableid = 0; rtableid < rtmap_limit; rtableid++) { 1336 /* skip rtables that are not in the rdomain of the ifp */ 1337 if (rtable_l2(rtableid) != ifp->if_rdomain) 1338 continue; 1339 1340 do { 1341 error = rtable_walk(rtableid, af, &rt, 1342 rt_ifa_purge_walker, ifa); 1343 if (rt != NULL && error == EEXIST) { 1344 error = rtdeletemsg(rt, ifp, rtableid); 1345 if (error == 0) 1346 error = EAGAIN; 1347 } 1348 rtfree(rt); 1349 rt = NULL; 1350 } while (error == EAGAIN); 1351 1352 if (error == EAFNOSUPPORT) 1353 error = 0; 1354 1355 if (error) 1356 break; 1357 } 1358 } 1359 1360 int 1361 rt_ifa_purge_walker(struct rtentry *rt, void *vifa, unsigned int rtableid) 1362 { 1363 struct ifaddr *ifa = vifa; 1364 1365 if (rt->rt_ifa == ifa) 1366 return EEXIST; 1367 1368 return 0; 1369 } 1370 1371 /* 1372 * Route timer routines. These routines allow functions to be called 1373 * for various routes at any time. This is useful in supporting 1374 * path MTU discovery and redirect route deletion. 1375 * 1376 * This is similar to some BSDI internal functions, but it provides 1377 * for multiple queues for efficiency's sake... 1378 */ 1379 1380 struct mutex rttimer_mtx; 1381 1382 struct rttimer { 1383 TAILQ_ENTRY(rttimer) rtt_next; /* [T] entry on timer queue */ 1384 LIST_ENTRY(rttimer) rtt_link; /* [T] timers per rtentry */ 1385 struct timeout rtt_timeout; /* [I] timeout for this entry */ 1386 struct rttimer_queue *rtt_queue; /* [I] back pointer to queue */ 1387 struct rtentry *rtt_rt; /* [T] back pointer to route */ 1388 time_t rtt_expire; /* [I] rt expire time */ 1389 u_int rtt_tableid; /* [I] rtable id of rtt_rt */ 1390 }; 1391 1392 #define RTTIMER_CALLOUT(r) { \ 1393 if (r->rtt_queue->rtq_func != NULL) { \ 1394 (*r->rtt_queue->rtq_func)(r->rtt_rt, r->rtt_tableid); \ 1395 } else { \ 1396 struct ifnet *ifp; \ 1397 \ 1398 ifp = if_get(r->rtt_rt->rt_ifidx); \ 1399 if (ifp != NULL && \ 1400 (r->rtt_rt->rt_flags & (RTF_DYNAMIC|RTF_HOST)) == \ 1401 (RTF_DYNAMIC|RTF_HOST)) \ 1402 rtdeletemsg(r->rtt_rt, ifp, r->rtt_tableid); \ 1403 if_put(ifp); \ 1404 } \ 1405 } 1406 1407 void 1408 rt_timer_init(void) 1409 { 1410 pool_init(&rttimer_pool, sizeof(struct rttimer), 0, 1411 IPL_MPFLOOR, 0, "rttmr", NULL); 1412 mtx_init(&rttimer_mtx, IPL_MPFLOOR); 1413 } 1414 1415 void 1416 rt_timer_queue_init(struct rttimer_queue *rtq, int timeout, 1417 void (*func)(struct rtentry *, u_int)) 1418 { 1419 rtq->rtq_timeout = timeout; 1420 rtq->rtq_count = 0; 1421 rtq->rtq_func = func; 1422 TAILQ_INIT(&rtq->rtq_head); 1423 } 1424 1425 void 1426 rt_timer_queue_change(struct rttimer_queue *rtq, int timeout) 1427 { 1428 mtx_enter(&rttimer_mtx); 1429 rtq->rtq_timeout = timeout; 1430 mtx_leave(&rttimer_mtx); 1431 } 1432 1433 void 1434 rt_timer_queue_flush(struct rttimer_queue *rtq) 1435 { 1436 struct rttimer *r; 1437 TAILQ_HEAD(, rttimer) rttlist; 1438 1439 NET_ASSERT_LOCKED(); 1440 1441 TAILQ_INIT(&rttlist); 1442 mtx_enter(&rttimer_mtx); 1443 while ((r = TAILQ_FIRST(&rtq->rtq_head)) != NULL) { 1444 LIST_REMOVE(r, rtt_link); 1445 TAILQ_REMOVE(&rtq->rtq_head, r, rtt_next); 1446 TAILQ_INSERT_TAIL(&rttlist, r, rtt_next); 1447 KASSERT(rtq->rtq_count > 0); 1448 rtq->rtq_count--; 1449 } 1450 mtx_leave(&rttimer_mtx); 1451 1452 while ((r = TAILQ_FIRST(&rttlist)) != NULL) { 1453 TAILQ_REMOVE(&rttlist, r, rtt_next); 1454 RTTIMER_CALLOUT(r); 1455 pool_put(&rttimer_pool, r); 1456 } 1457 } 1458 1459 unsigned long 1460 rt_timer_queue_count(struct rttimer_queue *rtq) 1461 { 1462 return (rtq->rtq_count); 1463 } 1464 1465 static inline struct rttimer * 1466 rt_timer_unlink(struct rttimer *r) 1467 { 1468 MUTEX_ASSERT_LOCKED(&rttimer_mtx); 1469 1470 LIST_REMOVE(r, rtt_link); 1471 r->rtt_rt = NULL; 1472 1473 if (timeout_del(&r->rtt_timeout) == 0) { 1474 /* timeout fired, so rt_timer_timer will do the cleanup */ 1475 return NULL; 1476 } 1477 1478 TAILQ_REMOVE(&r->rtt_queue->rtq_head, r, rtt_next); 1479 KASSERT(r->rtt_queue->rtq_count > 0); 1480 r->rtt_queue->rtq_count--; 1481 return r; 1482 } 1483 1484 void 1485 rt_timer_remove_all(struct rtentry *rt) 1486 { 1487 struct rttimer *r; 1488 TAILQ_HEAD(, rttimer) rttlist; 1489 1490 TAILQ_INIT(&rttlist); 1491 mtx_enter(&rttimer_mtx); 1492 while ((r = LIST_FIRST(&rt->rt_timer)) != NULL) { 1493 r = rt_timer_unlink(r); 1494 if (r != NULL) 1495 TAILQ_INSERT_TAIL(&rttlist, r, rtt_next); 1496 } 1497 mtx_leave(&rttimer_mtx); 1498 1499 while ((r = TAILQ_FIRST(&rttlist)) != NULL) { 1500 TAILQ_REMOVE(&rttlist, r, rtt_next); 1501 pool_put(&rttimer_pool, r); 1502 } 1503 } 1504 1505 time_t 1506 rt_timer_get_expire(const struct rtentry *rt) 1507 { 1508 const struct rttimer *r; 1509 time_t expire = 0; 1510 1511 mtx_enter(&rttimer_mtx); 1512 LIST_FOREACH(r, &rt->rt_timer, rtt_link) { 1513 if (expire == 0 || expire > r->rtt_expire) 1514 expire = r->rtt_expire; 1515 } 1516 mtx_leave(&rttimer_mtx); 1517 1518 return expire; 1519 } 1520 1521 int 1522 rt_timer_add(struct rtentry *rt, struct rttimer_queue *queue, u_int rtableid) 1523 { 1524 struct rttimer *r, *rnew; 1525 1526 rnew = pool_get(&rttimer_pool, PR_NOWAIT | PR_ZERO); 1527 if (rnew == NULL) 1528 return (ENOBUFS); 1529 1530 rnew->rtt_rt = rt; 1531 rnew->rtt_queue = queue; 1532 rnew->rtt_tableid = rtableid; 1533 rnew->rtt_expire = getuptime() + queue->rtq_timeout; 1534 timeout_set_proc(&rnew->rtt_timeout, rt_timer_timer, rnew); 1535 1536 mtx_enter(&rttimer_mtx); 1537 /* 1538 * If there's already a timer with this action, destroy it before 1539 * we add a new one. 1540 */ 1541 LIST_FOREACH(r, &rt->rt_timer, rtt_link) { 1542 if (r->rtt_queue == queue) { 1543 r = rt_timer_unlink(r); 1544 break; /* only one per list, so we can quit... */ 1545 } 1546 } 1547 1548 LIST_INSERT_HEAD(&rt->rt_timer, rnew, rtt_link); 1549 TAILQ_INSERT_TAIL(&queue->rtq_head, rnew, rtt_next); 1550 timeout_add_sec(&rnew->rtt_timeout, queue->rtq_timeout); 1551 rnew->rtt_queue->rtq_count++; 1552 mtx_leave(&rttimer_mtx); 1553 1554 if (r != NULL) 1555 pool_put(&rttimer_pool, r); 1556 1557 return (0); 1558 } 1559 1560 void 1561 rt_timer_timer(void *arg) 1562 { 1563 struct rttimer *r = arg; 1564 struct rttimer_queue *rtq = r->rtt_queue; 1565 1566 NET_LOCK(); 1567 mtx_enter(&rttimer_mtx); 1568 1569 if (r->rtt_rt != NULL) 1570 LIST_REMOVE(r, rtt_link); 1571 TAILQ_REMOVE(&rtq->rtq_head, r, rtt_next); 1572 KASSERT(rtq->rtq_count > 0); 1573 rtq->rtq_count--; 1574 1575 mtx_leave(&rttimer_mtx); 1576 1577 if (r->rtt_rt != NULL) 1578 RTTIMER_CALLOUT(r); 1579 NET_UNLOCK(); 1580 1581 pool_put(&rttimer_pool, r); 1582 } 1583 1584 #ifdef MPLS 1585 int 1586 rt_mpls_set(struct rtentry *rt, const struct sockaddr *src, uint8_t op) 1587 { 1588 struct sockaddr_mpls *psa_mpls = (struct sockaddr_mpls *)src; 1589 struct rt_mpls *rt_mpls; 1590 1591 if (psa_mpls == NULL && op != MPLS_OP_POP) 1592 return (EOPNOTSUPP); 1593 if (psa_mpls != NULL && psa_mpls->smpls_len != sizeof(*psa_mpls)) 1594 return (EINVAL); 1595 if (psa_mpls != NULL && psa_mpls->smpls_family != AF_MPLS) 1596 return (EAFNOSUPPORT); 1597 1598 rt->rt_llinfo = malloc(sizeof(struct rt_mpls), M_TEMP, M_NOWAIT|M_ZERO); 1599 if (rt->rt_llinfo == NULL) 1600 return (ENOMEM); 1601 1602 rt_mpls = (struct rt_mpls *)rt->rt_llinfo; 1603 if (psa_mpls != NULL) 1604 rt_mpls->mpls_label = psa_mpls->smpls_label; 1605 rt_mpls->mpls_operation = op; 1606 /* XXX: set experimental bits */ 1607 rt->rt_flags |= RTF_MPLS; 1608 1609 return (0); 1610 } 1611 1612 void 1613 rt_mpls_clear(struct rtentry *rt) 1614 { 1615 if (rt->rt_llinfo != NULL && rt->rt_flags & RTF_MPLS) { 1616 free(rt->rt_llinfo, M_TEMP, sizeof(struct rt_mpls)); 1617 rt->rt_llinfo = NULL; 1618 } 1619 rt->rt_flags &= ~RTF_MPLS; 1620 } 1621 #endif 1622 1623 u_int16_t 1624 rtlabel_name2id(const char *name) 1625 { 1626 struct rt_label *label, *p; 1627 u_int16_t new_id = 1, id = 0; 1628 1629 if (!name[0]) 1630 return (0); 1631 1632 mtx_enter(&rtlabel_mtx); 1633 TAILQ_FOREACH(label, &rt_labels, rtl_entry) 1634 if (strcmp(name, label->rtl_name) == 0) { 1635 label->rtl_ref++; 1636 id = label->rtl_id; 1637 goto out; 1638 } 1639 1640 /* 1641 * to avoid fragmentation, we do a linear search from the beginning 1642 * and take the first free slot we find. if there is none or the list 1643 * is empty, append a new entry at the end. 1644 */ 1645 TAILQ_FOREACH(p, &rt_labels, rtl_entry) { 1646 if (p->rtl_id != new_id) 1647 break; 1648 new_id = p->rtl_id + 1; 1649 } 1650 if (new_id > LABELID_MAX) 1651 goto out; 1652 1653 label = malloc(sizeof(*label), M_RTABLE, M_NOWAIT|M_ZERO); 1654 if (label == NULL) 1655 goto out; 1656 strlcpy(label->rtl_name, name, sizeof(label->rtl_name)); 1657 label->rtl_id = new_id; 1658 label->rtl_ref++; 1659 1660 if (p != NULL) /* insert new entry before p */ 1661 TAILQ_INSERT_BEFORE(p, label, rtl_entry); 1662 else /* either list empty or no free slot in between */ 1663 TAILQ_INSERT_TAIL(&rt_labels, label, rtl_entry); 1664 1665 id = label->rtl_id; 1666 out: 1667 mtx_leave(&rtlabel_mtx); 1668 1669 return (id); 1670 } 1671 1672 const char * 1673 rtlabel_id2name_locked(u_int16_t id) 1674 { 1675 struct rt_label *label; 1676 1677 MUTEX_ASSERT_LOCKED(&rtlabel_mtx); 1678 1679 TAILQ_FOREACH(label, &rt_labels, rtl_entry) 1680 if (label->rtl_id == id) 1681 return (label->rtl_name); 1682 1683 return (NULL); 1684 } 1685 1686 const char * 1687 rtlabel_id2name(u_int16_t id, char *rtlabelbuf, size_t sz) 1688 { 1689 const char *label; 1690 1691 if (id == 0) 1692 return (NULL); 1693 1694 mtx_enter(&rtlabel_mtx); 1695 if ((label = rtlabel_id2name_locked(id)) != NULL) 1696 strlcpy(rtlabelbuf, label, sz); 1697 mtx_leave(&rtlabel_mtx); 1698 1699 if (label == NULL) 1700 return (NULL); 1701 1702 return (rtlabelbuf); 1703 } 1704 1705 struct sockaddr * 1706 rtlabel_id2sa(u_int16_t labelid, struct sockaddr_rtlabel *sa_rl) 1707 { 1708 const char *label; 1709 1710 if (labelid == 0) 1711 return (NULL); 1712 1713 mtx_enter(&rtlabel_mtx); 1714 if ((label = rtlabel_id2name_locked(labelid)) != NULL) { 1715 bzero(sa_rl, sizeof(*sa_rl)); 1716 sa_rl->sr_len = sizeof(*sa_rl); 1717 sa_rl->sr_family = AF_UNSPEC; 1718 strlcpy(sa_rl->sr_label, label, sizeof(sa_rl->sr_label)); 1719 } 1720 mtx_leave(&rtlabel_mtx); 1721 1722 if (label == NULL) 1723 return (NULL); 1724 1725 return ((struct sockaddr *)sa_rl); 1726 } 1727 1728 void 1729 rtlabel_unref(u_int16_t id) 1730 { 1731 struct rt_label *p, *next; 1732 1733 if (id == 0) 1734 return; 1735 1736 mtx_enter(&rtlabel_mtx); 1737 TAILQ_FOREACH_SAFE(p, &rt_labels, rtl_entry, next) { 1738 if (id == p->rtl_id) { 1739 if (--p->rtl_ref == 0) { 1740 TAILQ_REMOVE(&rt_labels, p, rtl_entry); 1741 free(p, M_RTABLE, sizeof(*p)); 1742 } 1743 break; 1744 } 1745 } 1746 mtx_leave(&rtlabel_mtx); 1747 } 1748 1749 int 1750 rt_if_track(struct ifnet *ifp) 1751 { 1752 unsigned int rtableid; 1753 struct rtentry *rt = NULL; 1754 int i, error = 0; 1755 1756 for (rtableid = 0; rtableid < rtmap_limit; rtableid++) { 1757 /* skip rtables that are not in the rdomain of the ifp */ 1758 if (rtable_l2(rtableid) != ifp->if_rdomain) 1759 continue; 1760 for (i = 1; i <= AF_MAX; i++) { 1761 if (!rtable_mpath_capable(rtableid, i)) 1762 continue; 1763 1764 do { 1765 error = rtable_walk(rtableid, i, &rt, 1766 rt_if_linkstate_change, ifp); 1767 if (rt != NULL && error == EEXIST) { 1768 error = rtdeletemsg(rt, ifp, rtableid); 1769 if (error == 0) 1770 error = EAGAIN; 1771 } 1772 rtfree(rt); 1773 rt = NULL; 1774 } while (error == EAGAIN); 1775 1776 if (error == EAFNOSUPPORT) 1777 error = 0; 1778 1779 if (error) 1780 break; 1781 } 1782 } 1783 1784 return (error); 1785 } 1786 1787 int 1788 rt_if_linkstate_change(struct rtentry *rt, void *arg, u_int id) 1789 { 1790 struct ifnet *ifp = arg; 1791 struct sockaddr_in6 sa_mask; 1792 int error; 1793 1794 if (rt->rt_ifidx != ifp->if_index) 1795 return (0); 1796 1797 /* Local routes are always usable. */ 1798 if (rt->rt_flags & RTF_LOCAL) { 1799 rt->rt_flags |= RTF_UP; 1800 return (0); 1801 } 1802 1803 if (LINK_STATE_IS_UP(ifp->if_link_state) && ifp->if_flags & IFF_UP) { 1804 if (ISSET(rt->rt_flags, RTF_UP)) 1805 return (0); 1806 1807 /* bring route up */ 1808 rt->rt_flags |= RTF_UP; 1809 error = rtable_mpath_reprio(id, rt_key(rt), rt_plen(rt), 1810 rt->rt_priority & RTP_MASK, rt); 1811 } else { 1812 /* 1813 * Remove redirected and cloned routes (mainly ARP) 1814 * from down interfaces so we have a chance to get 1815 * new routes from a better source. 1816 */ 1817 if (ISSET(rt->rt_flags, RTF_CLONED|RTF_DYNAMIC) && 1818 !ISSET(rt->rt_flags, RTF_CACHED|RTF_BFD)) { 1819 return (EEXIST); 1820 } 1821 1822 if (!ISSET(rt->rt_flags, RTF_UP)) 1823 return (0); 1824 1825 /* take route down */ 1826 rt->rt_flags &= ~RTF_UP; 1827 error = rtable_mpath_reprio(id, rt_key(rt), rt_plen(rt), 1828 rt->rt_priority | RTP_DOWN, rt); 1829 } 1830 if_group_routechange(rt_key(rt), rt_plen2mask(rt, &sa_mask)); 1831 1832 return (error); 1833 } 1834 1835 struct sockaddr * 1836 rt_plentosa(sa_family_t af, int plen, struct sockaddr_in6 *sa_mask) 1837 { 1838 struct sockaddr_in *sin = (struct sockaddr_in *)sa_mask; 1839 #ifdef INET6 1840 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sa_mask; 1841 #endif 1842 1843 KASSERT(plen >= 0 || plen == -1); 1844 1845 if (plen == -1) 1846 return (NULL); 1847 1848 memset(sa_mask, 0, sizeof(*sa_mask)); 1849 1850 switch (af) { 1851 case AF_INET: 1852 sin->sin_family = AF_INET; 1853 sin->sin_len = sizeof(struct sockaddr_in); 1854 in_prefixlen2mask(&sin->sin_addr, plen); 1855 break; 1856 #ifdef INET6 1857 case AF_INET6: 1858 sin6->sin6_family = AF_INET6; 1859 sin6->sin6_len = sizeof(struct sockaddr_in6); 1860 in6_prefixlen2mask(&sin6->sin6_addr, plen); 1861 break; 1862 #endif /* INET6 */ 1863 default: 1864 return (NULL); 1865 } 1866 1867 return ((struct sockaddr *)sa_mask); 1868 } 1869 1870 struct sockaddr * 1871 rt_plen2mask(struct rtentry *rt, struct sockaddr_in6 *sa_mask) 1872 { 1873 return (rt_plentosa(rt_key(rt)->sa_family, rt_plen(rt), sa_mask)); 1874 } 1875 1876 #ifdef DDB 1877 #include <machine/db_machdep.h> 1878 #include <ddb/db_output.h> 1879 1880 void db_print_sa(struct sockaddr *); 1881 void db_print_ifa(struct ifaddr *); 1882 1883 void 1884 db_print_sa(struct sockaddr *sa) 1885 { 1886 int len; 1887 u_char *p; 1888 1889 if (sa == NULL) { 1890 db_printf("[NULL]"); 1891 return; 1892 } 1893 1894 p = (u_char *)sa; 1895 len = sa->sa_len; 1896 db_printf("["); 1897 while (len > 0) { 1898 db_printf("%d", *p); 1899 p++; 1900 len--; 1901 if (len) 1902 db_printf(","); 1903 } 1904 db_printf("]\n"); 1905 } 1906 1907 void 1908 db_print_ifa(struct ifaddr *ifa) 1909 { 1910 if (ifa == NULL) 1911 return; 1912 db_printf(" ifa_addr="); 1913 db_print_sa(ifa->ifa_addr); 1914 db_printf(" ifa_dsta="); 1915 db_print_sa(ifa->ifa_dstaddr); 1916 db_printf(" ifa_mask="); 1917 db_print_sa(ifa->ifa_netmask); 1918 db_printf(" flags=0x%x, refcnt=%u, metric=%d\n", 1919 ifa->ifa_flags, ifa->ifa_refcnt.r_refs, ifa->ifa_metric); 1920 } 1921 1922 /* 1923 * Function to pass to rtable_walk(). 1924 * Return non-zero error to abort walk. 1925 */ 1926 int 1927 db_show_rtentry(struct rtentry *rt, void *w, unsigned int id) 1928 { 1929 db_printf("rtentry=%p", rt); 1930 1931 db_printf(" flags=0x%x refcnt=%u use=%llu expire=%lld\n", 1932 rt->rt_flags, rt->rt_refcnt.r_refs, rt->rt_use, rt->rt_expire); 1933 1934 db_printf(" key="); db_print_sa(rt_key(rt)); 1935 db_printf(" plen=%d", rt_plen(rt)); 1936 db_printf(" gw="); db_print_sa(rt->rt_gateway); 1937 db_printf(" ifidx=%u ", rt->rt_ifidx); 1938 db_printf(" ifa=%p\n", rt->rt_ifa); 1939 db_print_ifa(rt->rt_ifa); 1940 1941 db_printf(" gwroute=%p llinfo=%p priority=%d\n", 1942 rt->rt_gwroute, rt->rt_llinfo, rt->rt_priority); 1943 return (0); 1944 } 1945 1946 /* 1947 * Function to print all the route trees. 1948 */ 1949 int 1950 db_show_rtable(int af, unsigned int rtableid) 1951 { 1952 db_printf("Route tree for af %d, rtableid %u\n", af, rtableid); 1953 rtable_walk(rtableid, af, NULL, db_show_rtentry, NULL); 1954 return (0); 1955 } 1956 #endif /* DDB */ 1957