1 /* $OpenBSD: ieee80211_crypto.c,v 1.77 2020/12/10 12:53:03 stsp Exp $ */ 2 3 /*- 4 * Copyright (c) 2008 Damien Bergamini <damien.bergamini@free.fr> 5 * 6 * Permission to use, copy, modify, and distribute this software for any 7 * purpose with or without fee is hereby granted, provided that the above 8 * copyright notice and this permission notice appear in all copies. 9 * 10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 17 */ 18 19 #include <sys/param.h> 20 #include <sys/systm.h> 21 #include <sys/mbuf.h> 22 #include <sys/malloc.h> 23 #include <sys/kernel.h> 24 #include <sys/socket.h> 25 #include <sys/sockio.h> 26 #include <sys/endian.h> 27 #include <sys/errno.h> 28 #include <sys/sysctl.h> 29 30 #include <net/if.h> 31 #include <net/if_dl.h> 32 #include <net/if_media.h> 33 34 #include <netinet/in.h> 35 #include <netinet/if_ether.h> 36 37 #include <net80211/ieee80211_var.h> 38 #include <net80211/ieee80211_priv.h> 39 40 #include <crypto/arc4.h> 41 #include <crypto/md5.h> 42 #include <crypto/sha1.h> 43 #include <crypto/sha2.h> 44 #include <crypto/hmac.h> 45 #include <crypto/aes.h> 46 #include <crypto/cmac.h> 47 #include <crypto/key_wrap.h> 48 49 void ieee80211_prf(const u_int8_t *, size_t, const u_int8_t *, size_t, 50 const u_int8_t *, size_t, u_int8_t *, size_t); 51 void ieee80211_kdf(const u_int8_t *, size_t, const u_int8_t *, size_t, 52 const u_int8_t *, size_t, u_int8_t *, size_t); 53 void ieee80211_derive_pmkid(enum ieee80211_akm, const u_int8_t *, 54 const u_int8_t *, const u_int8_t *, u_int8_t *); 55 56 void 57 ieee80211_crypto_attach(struct ifnet *ifp) 58 { 59 struct ieee80211com *ic = (void *)ifp; 60 61 TAILQ_INIT(&ic->ic_pmksa); 62 if (ic->ic_caps & IEEE80211_C_RSN) { 63 ic->ic_rsnprotos = IEEE80211_PROTO_RSN; 64 ic->ic_rsnakms = IEEE80211_AKM_PSK; 65 ic->ic_rsnciphers = IEEE80211_CIPHER_CCMP; 66 ic->ic_rsngroupcipher = IEEE80211_CIPHER_CCMP; 67 ic->ic_rsngroupmgmtcipher = IEEE80211_CIPHER_BIP; 68 } 69 ic->ic_set_key = ieee80211_set_key; 70 ic->ic_delete_key = ieee80211_delete_key; 71 #ifndef IEEE80211_STA_ONLY 72 timeout_set(&ic->ic_tkip_micfail_timeout, 73 ieee80211_michael_mic_failure_timeout, ic); 74 #endif 75 } 76 77 void 78 ieee80211_crypto_detach(struct ifnet *ifp) 79 { 80 struct ieee80211com *ic = (void *)ifp; 81 struct ieee80211_pmk *pmk; 82 83 /* purge the PMKSA cache */ 84 while ((pmk = TAILQ_FIRST(&ic->ic_pmksa)) != NULL) { 85 TAILQ_REMOVE(&ic->ic_pmksa, pmk, pmk_next); 86 explicit_bzero(pmk, sizeof(*pmk)); 87 free(pmk, M_DEVBUF, sizeof(*pmk)); 88 } 89 90 /* clear all group keys from memory */ 91 ieee80211_crypto_clear_groupkeys(ic); 92 93 /* clear pre-shared key from memory */ 94 explicit_bzero(ic->ic_psk, IEEE80211_PMK_LEN); 95 96 #ifndef IEEE80211_STA_ONLY 97 timeout_del(&ic->ic_tkip_micfail_timeout); 98 #endif 99 } 100 101 void 102 ieee80211_crypto_clear_groupkeys(struct ieee80211com *ic) 103 { 104 int i; 105 106 for (i = 0; i < IEEE80211_GROUP_NKID; i++) { 107 struct ieee80211_key *k = &ic->ic_nw_keys[i]; 108 if (k->k_cipher != IEEE80211_CIPHER_NONE) 109 (*ic->ic_delete_key)(ic, NULL, k); 110 explicit_bzero(k, sizeof(*k)); 111 } 112 } 113 114 /* 115 * Return the length in bytes of a cipher suite key (see Table 60). 116 */ 117 int 118 ieee80211_cipher_keylen(enum ieee80211_cipher cipher) 119 { 120 switch (cipher) { 121 case IEEE80211_CIPHER_WEP40: 122 return 5; 123 case IEEE80211_CIPHER_TKIP: 124 return 32; 125 case IEEE80211_CIPHER_CCMP: 126 return 16; 127 case IEEE80211_CIPHER_WEP104: 128 return 13; 129 case IEEE80211_CIPHER_BIP: 130 return 16; 131 default: /* unknown cipher */ 132 return 0; 133 } 134 } 135 136 int 137 ieee80211_set_key(struct ieee80211com *ic, struct ieee80211_node *ni, 138 struct ieee80211_key *k) 139 { 140 int error; 141 142 switch (k->k_cipher) { 143 case IEEE80211_CIPHER_WEP40: 144 case IEEE80211_CIPHER_WEP104: 145 error = ieee80211_wep_set_key(ic, k); 146 break; 147 case IEEE80211_CIPHER_TKIP: 148 error = ieee80211_tkip_set_key(ic, k); 149 break; 150 case IEEE80211_CIPHER_CCMP: 151 error = ieee80211_ccmp_set_key(ic, k); 152 break; 153 case IEEE80211_CIPHER_BIP: 154 error = ieee80211_bip_set_key(ic, k); 155 break; 156 default: 157 /* should not get there */ 158 error = EINVAL; 159 } 160 161 if (error == 0) 162 k->k_flags |= IEEE80211_KEY_SWCRYPTO; 163 164 return error; 165 } 166 167 void 168 ieee80211_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni, 169 struct ieee80211_key *k) 170 { 171 switch (k->k_cipher) { 172 case IEEE80211_CIPHER_WEP40: 173 case IEEE80211_CIPHER_WEP104: 174 ieee80211_wep_delete_key(ic, k); 175 break; 176 case IEEE80211_CIPHER_TKIP: 177 ieee80211_tkip_delete_key(ic, k); 178 break; 179 case IEEE80211_CIPHER_CCMP: 180 ieee80211_ccmp_delete_key(ic, k); 181 break; 182 case IEEE80211_CIPHER_BIP: 183 ieee80211_bip_delete_key(ic, k); 184 break; 185 default: 186 /* should not get there */ 187 break; 188 } 189 explicit_bzero(k, sizeof(*k)); 190 } 191 192 struct ieee80211_key * 193 ieee80211_get_txkey(struct ieee80211com *ic, const struct ieee80211_frame *wh, 194 struct ieee80211_node *ni) 195 { 196 int kid; 197 198 if ((ic->ic_flags & IEEE80211_F_RSNON) && 199 !IEEE80211_IS_MULTICAST(wh->i_addr1) && 200 ni->ni_rsncipher != IEEE80211_CIPHER_USEGROUP) 201 return &ni->ni_pairwise_key; 202 203 /* All other cases (including WEP) use a group key. */ 204 if (ni->ni_flags & IEEE80211_NODE_MFP) 205 kid = ic->ic_igtk_kid; 206 else 207 kid = ic->ic_def_txkey; 208 209 return &ic->ic_nw_keys[kid]; 210 } 211 212 struct ieee80211_key * 213 ieee80211_get_rxkey(struct ieee80211com *ic, struct mbuf *m, 214 struct ieee80211_node *ni) 215 { 216 struct ieee80211_key *k = NULL; 217 struct ieee80211_frame *wh; 218 u_int16_t kid; 219 u_int8_t *ivp, *mmie; 220 int hdrlen; 221 222 wh = mtod(m, struct ieee80211_frame *); 223 if ((ic->ic_flags & IEEE80211_F_RSNON) && 224 !IEEE80211_IS_MULTICAST(wh->i_addr1) && 225 ni->ni_rsncipher != IEEE80211_CIPHER_USEGROUP) { 226 k = &ni->ni_pairwise_key; 227 } else if (!IEEE80211_IS_MULTICAST(wh->i_addr1) || 228 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != 229 IEEE80211_FC0_TYPE_MGT) { 230 /* retrieve group data key id from IV field */ 231 hdrlen = ieee80211_get_hdrlen(wh); 232 /* check that IV field is present */ 233 if (m->m_len < hdrlen + 4) 234 return NULL; 235 ivp = (u_int8_t *)wh + hdrlen; 236 kid = ivp[3] >> 6; 237 k = &ic->ic_nw_keys[kid]; 238 } else { 239 /* retrieve integrity group key id from MMIE */ 240 if (m->m_len < sizeof(*wh) + IEEE80211_MMIE_LEN) 241 return NULL; 242 /* it is assumed management frames are contiguous */ 243 mmie = (u_int8_t *)wh + m->m_len - IEEE80211_MMIE_LEN; 244 /* check that MMIE is valid */ 245 if (mmie[0] != IEEE80211_ELEMID_MMIE || mmie[1] != 16) 246 return NULL; 247 kid = LE_READ_2(&mmie[2]); 248 if (kid != 4 && kid != 5) 249 return NULL; 250 k = &ic->ic_nw_keys[kid]; 251 } 252 253 return k; 254 } 255 256 struct mbuf * 257 ieee80211_encrypt(struct ieee80211com *ic, struct mbuf *m0, 258 struct ieee80211_key *k) 259 { 260 if ((k->k_flags & IEEE80211_KEY_SWCRYPTO) == 0) 261 panic("%s: key unset for sw crypto: %d", __func__, k->k_id); 262 263 switch (k->k_cipher) { 264 case IEEE80211_CIPHER_WEP40: 265 case IEEE80211_CIPHER_WEP104: 266 m0 = ieee80211_wep_encrypt(ic, m0, k); 267 break; 268 case IEEE80211_CIPHER_TKIP: 269 m0 = ieee80211_tkip_encrypt(ic, m0, k); 270 break; 271 case IEEE80211_CIPHER_CCMP: 272 m0 = ieee80211_ccmp_encrypt(ic, m0, k); 273 break; 274 case IEEE80211_CIPHER_BIP: 275 m0 = ieee80211_bip_encap(ic, m0, k); 276 break; 277 default: 278 /* should not get there */ 279 panic("invalid key cipher 0x%x", k->k_cipher); 280 } 281 return m0; 282 } 283 284 struct mbuf * 285 ieee80211_decrypt(struct ieee80211com *ic, struct mbuf *m0, 286 struct ieee80211_node *ni) 287 { 288 struct ieee80211_key *k; 289 290 /* find key for decryption */ 291 k = ieee80211_get_rxkey(ic, m0, ni); 292 if (k == NULL || (k->k_flags & IEEE80211_KEY_SWCRYPTO) == 0) { 293 m_freem(m0); 294 return NULL; 295 } 296 297 switch (k->k_cipher) { 298 case IEEE80211_CIPHER_WEP40: 299 case IEEE80211_CIPHER_WEP104: 300 m0 = ieee80211_wep_decrypt(ic, m0, k); 301 break; 302 case IEEE80211_CIPHER_TKIP: 303 m0 = ieee80211_tkip_decrypt(ic, m0, k); 304 break; 305 case IEEE80211_CIPHER_CCMP: 306 m0 = ieee80211_ccmp_decrypt(ic, m0, k); 307 break; 308 case IEEE80211_CIPHER_BIP: 309 m0 = ieee80211_bip_decap(ic, m0, k); 310 break; 311 default: 312 /* key not defined */ 313 m_freem(m0); 314 m0 = NULL; 315 } 316 return m0; 317 } 318 319 /* 320 * SHA1-based Pseudo-Random Function (see 8.5.1.1). 321 */ 322 void 323 ieee80211_prf(const u_int8_t *key, size_t key_len, const u_int8_t *label, 324 size_t label_len, const u_int8_t *context, size_t context_len, 325 u_int8_t *output, size_t len) 326 { 327 HMAC_SHA1_CTX ctx; 328 u_int8_t digest[SHA1_DIGEST_LENGTH]; 329 u_int8_t count; 330 331 for (count = 0; len != 0; count++) { 332 HMAC_SHA1_Init(&ctx, key, key_len); 333 HMAC_SHA1_Update(&ctx, label, label_len); 334 HMAC_SHA1_Update(&ctx, context, context_len); 335 HMAC_SHA1_Update(&ctx, &count, 1); 336 if (len < SHA1_DIGEST_LENGTH) { 337 HMAC_SHA1_Final(digest, &ctx); 338 /* truncate HMAC-SHA1 to len bytes */ 339 memcpy(output, digest, len); 340 break; 341 } 342 HMAC_SHA1_Final(output, &ctx); 343 output += SHA1_DIGEST_LENGTH; 344 len -= SHA1_DIGEST_LENGTH; 345 } 346 } 347 348 /* 349 * SHA256-based Key Derivation Function (see 8.5.1.5.2). 350 */ 351 void 352 ieee80211_kdf(const u_int8_t *key, size_t key_len, const u_int8_t *label, 353 size_t label_len, const u_int8_t *context, size_t context_len, 354 u_int8_t *output, size_t len) 355 { 356 HMAC_SHA256_CTX ctx; 357 u_int8_t digest[SHA256_DIGEST_LENGTH]; 358 u_int16_t i, iter, length; 359 360 length = htole16(len * NBBY); 361 for (i = 1; len != 0; i++) { 362 HMAC_SHA256_Init(&ctx, key, key_len); 363 iter = htole16(i); 364 HMAC_SHA256_Update(&ctx, (u_int8_t *)&iter, sizeof iter); 365 HMAC_SHA256_Update(&ctx, label, label_len); 366 HMAC_SHA256_Update(&ctx, context, context_len); 367 HMAC_SHA256_Update(&ctx, (u_int8_t *)&length, sizeof length); 368 if (len < SHA256_DIGEST_LENGTH) { 369 HMAC_SHA256_Final(digest, &ctx); 370 /* truncate HMAC-SHA-256 to len bytes */ 371 memcpy(output, digest, len); 372 break; 373 } 374 HMAC_SHA256_Final(output, &ctx); 375 output += SHA256_DIGEST_LENGTH; 376 len -= SHA256_DIGEST_LENGTH; 377 } 378 } 379 380 /* 381 * Derive Pairwise Transient Key (PTK) (see 8.5.1.2). 382 */ 383 void 384 ieee80211_derive_ptk(enum ieee80211_akm akm, const u_int8_t *pmk, 385 const u_int8_t *aa, const u_int8_t *spa, const u_int8_t *anonce, 386 const u_int8_t *snonce, struct ieee80211_ptk *ptk) 387 { 388 void (*kdf)(const u_int8_t *, size_t, const u_int8_t *, size_t, 389 const u_int8_t *, size_t, u_int8_t *, size_t); 390 u_int8_t buf[2 * IEEE80211_ADDR_LEN + 2 * EAPOL_KEY_NONCE_LEN]; 391 int ret; 392 393 /* Min(AA,SPA) || Max(AA,SPA) */ 394 ret = memcmp(aa, spa, IEEE80211_ADDR_LEN) < 0; 395 memcpy(&buf[ 0], ret ? aa : spa, IEEE80211_ADDR_LEN); 396 memcpy(&buf[ 6], ret ? spa : aa, IEEE80211_ADDR_LEN); 397 398 /* Min(ANonce,SNonce) || Max(ANonce,SNonce) */ 399 ret = memcmp(anonce, snonce, EAPOL_KEY_NONCE_LEN) < 0; 400 memcpy(&buf[12], ret ? anonce : snonce, EAPOL_KEY_NONCE_LEN); 401 memcpy(&buf[44], ret ? snonce : anonce, EAPOL_KEY_NONCE_LEN); 402 403 kdf = ieee80211_is_sha256_akm(akm) ? ieee80211_kdf : ieee80211_prf; 404 (*kdf)(pmk, IEEE80211_PMK_LEN, "Pairwise key expansion", 23, 405 buf, sizeof buf, (u_int8_t *)ptk, sizeof(*ptk)); 406 } 407 408 static void 409 ieee80211_pmkid_sha1(const u_int8_t *pmk, const u_int8_t *aa, 410 const u_int8_t *spa, u_int8_t *pmkid) 411 { 412 HMAC_SHA1_CTX ctx; 413 u_int8_t digest[SHA1_DIGEST_LENGTH]; 414 415 HMAC_SHA1_Init(&ctx, pmk, IEEE80211_PMK_LEN); 416 HMAC_SHA1_Update(&ctx, "PMK Name", 8); 417 HMAC_SHA1_Update(&ctx, aa, IEEE80211_ADDR_LEN); 418 HMAC_SHA1_Update(&ctx, spa, IEEE80211_ADDR_LEN); 419 HMAC_SHA1_Final(digest, &ctx); 420 /* use the first 128 bits of HMAC-SHA1 */ 421 memcpy(pmkid, digest, IEEE80211_PMKID_LEN); 422 } 423 424 static void 425 ieee80211_pmkid_sha256(const u_int8_t *pmk, const u_int8_t *aa, 426 const u_int8_t *spa, u_int8_t *pmkid) 427 { 428 HMAC_SHA256_CTX ctx; 429 u_int8_t digest[SHA256_DIGEST_LENGTH]; 430 431 HMAC_SHA256_Init(&ctx, pmk, IEEE80211_PMK_LEN); 432 HMAC_SHA256_Update(&ctx, "PMK Name", 8); 433 HMAC_SHA256_Update(&ctx, aa, IEEE80211_ADDR_LEN); 434 HMAC_SHA256_Update(&ctx, spa, IEEE80211_ADDR_LEN); 435 HMAC_SHA256_Final(digest, &ctx); 436 /* use the first 128 bits of HMAC-SHA-256 */ 437 memcpy(pmkid, digest, IEEE80211_PMKID_LEN); 438 } 439 440 /* 441 * Derive Pairwise Master Key Identifier (PMKID) (see 8.5.1.2). 442 */ 443 void 444 ieee80211_derive_pmkid(enum ieee80211_akm akm, const u_int8_t *pmk, 445 const u_int8_t *aa, const u_int8_t *spa, u_int8_t *pmkid) 446 { 447 if (ieee80211_is_sha256_akm(akm)) 448 ieee80211_pmkid_sha256(pmk, aa, spa, pmkid); 449 else 450 ieee80211_pmkid_sha1(pmk, aa, spa, pmkid); 451 } 452 453 typedef union _ANY_CTX { 454 HMAC_MD5_CTX md5; 455 HMAC_SHA1_CTX sha1; 456 AES_CMAC_CTX cmac; 457 } ANY_CTX; 458 459 /* 460 * Compute the Key MIC field of an EAPOL-Key frame using the specified Key 461 * Confirmation Key (KCK). The hash function can be HMAC-MD5, HMAC-SHA1 462 * or AES-128-CMAC depending on the EAPOL-Key Key Descriptor Version. 463 */ 464 void 465 ieee80211_eapol_key_mic(struct ieee80211_eapol_key *key, const u_int8_t *kck) 466 { 467 u_int8_t digest[SHA1_DIGEST_LENGTH]; 468 ANY_CTX ctx; /* XXX off stack? */ 469 u_int len; 470 471 len = BE_READ_2(key->len) + 4; 472 473 switch (BE_READ_2(key->info) & EAPOL_KEY_VERSION_MASK) { 474 case EAPOL_KEY_DESC_V1: 475 HMAC_MD5_Init(&ctx.md5, kck, 16); 476 HMAC_MD5_Update(&ctx.md5, (u_int8_t *)key, len); 477 HMAC_MD5_Final(key->mic, &ctx.md5); 478 break; 479 case EAPOL_KEY_DESC_V2: 480 HMAC_SHA1_Init(&ctx.sha1, kck, 16); 481 HMAC_SHA1_Update(&ctx.sha1, (u_int8_t *)key, len); 482 HMAC_SHA1_Final(digest, &ctx.sha1); 483 /* truncate HMAC-SHA1 to its 128 MSBs */ 484 memcpy(key->mic, digest, EAPOL_KEY_MIC_LEN); 485 break; 486 case EAPOL_KEY_DESC_V3: 487 AES_CMAC_Init(&ctx.cmac); 488 AES_CMAC_SetKey(&ctx.cmac, kck); 489 AES_CMAC_Update(&ctx.cmac, (u_int8_t *)key, len); 490 AES_CMAC_Final(key->mic, &ctx.cmac); 491 break; 492 } 493 } 494 495 /* 496 * Check the MIC of a received EAPOL-Key frame using the specified Key 497 * Confirmation Key (KCK). 498 */ 499 int 500 ieee80211_eapol_key_check_mic(struct ieee80211_eapol_key *key, 501 const u_int8_t *kck) 502 { 503 u_int8_t mic[EAPOL_KEY_MIC_LEN]; 504 505 memcpy(mic, key->mic, EAPOL_KEY_MIC_LEN); 506 memset(key->mic, 0, EAPOL_KEY_MIC_LEN); 507 ieee80211_eapol_key_mic(key, kck); 508 509 return timingsafe_bcmp(key->mic, mic, EAPOL_KEY_MIC_LEN) != 0; 510 } 511 512 #ifndef IEEE80211_STA_ONLY 513 /* 514 * Encrypt the Key Data field of an EAPOL-Key frame using the specified Key 515 * Encryption Key (KEK). The encryption algorithm can be either ARC4 or 516 * AES Key Wrap depending on the EAPOL-Key Key Descriptor Version. 517 */ 518 void 519 ieee80211_eapol_key_encrypt(struct ieee80211com *ic, 520 struct ieee80211_eapol_key *key, const u_int8_t *kek) 521 { 522 union { 523 struct rc4_ctx rc4; 524 aes_key_wrap_ctx aes; 525 } ctx; /* XXX off stack? */ 526 u_int8_t keybuf[EAPOL_KEY_IV_LEN + 16]; 527 u_int16_t len, info; 528 u_int8_t *data; 529 int n; 530 531 len = BE_READ_2(key->paylen); 532 info = BE_READ_2(key->info); 533 data = (u_int8_t *)(key + 1); 534 535 switch (info & EAPOL_KEY_VERSION_MASK) { 536 case EAPOL_KEY_DESC_V1: 537 /* set IV to the lower 16 octets of our global key counter */ 538 memcpy(key->iv, ic->ic_globalcnt + 16, 16); 539 /* increment our global key counter (256-bit, big-endian) */ 540 for (n = 31; n >= 0 && ++ic->ic_globalcnt[n] == 0; n--); 541 542 /* concatenate the EAPOL-Key IV field and the KEK */ 543 memcpy(keybuf, key->iv, EAPOL_KEY_IV_LEN); 544 memcpy(keybuf + EAPOL_KEY_IV_LEN, kek, 16); 545 546 rc4_keysetup(&ctx.rc4, keybuf, sizeof keybuf); 547 /* discard the first 256 octets of the ARC4 key stream */ 548 rc4_skip(&ctx.rc4, RC4STATE); 549 rc4_crypt(&ctx.rc4, data, data, len); 550 break; 551 case EAPOL_KEY_DESC_V2: 552 case EAPOL_KEY_DESC_V3: 553 if (len < 16 || (len & 7) != 0) { 554 /* insert padding */ 555 n = (len < 16) ? 16 - len : 8 - (len & 7); 556 data[len++] = IEEE80211_ELEMID_VENDOR; 557 memset(&data[len], 0, n - 1); 558 len += n - 1; 559 } 560 aes_key_wrap_set_key_wrap_only(&ctx.aes, kek, 16); 561 aes_key_wrap(&ctx.aes, data, len / 8, data); 562 len += 8; /* AES Key Wrap adds 8 bytes */ 563 /* update key data length */ 564 BE_WRITE_2(key->paylen, len); 565 /* update packet body length */ 566 BE_WRITE_2(key->len, sizeof(*key) + len - 4); 567 break; 568 } 569 } 570 #endif /* IEEE80211_STA_ONLY */ 571 572 /* 573 * Decrypt the Key Data field of an EAPOL-Key frame using the specified Key 574 * Encryption Key (KEK). The encryption algorithm can be either ARC4 or 575 * AES Key Wrap depending on the EAPOL-Key Key Descriptor Version. 576 */ 577 int 578 ieee80211_eapol_key_decrypt(struct ieee80211_eapol_key *key, 579 const u_int8_t *kek) 580 { 581 union { 582 struct rc4_ctx rc4; 583 aes_key_wrap_ctx aes; 584 } ctx; /* XXX off stack? */ 585 u_int8_t keybuf[EAPOL_KEY_IV_LEN + 16]; 586 u_int16_t len, info; 587 u_int8_t *data; 588 589 len = BE_READ_2(key->paylen); 590 info = BE_READ_2(key->info); 591 data = (u_int8_t *)(key + 1); 592 593 switch (info & EAPOL_KEY_VERSION_MASK) { 594 case EAPOL_KEY_DESC_V1: 595 /* concatenate the EAPOL-Key IV field and the KEK */ 596 memcpy(keybuf, key->iv, EAPOL_KEY_IV_LEN); 597 memcpy(keybuf + EAPOL_KEY_IV_LEN, kek, 16); 598 599 rc4_keysetup(&ctx.rc4, keybuf, sizeof keybuf); 600 /* discard the first 256 octets of the ARC4 key stream */ 601 rc4_skip(&ctx.rc4, RC4STATE); 602 rc4_crypt(&ctx.rc4, data, data, len); 603 return 0; 604 case EAPOL_KEY_DESC_V2: 605 case EAPOL_KEY_DESC_V3: 606 /* Key Data Length must be a multiple of 8 */ 607 if (len < 16 + 8 || (len & 7) != 0) 608 return 1; 609 len -= 8; /* AES Key Wrap adds 8 bytes */ 610 aes_key_wrap_set_key(&ctx.aes, kek, 16); 611 return aes_key_unwrap(&ctx.aes, data, data, len / 8); 612 } 613 614 return 1; /* unknown Key Descriptor Version */ 615 } 616 617 /* 618 * Add a PMK entry to the PMKSA cache. 619 */ 620 struct ieee80211_pmk * 621 ieee80211_pmksa_add(struct ieee80211com *ic, enum ieee80211_akm akm, 622 const u_int8_t *macaddr, const u_int8_t *key, u_int32_t lifetime) 623 { 624 struct ieee80211_pmk *pmk; 625 626 /* check if an entry already exists for this (STA,AKMP) */ 627 TAILQ_FOREACH(pmk, &ic->ic_pmksa, pmk_next) { 628 if (pmk->pmk_akm == akm && 629 IEEE80211_ADDR_EQ(pmk->pmk_macaddr, macaddr)) 630 break; 631 } 632 if (pmk == NULL) { 633 /* allocate a new PMKSA entry */ 634 if ((pmk = malloc(sizeof(*pmk), M_DEVBUF, M_NOWAIT)) == NULL) 635 return NULL; 636 pmk->pmk_akm = akm; 637 IEEE80211_ADDR_COPY(pmk->pmk_macaddr, macaddr); 638 TAILQ_INSERT_TAIL(&ic->ic_pmksa, pmk, pmk_next); 639 } 640 memcpy(pmk->pmk_key, key, IEEE80211_PMK_LEN); 641 pmk->pmk_lifetime = lifetime; /* XXX not used yet */ 642 #ifndef IEEE80211_STA_ONLY 643 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 644 ieee80211_derive_pmkid(pmk->pmk_akm, pmk->pmk_key, 645 ic->ic_myaddr, macaddr, pmk->pmk_pmkid); 646 } else 647 #endif 648 { 649 ieee80211_derive_pmkid(pmk->pmk_akm, pmk->pmk_key, 650 macaddr, ic->ic_myaddr, pmk->pmk_pmkid); 651 } 652 return pmk; 653 } 654 655 /* 656 * Check if we have a cached PMK entry for the specified node and PMKID. 657 */ 658 struct ieee80211_pmk * 659 ieee80211_pmksa_find(struct ieee80211com *ic, struct ieee80211_node *ni, 660 const u_int8_t *pmkid) 661 { 662 struct ieee80211_pmk *pmk; 663 664 TAILQ_FOREACH(pmk, &ic->ic_pmksa, pmk_next) { 665 if (pmk->pmk_akm == ni->ni_rsnakms && 666 IEEE80211_ADDR_EQ(pmk->pmk_macaddr, ni->ni_macaddr) && 667 (pmkid == NULL || 668 memcmp(pmk->pmk_pmkid, pmkid, IEEE80211_PMKID_LEN) == 0)) 669 break; 670 } 671 return pmk; 672 } 673