1 /* $OpenBSD: in_pcb.c,v 1.302 2024/04/19 10:13:58 bluhm Exp $ */ 2 /* $NetBSD: in_pcb.c,v 1.25 1996/02/13 23:41:53 christos Exp $ */ 3 4 /* 5 * Copyright (c) 1982, 1986, 1991, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995 33 * 34 * NRL grants permission for redistribution and use in source and binary 35 * forms, with or without modification, of the software and documentation 36 * created at NRL provided that the following conditions are met: 37 * 38 * 1. Redistributions of source code must retain the above copyright 39 * notice, this list of conditions and the following disclaimer. 40 * 2. Redistributions in binary form must reproduce the above copyright 41 * notice, this list of conditions and the following disclaimer in the 42 * documentation and/or other materials provided with the distribution. 43 * 3. All advertising materials mentioning features or use of this software 44 * must display the following acknowledgements: 45 * This product includes software developed by the University of 46 * California, Berkeley and its contributors. 47 * This product includes software developed at the Information 48 * Technology Division, US Naval Research Laboratory. 49 * 4. Neither the name of the NRL nor the names of its contributors 50 * may be used to endorse or promote products derived from this software 51 * without specific prior written permission. 52 * 53 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS 54 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 55 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 56 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR 57 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 58 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 59 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 60 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 61 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 62 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 63 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 64 * 65 * The views and conclusions contained in the software and documentation 66 * are those of the authors and should not be interpreted as representing 67 * official policies, either expressed or implied, of the US Naval 68 * Research Laboratory (NRL). 69 */ 70 71 #include "pf.h" 72 73 #include <sys/param.h> 74 #include <sys/systm.h> 75 #include <sys/mbuf.h> 76 #include <sys/protosw.h> 77 #include <sys/socket.h> 78 #include <sys/socketvar.h> 79 #include <sys/domain.h> 80 #include <sys/mount.h> 81 #include <sys/pool.h> 82 #include <sys/proc.h> 83 84 #include <net/if.h> 85 #include <net/if_var.h> 86 #include <net/pfvar.h> 87 #include <net/route.h> 88 89 #include <netinet/in.h> 90 #include <netinet/in_var.h> 91 #include <netinet/ip.h> 92 #include <netinet/ip_var.h> 93 #include <netinet6/ip6_var.h> 94 #include <netinet/in_pcb.h> 95 #ifdef IPSEC 96 #include <netinet/ip_esp.h> 97 #endif /* IPSEC */ 98 99 #include "stoeplitz.h" 100 #if NSTOEPLITZ > 0 101 #include <net/toeplitz.h> 102 #endif 103 104 const struct in_addr zeroin_addr; 105 const union inpaddru zeroin46_addr; 106 107 /* 108 * These configure the range of local port addresses assigned to 109 * "unspecified" outgoing connections/packets/whatever. 110 */ 111 int ipport_firstauto = IPPORT_RESERVED; 112 int ipport_lastauto = IPPORT_USERRESERVED; 113 int ipport_hifirstauto = IPPORT_HIFIRSTAUTO; 114 int ipport_hilastauto = IPPORT_HILASTAUTO; 115 116 struct baddynamicports baddynamicports; 117 struct baddynamicports rootonlyports; 118 struct pool inpcb_pool; 119 120 void in_pcbhash_insert(struct inpcb *); 121 struct inpcb *in_pcbhash_lookup(struct inpcbtable *, uint64_t, u_int, 122 const struct in_addr *, u_short, const struct in_addr *, u_short); 123 int in_pcbresize(struct inpcbtable *, int); 124 125 #define INPCBHASH_LOADFACTOR(_x) (((_x) * 3) / 4) 126 127 uint64_t in_pcbhash(struct inpcbtable *, u_int, 128 const struct in_addr *, u_short, const struct in_addr *, u_short); 129 uint64_t in_pcblhash(struct inpcbtable *, u_int, u_short); 130 131 struct inpcb *in_pcblookup_lock(struct inpcbtable *, struct in_addr, u_int, 132 struct in_addr, u_int, u_int, int); 133 int in_pcbaddrisavail_lock(const struct inpcb *, struct sockaddr_in *, int, 134 struct proc *, int); 135 int in_pcbpickport(u_int16_t *, const void *, int, const struct inpcb *, 136 struct proc *); 137 138 /* 139 * in_pcb is used for inet and inet6. in6_pcb only contains special 140 * IPv6 cases. So the internet initializer is used for both domains. 141 */ 142 void 143 in_init(void) 144 { 145 pool_init(&inpcb_pool, sizeof(struct inpcb), 0, 146 IPL_SOFTNET, 0, "inpcb", NULL); 147 } 148 149 uint64_t 150 in_pcbhash(struct inpcbtable *table, u_int rdomain, 151 const struct in_addr *faddr, u_short fport, 152 const struct in_addr *laddr, u_short lport) 153 { 154 SIPHASH_CTX ctx; 155 u_int32_t nrdom = htonl(rdomain); 156 157 SipHash24_Init(&ctx, &table->inpt_key); 158 SipHash24_Update(&ctx, &nrdom, sizeof(nrdom)); 159 SipHash24_Update(&ctx, faddr, sizeof(*faddr)); 160 SipHash24_Update(&ctx, &fport, sizeof(fport)); 161 SipHash24_Update(&ctx, laddr, sizeof(*laddr)); 162 SipHash24_Update(&ctx, &lport, sizeof(lport)); 163 return SipHash24_End(&ctx); 164 } 165 166 uint64_t 167 in_pcblhash(struct inpcbtable *table, u_int rdomain, u_short lport) 168 { 169 SIPHASH_CTX ctx; 170 u_int32_t nrdom = htonl(rdomain); 171 172 SipHash24_Init(&ctx, &table->inpt_lkey); 173 SipHash24_Update(&ctx, &nrdom, sizeof(nrdom)); 174 SipHash24_Update(&ctx, &lport, sizeof(lport)); 175 return SipHash24_End(&ctx); 176 } 177 178 void 179 in_pcbinit(struct inpcbtable *table, int hashsize) 180 { 181 mtx_init(&table->inpt_mtx, IPL_SOFTNET); 182 rw_init(&table->inpt_notify, "inpnotify"); 183 TAILQ_INIT(&table->inpt_queue); 184 table->inpt_hashtbl = hashinit(hashsize, M_PCB, M_WAITOK, 185 &table->inpt_mask); 186 table->inpt_lhashtbl = hashinit(hashsize, M_PCB, M_WAITOK, 187 &table->inpt_lmask); 188 table->inpt_count = 0; 189 table->inpt_size = hashsize; 190 arc4random_buf(&table->inpt_key, sizeof(table->inpt_key)); 191 arc4random_buf(&table->inpt_lkey, sizeof(table->inpt_lkey)); 192 } 193 194 /* 195 * Check if the specified port is invalid for dynamic allocation. 196 */ 197 int 198 in_baddynamic(u_int16_t port, u_int16_t proto) 199 { 200 switch (proto) { 201 case IPPROTO_TCP: 202 return (DP_ISSET(baddynamicports.tcp, port)); 203 case IPPROTO_UDP: 204 #ifdef IPSEC 205 /* Cannot preset this as it is a sysctl */ 206 if (port == udpencap_port) 207 return (1); 208 #endif 209 return (DP_ISSET(baddynamicports.udp, port)); 210 default: 211 return (0); 212 } 213 } 214 215 int 216 in_rootonly(u_int16_t port, u_int16_t proto) 217 { 218 switch (proto) { 219 case IPPROTO_TCP: 220 return (port < IPPORT_RESERVED || 221 DP_ISSET(rootonlyports.tcp, port)); 222 case IPPROTO_UDP: 223 return (port < IPPORT_RESERVED || 224 DP_ISSET(rootonlyports.udp, port)); 225 default: 226 return (0); 227 } 228 } 229 230 int 231 in_pcballoc(struct socket *so, struct inpcbtable *table, int wait) 232 { 233 struct inpcb *inp; 234 235 inp = pool_get(&inpcb_pool, (wait == M_WAIT ? PR_WAITOK : PR_NOWAIT) | 236 PR_ZERO); 237 if (inp == NULL) 238 return (ENOBUFS); 239 inp->inp_table = table; 240 inp->inp_socket = so; 241 refcnt_init_trace(&inp->inp_refcnt, DT_REFCNT_IDX_INPCB); 242 mtx_init(&inp->inp_mtx, IPL_SOFTNET); 243 inp->inp_seclevel.sl_auth = IPSEC_AUTH_LEVEL_DEFAULT; 244 inp->inp_seclevel.sl_esp_trans = IPSEC_ESP_TRANS_LEVEL_DEFAULT; 245 inp->inp_seclevel.sl_esp_network = IPSEC_ESP_NETWORK_LEVEL_DEFAULT; 246 inp->inp_seclevel.sl_ipcomp = IPSEC_IPCOMP_LEVEL_DEFAULT; 247 inp->inp_rtableid = curproc->p_p->ps_rtableid; 248 inp->inp_hops = -1; 249 #ifdef INET6 250 switch (so->so_proto->pr_domain->dom_family) { 251 case PF_INET6: 252 inp->inp_flags = INP_IPV6; 253 break; 254 case PF_INET: 255 /* inp->inp_flags is initialized to 0 */ 256 break; 257 default: 258 unhandled_af(so->so_proto->pr_domain->dom_family); 259 } 260 inp->inp_cksum6 = -1; 261 #endif /* INET6 */ 262 263 mtx_enter(&table->inpt_mtx); 264 if (table->inpt_count++ > INPCBHASH_LOADFACTOR(table->inpt_size)) 265 (void)in_pcbresize(table, table->inpt_size * 2); 266 TAILQ_INSERT_HEAD(&table->inpt_queue, inp, inp_queue); 267 in_pcbhash_insert(inp); 268 mtx_leave(&table->inpt_mtx); 269 270 so->so_pcb = inp; 271 272 return (0); 273 } 274 275 int 276 in_pcbbind_locked(struct inpcb *inp, struct mbuf *nam, const void *laddr, 277 struct proc *p) 278 { 279 struct socket *so = inp->inp_socket; 280 u_int16_t lport = 0; 281 int wild = 0; 282 int error; 283 284 if (inp->inp_lport) 285 return (EINVAL); 286 287 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0 && 288 ((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0 || 289 (so->so_options & SO_ACCEPTCONN) == 0)) 290 wild = INPLOOKUP_WILDCARD; 291 292 #ifdef INET6 293 if (ISSET(inp->inp_flags, INP_IPV6)) { 294 if (!IN6_IS_ADDR_UNSPECIFIED(&inp->inp_laddr6)) 295 return (EINVAL); 296 wild |= INPLOOKUP_IPV6; 297 298 if (nam) { 299 struct sockaddr_in6 *sin6; 300 301 if ((error = in6_nam2sin6(nam, &sin6))) 302 return (error); 303 if ((error = in6_pcbaddrisavail_lock(inp, sin6, wild, 304 p, IN_PCBLOCK_HOLD))) 305 return (error); 306 laddr = &sin6->sin6_addr; 307 lport = sin6->sin6_port; 308 } 309 } else 310 #endif 311 { 312 if (inp->inp_laddr.s_addr != INADDR_ANY) 313 return (EINVAL); 314 315 if (nam) { 316 struct sockaddr_in *sin; 317 318 if ((error = in_nam2sin(nam, &sin))) 319 return (error); 320 if ((error = in_pcbaddrisavail_lock(inp, sin, wild, 321 p, IN_PCBLOCK_HOLD))) 322 return (error); 323 laddr = &sin->sin_addr; 324 lport = sin->sin_port; 325 } 326 } 327 328 if (lport == 0) { 329 if ((error = in_pcbpickport(&lport, laddr, wild, inp, p))) 330 return (error); 331 } else { 332 if (in_rootonly(ntohs(lport), so->so_proto->pr_protocol) && 333 suser(p) != 0) 334 return (EACCES); 335 } 336 if (nam) { 337 #ifdef INET6 338 if (ISSET(inp->inp_flags, INP_IPV6)) 339 inp->inp_laddr6 = *(struct in6_addr *)laddr; 340 else 341 #endif 342 inp->inp_laddr = *(struct in_addr *)laddr; 343 } 344 inp->inp_lport = lport; 345 in_pcbrehash(inp); 346 347 return (0); 348 } 349 350 int 351 in_pcbbind(struct inpcb *inp, struct mbuf *nam, struct proc *p) 352 { 353 struct inpcbtable *table = inp->inp_table; 354 int error; 355 356 /* keep lookup, modification, and rehash in sync */ 357 mtx_enter(&table->inpt_mtx); 358 error = in_pcbbind_locked(inp, nam, &zeroin46_addr, p); 359 mtx_leave(&table->inpt_mtx); 360 361 return error; 362 } 363 364 int 365 in_pcbaddrisavail_lock(const struct inpcb *inp, struct sockaddr_in *sin, 366 int wild, struct proc *p, int lock) 367 { 368 struct socket *so = inp->inp_socket; 369 struct inpcbtable *table = inp->inp_table; 370 u_int16_t lport = sin->sin_port; 371 int reuseport = (so->so_options & SO_REUSEPORT); 372 373 if (IN_MULTICAST(sin->sin_addr.s_addr)) { 374 /* 375 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 376 * allow complete duplication of binding if 377 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 378 * and a multicast address is bound on both 379 * new and duplicated sockets. 380 */ 381 if (so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) 382 reuseport = SO_REUSEADDR|SO_REUSEPORT; 383 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 384 /* 385 * we must check that we are binding to an address we 386 * own except when: 387 * - SO_BINDANY is set or 388 * - we are binding a UDP socket to 255.255.255.255 or 389 * - we are binding a UDP socket to one of our broadcast 390 * addresses 391 */ 392 if (!ISSET(so->so_options, SO_BINDANY) && 393 !(so->so_type == SOCK_DGRAM && 394 sin->sin_addr.s_addr == INADDR_BROADCAST) && 395 !(so->so_type == SOCK_DGRAM && 396 in_broadcast(sin->sin_addr, inp->inp_rtableid))) { 397 struct ifaddr *ia; 398 399 sin->sin_port = 0; 400 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 401 ia = ifa_ifwithaddr(sintosa(sin), inp->inp_rtableid); 402 sin->sin_port = lport; 403 404 if (ia == NULL) 405 return (EADDRNOTAVAIL); 406 } 407 } 408 if (lport) { 409 struct inpcb *t; 410 int error = 0; 411 412 if (so->so_euid && !IN_MULTICAST(sin->sin_addr.s_addr)) { 413 t = in_pcblookup_local_lock(table, &sin->sin_addr, 414 lport, INPLOOKUP_WILDCARD, inp->inp_rtableid, lock); 415 if (t && (so->so_euid != t->inp_socket->so_euid)) 416 error = EADDRINUSE; 417 if (lock == IN_PCBLOCK_GRAB) 418 in_pcbunref(t); 419 if (error) 420 return (error); 421 } 422 t = in_pcblookup_local_lock(table, &sin->sin_addr, lport, 423 wild, inp->inp_rtableid, lock); 424 if (t && (reuseport & t->inp_socket->so_options) == 0) 425 error = EADDRINUSE; 426 if (lock == IN_PCBLOCK_GRAB) 427 in_pcbunref(t); 428 if (error) 429 return (error); 430 } 431 432 return (0); 433 } 434 435 int 436 in_pcbaddrisavail(const struct inpcb *inp, struct sockaddr_in *sin, 437 int wild, struct proc *p) 438 { 439 return in_pcbaddrisavail_lock(inp, sin, wild, p, IN_PCBLOCK_GRAB); 440 } 441 442 int 443 in_pcbpickport(u_int16_t *lport, const void *laddr, int wild, 444 const struct inpcb *inp, struct proc *p) 445 { 446 struct socket *so = inp->inp_socket; 447 struct inpcbtable *table = inp->inp_table; 448 struct inpcb *t; 449 u_int16_t first, last, lower, higher, candidate, localport; 450 int count; 451 452 MUTEX_ASSERT_LOCKED(&table->inpt_mtx); 453 454 if (inp->inp_flags & INP_HIGHPORT) { 455 first = ipport_hifirstauto; /* sysctl */ 456 last = ipport_hilastauto; 457 } else if (inp->inp_flags & INP_LOWPORT) { 458 if (suser(p)) 459 return (EACCES); 460 first = IPPORT_RESERVED-1; /* 1023 */ 461 last = 600; /* not IPPORT_RESERVED/2 */ 462 } else { 463 first = ipport_firstauto; /* sysctl */ 464 last = ipport_lastauto; 465 } 466 if (first < last) { 467 lower = first; 468 higher = last; 469 } else { 470 lower = last; 471 higher = first; 472 } 473 474 /* 475 * Simple check to ensure all ports are not used up causing 476 * a deadlock here. 477 */ 478 479 count = higher - lower; 480 candidate = lower + arc4random_uniform(count); 481 482 do { 483 do { 484 if (count-- < 0) /* completely used? */ 485 return (EADDRNOTAVAIL); 486 ++candidate; 487 if (candidate < lower || candidate > higher) 488 candidate = lower; 489 localport = htons(candidate); 490 } while (in_baddynamic(candidate, so->so_proto->pr_protocol)); 491 t = in_pcblookup_local_lock(table, laddr, localport, wild, 492 inp->inp_rtableid, IN_PCBLOCK_HOLD); 493 } while (t != NULL); 494 *lport = localport; 495 496 return (0); 497 } 498 499 /* 500 * Connect from a socket to a specified address. 501 * Both address and port must be specified in argument sin. 502 * If don't have a local address for this socket yet, 503 * then pick one. 504 */ 505 int 506 in_pcbconnect(struct inpcb *inp, struct mbuf *nam) 507 { 508 struct inpcbtable *table = inp->inp_table; 509 struct in_addr ina; 510 struct sockaddr_in *sin; 511 struct inpcb *t; 512 int error; 513 514 #ifdef INET6 515 if (ISSET(inp->inp_flags, INP_IPV6)) 516 return (in6_pcbconnect(inp, nam)); 517 #endif 518 519 if ((error = in_nam2sin(nam, &sin))) 520 return (error); 521 if (sin->sin_port == 0) 522 return (EADDRNOTAVAIL); 523 error = in_pcbselsrc(&ina, sin, inp); 524 if (error) 525 return (error); 526 527 /* keep lookup, modification, and rehash in sync */ 528 mtx_enter(&table->inpt_mtx); 529 530 t = in_pcblookup_lock(inp->inp_table, sin->sin_addr, sin->sin_port, 531 ina, inp->inp_lport, inp->inp_rtableid, IN_PCBLOCK_HOLD); 532 if (t != NULL) { 533 mtx_leave(&table->inpt_mtx); 534 return (EADDRINUSE); 535 } 536 537 KASSERT(inp->inp_laddr.s_addr == INADDR_ANY || inp->inp_lport); 538 539 if (inp->inp_laddr.s_addr == INADDR_ANY) { 540 if (inp->inp_lport == 0) { 541 error = in_pcbbind_locked(inp, NULL, &ina, curproc); 542 if (error) { 543 mtx_leave(&table->inpt_mtx); 544 return (error); 545 } 546 t = in_pcblookup_lock(inp->inp_table, sin->sin_addr, 547 sin->sin_port, ina, inp->inp_lport, 548 inp->inp_rtableid, IN_PCBLOCK_HOLD); 549 if (t != NULL) { 550 inp->inp_lport = 0; 551 mtx_leave(&table->inpt_mtx); 552 return (EADDRINUSE); 553 } 554 } 555 inp->inp_laddr = ina; 556 } 557 inp->inp_faddr = sin->sin_addr; 558 inp->inp_fport = sin->sin_port; 559 in_pcbrehash(inp); 560 561 mtx_leave(&table->inpt_mtx); 562 563 #if NSTOEPLITZ > 0 564 inp->inp_flowid = stoeplitz_ip4port(inp->inp_faddr.s_addr, 565 inp->inp_laddr.s_addr, inp->inp_fport, inp->inp_lport); 566 #endif 567 return (0); 568 } 569 570 void 571 in_pcbdisconnect(struct inpcb *inp) 572 { 573 #if NPF > 0 574 pf_remove_divert_state(inp); 575 pf_inp_unlink(inp); 576 #endif 577 inp->inp_flowid = 0; 578 if (inp->inp_socket->so_state & SS_NOFDREF) 579 in_pcbdetach(inp); 580 } 581 582 void 583 in_pcbdetach(struct inpcb *inp) 584 { 585 struct socket *so = inp->inp_socket; 586 struct inpcbtable *table = inp->inp_table; 587 588 so->so_pcb = NULL; 589 /* 590 * As long as the NET_LOCK() is the default lock for Internet 591 * sockets, do not release it to not introduce new sleeping 592 * points. 593 */ 594 sofree(so, 1); 595 if (inp->inp_route.ro_rt) { 596 rtfree(inp->inp_route.ro_rt); 597 inp->inp_route.ro_rt = NULL; 598 } 599 #ifdef INET6 600 if (ISSET(inp->inp_flags, INP_IPV6)) { 601 ip6_freepcbopts(inp->inp_outputopts6); 602 ip6_freemoptions(inp->inp_moptions6); 603 } else 604 #endif 605 { 606 m_freem(inp->inp_options); 607 ip_freemoptions(inp->inp_moptions); 608 } 609 #if NPF > 0 610 pf_remove_divert_state(inp); 611 pf_inp_unlink(inp); 612 #endif 613 mtx_enter(&table->inpt_mtx); 614 LIST_REMOVE(inp, inp_lhash); 615 LIST_REMOVE(inp, inp_hash); 616 TAILQ_REMOVE(&table->inpt_queue, inp, inp_queue); 617 table->inpt_count--; 618 mtx_leave(&table->inpt_mtx); 619 620 in_pcbunref(inp); 621 } 622 623 struct inpcb * 624 in_pcbref(struct inpcb *inp) 625 { 626 if (inp == NULL) 627 return NULL; 628 refcnt_take(&inp->inp_refcnt); 629 return inp; 630 } 631 632 void 633 in_pcbunref(struct inpcb *inp) 634 { 635 if (inp == NULL) 636 return; 637 if (refcnt_rele(&inp->inp_refcnt) == 0) 638 return; 639 KASSERT((LIST_NEXT(inp, inp_hash) == NULL) || 640 (LIST_NEXT(inp, inp_hash) == _Q_INVALID)); 641 KASSERT((LIST_NEXT(inp, inp_lhash) == NULL) || 642 (LIST_NEXT(inp, inp_lhash) == _Q_INVALID)); 643 KASSERT((TAILQ_NEXT(inp, inp_queue) == NULL) || 644 (TAILQ_NEXT(inp, inp_queue) == _Q_INVALID)); 645 pool_put(&inpcb_pool, inp); 646 } 647 648 void 649 in_setsockaddr(struct inpcb *inp, struct mbuf *nam) 650 { 651 struct sockaddr_in *sin; 652 653 #ifdef INET6 654 if (ISSET(inp->inp_flags, INP_IPV6)) { 655 in6_setsockaddr(inp, nam); 656 return; 657 } 658 #endif 659 660 nam->m_len = sizeof(*sin); 661 sin = mtod(nam, struct sockaddr_in *); 662 memset(sin, 0, sizeof(*sin)); 663 sin->sin_family = AF_INET; 664 sin->sin_len = sizeof(*sin); 665 sin->sin_port = inp->inp_lport; 666 sin->sin_addr = inp->inp_laddr; 667 } 668 669 void 670 in_setpeeraddr(struct inpcb *inp, struct mbuf *nam) 671 { 672 struct sockaddr_in *sin; 673 674 #ifdef INET6 675 if (ISSET(inp->inp_flags, INP_IPV6)) { 676 in6_setpeeraddr(inp, nam); 677 return; 678 } 679 #endif 680 681 nam->m_len = sizeof(*sin); 682 sin = mtod(nam, struct sockaddr_in *); 683 memset(sin, 0, sizeof(*sin)); 684 sin->sin_family = AF_INET; 685 sin->sin_len = sizeof(*sin); 686 sin->sin_port = inp->inp_fport; 687 sin->sin_addr = inp->inp_faddr; 688 } 689 690 int 691 in_sockaddr(struct socket *so, struct mbuf *nam) 692 { 693 struct inpcb *inp; 694 695 inp = sotoinpcb(so); 696 in_setsockaddr(inp, nam); 697 698 return (0); 699 } 700 701 int 702 in_peeraddr(struct socket *so, struct mbuf *nam) 703 { 704 struct inpcb *inp; 705 706 inp = sotoinpcb(so); 707 in_setpeeraddr(inp, nam); 708 709 return (0); 710 } 711 712 /* 713 * Pass some notification to all connections of a protocol 714 * associated with address dst. The "usual action" will be 715 * taken, depending on the ctlinput cmd. The caller must filter any 716 * cmds that are uninteresting (e.g., no error in the map). 717 * Call the protocol specific routine (if any) to report 718 * any errors for each matching socket. 719 */ 720 void 721 in_pcbnotifyall(struct inpcbtable *table, const struct sockaddr_in *dst, 722 u_int rtable, int errno, void (*notify)(struct inpcb *, int)) 723 { 724 SIMPLEQ_HEAD(, inpcb) inpcblist; 725 struct inpcb *inp; 726 u_int rdomain; 727 728 if (dst->sin_addr.s_addr == INADDR_ANY) 729 return; 730 if (notify == NULL) 731 return; 732 733 /* 734 * Use a temporary notify list protected by rwlock to run over 735 * selected PCB. This is necessary as the list of all PCB is 736 * protected by a mutex. Notify may call ip_output() eventually 737 * which may sleep as pf lock is a rwlock. Also the SRP 738 * implementation of the routing table might sleep. 739 * The same inp_notify list entry and inpt_notify rwlock are 740 * used for UDP multicast and raw IP delivery. 741 */ 742 SIMPLEQ_INIT(&inpcblist); 743 rdomain = rtable_l2(rtable); 744 rw_enter_write(&table->inpt_notify); 745 mtx_enter(&table->inpt_mtx); 746 TAILQ_FOREACH(inp, &table->inpt_queue, inp_queue) { 747 KASSERT(!ISSET(inp->inp_flags, INP_IPV6)); 748 749 if (inp->inp_faddr.s_addr != dst->sin_addr.s_addr || 750 rtable_l2(inp->inp_rtableid) != rdomain) { 751 continue; 752 } 753 in_pcbref(inp); 754 SIMPLEQ_INSERT_TAIL(&inpcblist, inp, inp_notify); 755 } 756 mtx_leave(&table->inpt_mtx); 757 758 while ((inp = SIMPLEQ_FIRST(&inpcblist)) != NULL) { 759 SIMPLEQ_REMOVE_HEAD(&inpcblist, inp_notify); 760 (*notify)(inp, errno); 761 in_pcbunref(inp); 762 } 763 rw_exit_write(&table->inpt_notify); 764 } 765 766 /* 767 * Check for alternatives when higher level complains 768 * about service problems. For now, invalidate cached 769 * routing information. If the route was created dynamically 770 * (by a redirect), time to try a default gateway again. 771 */ 772 void 773 in_losing(struct inpcb *inp) 774 { 775 struct rtentry *rt = inp->inp_route.ro_rt; 776 777 if (rt) { 778 inp->inp_route.ro_rt = NULL; 779 780 if (rt->rt_flags & RTF_DYNAMIC) { 781 struct ifnet *ifp; 782 783 ifp = if_get(rt->rt_ifidx); 784 /* 785 * If the interface is gone, all its attached 786 * route entries have been removed from the table, 787 * so we're dealing with a stale cache and have 788 * nothing to do. 789 */ 790 if (ifp != NULL) 791 rtdeletemsg(rt, ifp, inp->inp_rtableid); 792 if_put(ifp); 793 } 794 /* 795 * A new route can be allocated 796 * the next time output is attempted. 797 * rtfree() needs to be called in anycase because the inp 798 * is still holding a reference to rt. 799 */ 800 rtfree(rt); 801 } 802 } 803 804 /* 805 * After a routing change, flush old routing 806 * and allocate a (hopefully) better one. 807 */ 808 void 809 in_rtchange(struct inpcb *inp, int errno) 810 { 811 if (inp->inp_route.ro_rt) { 812 rtfree(inp->inp_route.ro_rt); 813 inp->inp_route.ro_rt = NULL; 814 /* 815 * A new route can be allocated the next time 816 * output is attempted. 817 */ 818 } 819 } 820 821 struct inpcb * 822 in_pcblookup_local_lock(struct inpcbtable *table, const void *laddrp, 823 u_int lport_arg, int flags, u_int rtable, int lock) 824 { 825 struct inpcb *inp, *match = NULL; 826 int matchwild = 3, wildcard; 827 u_int16_t lport = lport_arg; 828 const struct in_addr laddr = *(const struct in_addr *)laddrp; 829 #ifdef INET6 830 const struct in6_addr *laddr6 = (const struct in6_addr *)laddrp; 831 #endif 832 struct inpcbhead *head; 833 uint64_t lhash; 834 u_int rdomain; 835 836 rdomain = rtable_l2(rtable); 837 lhash = in_pcblhash(table, rdomain, lport); 838 839 if (lock == IN_PCBLOCK_GRAB) { 840 mtx_enter(&table->inpt_mtx); 841 } else { 842 KASSERT(lock == IN_PCBLOCK_HOLD); 843 MUTEX_ASSERT_LOCKED(&table->inpt_mtx); 844 } 845 head = &table->inpt_lhashtbl[lhash & table->inpt_lmask]; 846 LIST_FOREACH(inp, head, inp_lhash) { 847 if (rtable_l2(inp->inp_rtableid) != rdomain) 848 continue; 849 if (inp->inp_lport != lport) 850 continue; 851 wildcard = 0; 852 #ifdef INET6 853 if (ISSET(flags, INPLOOKUP_IPV6)) { 854 KASSERT(ISSET(inp->inp_flags, INP_IPV6)); 855 856 if (!IN6_IS_ADDR_UNSPECIFIED(&inp->inp_faddr6)) 857 wildcard++; 858 859 if (!IN6_ARE_ADDR_EQUAL(&inp->inp_laddr6, laddr6)) { 860 if (IN6_IS_ADDR_UNSPECIFIED(&inp->inp_laddr6) || 861 IN6_IS_ADDR_UNSPECIFIED(laddr6)) 862 wildcard++; 863 else 864 continue; 865 } 866 867 } else 868 #endif /* INET6 */ 869 { 870 KASSERT(!ISSET(inp->inp_flags, INP_IPV6)); 871 872 if (inp->inp_faddr.s_addr != INADDR_ANY) 873 wildcard++; 874 875 if (inp->inp_laddr.s_addr != laddr.s_addr) { 876 if (inp->inp_laddr.s_addr == INADDR_ANY || 877 laddr.s_addr == INADDR_ANY) 878 wildcard++; 879 else 880 continue; 881 } 882 883 } 884 if ((!wildcard || (flags & INPLOOKUP_WILDCARD)) && 885 wildcard < matchwild) { 886 match = inp; 887 if ((matchwild = wildcard) == 0) 888 break; 889 } 890 } 891 if (lock == IN_PCBLOCK_GRAB) { 892 in_pcbref(match); 893 mtx_leave(&table->inpt_mtx); 894 } 895 896 return (match); 897 } 898 899 struct rtentry * 900 in_pcbrtentry(struct inpcb *inp) 901 { 902 #ifdef INET6 903 if (ISSET(inp->inp_flags, INP_IPV6)) 904 return in6_pcbrtentry(inp); 905 #endif 906 907 if (inp->inp_faddr.s_addr == INADDR_ANY) 908 return (NULL); 909 return (route_mpath(&inp->inp_route, &inp->inp_faddr, &inp->inp_laddr, 910 inp->inp_rtableid)); 911 } 912 913 /* 914 * Return an IPv4 address, which is the most appropriate for a given 915 * destination. 916 * If necessary, this function lookups the routing table and returns 917 * an entry to the caller for later use. 918 */ 919 int 920 in_pcbselsrc(struct in_addr *insrc, struct sockaddr_in *sin, 921 struct inpcb *inp) 922 { 923 struct ip_moptions *mopts = inp->inp_moptions; 924 struct rtentry *rt; 925 const struct in_addr *laddr = &inp->inp_laddr; 926 u_int rtableid = inp->inp_rtableid; 927 struct sockaddr *ip4_source = NULL; 928 struct in_ifaddr *ia = NULL; 929 930 /* 931 * If the socket(if any) is already bound, use that bound address 932 * unless it is INADDR_ANY or INADDR_BROADCAST. 933 */ 934 if (laddr->s_addr != INADDR_ANY && 935 laddr->s_addr != INADDR_BROADCAST) { 936 *insrc = *laddr; 937 return (0); 938 } 939 940 /* 941 * If the destination address is multicast or limited 942 * broadcast (255.255.255.255) and an outgoing interface has 943 * been set as a multicast option, use the address of that 944 * interface as our source address. 945 */ 946 if ((IN_MULTICAST(sin->sin_addr.s_addr) || 947 sin->sin_addr.s_addr == INADDR_BROADCAST) && mopts != NULL) { 948 struct ifnet *ifp; 949 950 ifp = if_get(mopts->imo_ifidx); 951 if (ifp != NULL) { 952 if (ifp->if_rdomain == rtable_l2(rtableid)) 953 IFP_TO_IA(ifp, ia); 954 if (ia == NULL) { 955 if_put(ifp); 956 return (EADDRNOTAVAIL); 957 } 958 959 *insrc = ia->ia_addr.sin_addr; 960 if_put(ifp); 961 return (0); 962 } 963 } 964 965 /* 966 * If route is known or can be allocated now, 967 * our src addr is taken from the i/f, else punt. 968 */ 969 rt = route_mpath(&inp->inp_route, &sin->sin_addr, NULL, rtableid); 970 971 /* 972 * If we found a route, use the address 973 * corresponding to the outgoing interface. 974 */ 975 if (rt != NULL) 976 ia = ifatoia(rt->rt_ifa); 977 978 /* 979 * Use preferred source address if : 980 * - destination is not onlink 981 * - preferred source address is set 982 * - output interface is UP 983 */ 984 if (rt != NULL && !(rt->rt_flags & RTF_LLINFO) && 985 !(rt->rt_flags & RTF_HOST)) { 986 ip4_source = rtable_getsource(rtableid, AF_INET); 987 if (ip4_source != NULL) { 988 struct ifaddr *ifa; 989 if ((ifa = ifa_ifwithaddr(ip4_source, rtableid)) != 990 NULL && ISSET(ifa->ifa_ifp->if_flags, IFF_UP)) { 991 *insrc = satosin(ip4_source)->sin_addr; 992 return (0); 993 } 994 } 995 } 996 997 if (ia == NULL) 998 return (EADDRNOTAVAIL); 999 1000 *insrc = ia->ia_addr.sin_addr; 1001 return (0); 1002 } 1003 1004 void 1005 in_pcbrehash(struct inpcb *inp) 1006 { 1007 LIST_REMOVE(inp, inp_lhash); 1008 LIST_REMOVE(inp, inp_hash); 1009 in_pcbhash_insert(inp); 1010 } 1011 1012 void 1013 in_pcbhash_insert(struct inpcb *inp) 1014 { 1015 struct inpcbtable *table = inp->inp_table; 1016 struct inpcbhead *head; 1017 uint64_t hash, lhash; 1018 1019 MUTEX_ASSERT_LOCKED(&table->inpt_mtx); 1020 1021 lhash = in_pcblhash(table, inp->inp_rtableid, inp->inp_lport); 1022 head = &table->inpt_lhashtbl[lhash & table->inpt_lmask]; 1023 LIST_INSERT_HEAD(head, inp, inp_lhash); 1024 #ifdef INET6 1025 if (ISSET(inp->inp_flags, INP_IPV6)) 1026 hash = in6_pcbhash(table, rtable_l2(inp->inp_rtableid), 1027 &inp->inp_faddr6, inp->inp_fport, 1028 &inp->inp_laddr6, inp->inp_lport); 1029 else 1030 #endif 1031 hash = in_pcbhash(table, rtable_l2(inp->inp_rtableid), 1032 &inp->inp_faddr, inp->inp_fport, 1033 &inp->inp_laddr, inp->inp_lport); 1034 head = &table->inpt_hashtbl[hash & table->inpt_mask]; 1035 LIST_INSERT_HEAD(head, inp, inp_hash); 1036 } 1037 1038 struct inpcb * 1039 in_pcbhash_lookup(struct inpcbtable *table, uint64_t hash, u_int rdomain, 1040 const struct in_addr *faddr, u_short fport, 1041 const struct in_addr *laddr, u_short lport) 1042 { 1043 struct inpcbhead *head; 1044 struct inpcb *inp; 1045 1046 MUTEX_ASSERT_LOCKED(&table->inpt_mtx); 1047 1048 head = &table->inpt_hashtbl[hash & table->inpt_mask]; 1049 LIST_FOREACH(inp, head, inp_hash) { 1050 KASSERT(!ISSET(inp->inp_flags, INP_IPV6)); 1051 1052 if (inp->inp_fport == fport && inp->inp_lport == lport && 1053 inp->inp_faddr.s_addr == faddr->s_addr && 1054 inp->inp_laddr.s_addr == laddr->s_addr && 1055 rtable_l2(inp->inp_rtableid) == rdomain) { 1056 break; 1057 } 1058 } 1059 if (inp != NULL) { 1060 /* 1061 * Move this PCB to the head of hash chain so that 1062 * repeated accesses are quicker. This is analogous to 1063 * the historic single-entry PCB cache. 1064 */ 1065 if (inp != LIST_FIRST(head)) { 1066 LIST_REMOVE(inp, inp_hash); 1067 LIST_INSERT_HEAD(head, inp, inp_hash); 1068 } 1069 } 1070 return (inp); 1071 } 1072 1073 int 1074 in_pcbresize(struct inpcbtable *table, int hashsize) 1075 { 1076 u_long nmask, nlmask; 1077 int osize; 1078 void *nhashtbl, *nlhashtbl, *ohashtbl, *olhashtbl; 1079 struct inpcb *inp; 1080 1081 MUTEX_ASSERT_LOCKED(&table->inpt_mtx); 1082 1083 ohashtbl = table->inpt_hashtbl; 1084 olhashtbl = table->inpt_lhashtbl; 1085 osize = table->inpt_size; 1086 1087 nhashtbl = hashinit(hashsize, M_PCB, M_NOWAIT, &nmask); 1088 if (nhashtbl == NULL) 1089 return ENOBUFS; 1090 nlhashtbl = hashinit(hashsize, M_PCB, M_NOWAIT, &nlmask); 1091 if (nlhashtbl == NULL) { 1092 hashfree(nhashtbl, hashsize, M_PCB); 1093 return ENOBUFS; 1094 } 1095 table->inpt_hashtbl = nhashtbl; 1096 table->inpt_lhashtbl = nlhashtbl; 1097 table->inpt_mask = nmask; 1098 table->inpt_lmask = nlmask; 1099 table->inpt_size = hashsize; 1100 1101 TAILQ_FOREACH(inp, &table->inpt_queue, inp_queue) { 1102 LIST_REMOVE(inp, inp_lhash); 1103 LIST_REMOVE(inp, inp_hash); 1104 in_pcbhash_insert(inp); 1105 } 1106 hashfree(ohashtbl, osize, M_PCB); 1107 hashfree(olhashtbl, osize, M_PCB); 1108 1109 return (0); 1110 } 1111 1112 #ifdef DIAGNOSTIC 1113 int in_pcbnotifymiss = 0; 1114 #endif 1115 1116 /* 1117 * The in(6)_pcblookup functions are used to locate connected sockets 1118 * quickly: 1119 * faddr.fport <-> laddr.lport 1120 * No wildcard matching is done so that listening sockets are not found. 1121 * If the functions return NULL in(6)_pcblookup_listen can be used to 1122 * find a listening/bound socket that may accept the connection. 1123 * After those two lookups no other are necessary. 1124 */ 1125 struct inpcb * 1126 in_pcblookup_lock(struct inpcbtable *table, struct in_addr faddr, 1127 u_int fport, struct in_addr laddr, u_int lport, u_int rtable, int lock) 1128 { 1129 struct inpcb *inp; 1130 uint64_t hash; 1131 u_int rdomain; 1132 1133 rdomain = rtable_l2(rtable); 1134 hash = in_pcbhash(table, rdomain, &faddr, fport, &laddr, lport); 1135 1136 if (lock == IN_PCBLOCK_GRAB) { 1137 mtx_enter(&table->inpt_mtx); 1138 } else { 1139 KASSERT(lock == IN_PCBLOCK_HOLD); 1140 MUTEX_ASSERT_LOCKED(&table->inpt_mtx); 1141 } 1142 inp = in_pcbhash_lookup(table, hash, rdomain, 1143 &faddr, fport, &laddr, lport); 1144 if (lock == IN_PCBLOCK_GRAB) { 1145 in_pcbref(inp); 1146 mtx_leave(&table->inpt_mtx); 1147 } 1148 1149 #ifdef DIAGNOSTIC 1150 if (inp == NULL && in_pcbnotifymiss) { 1151 printf("%s: faddr=%08x fport=%d laddr=%08x lport=%d rdom=%u\n", 1152 __func__, ntohl(faddr.s_addr), ntohs(fport), 1153 ntohl(laddr.s_addr), ntohs(lport), rdomain); 1154 } 1155 #endif 1156 return (inp); 1157 } 1158 1159 struct inpcb * 1160 in_pcblookup(struct inpcbtable *table, struct in_addr faddr, 1161 u_int fport, struct in_addr laddr, u_int lport, u_int rtable) 1162 { 1163 return in_pcblookup_lock(table, faddr, fport, laddr, lport, rtable, 1164 IN_PCBLOCK_GRAB); 1165 } 1166 1167 /* 1168 * The in(6)_pcblookup_listen functions are used to locate listening 1169 * sockets quickly. This are sockets with unspecified foreign address 1170 * and port: 1171 * *.* <-> laddr.lport 1172 * *.* <-> *.lport 1173 */ 1174 struct inpcb * 1175 in_pcblookup_listen(struct inpcbtable *table, struct in_addr laddr, 1176 u_int lport_arg, struct mbuf *m, u_int rtable) 1177 { 1178 const struct in_addr *key1, *key2; 1179 struct inpcb *inp; 1180 uint64_t hash; 1181 u_int16_t lport = lport_arg; 1182 u_int rdomain; 1183 1184 key1 = &laddr; 1185 key2 = &zeroin_addr; 1186 #if NPF > 0 1187 if (m && m->m_pkthdr.pf.flags & PF_TAG_DIVERTED) { 1188 struct pf_divert *divert; 1189 1190 divert = pf_find_divert(m); 1191 KASSERT(divert != NULL); 1192 switch (divert->type) { 1193 case PF_DIVERT_TO: 1194 key1 = key2 = &divert->addr.v4; 1195 lport = divert->port; 1196 break; 1197 case PF_DIVERT_REPLY: 1198 return (NULL); 1199 default: 1200 panic("%s: unknown divert type %d, mbuf %p, divert %p", 1201 __func__, divert->type, m, divert); 1202 } 1203 } else if (m && m->m_pkthdr.pf.flags & PF_TAG_TRANSLATE_LOCALHOST) { 1204 /* 1205 * Redirected connections should not be treated the same 1206 * as connections directed to 127.0.0.0/8 since localhost 1207 * can only be accessed from the host itself. 1208 * For example portmap(8) grants more permissions for 1209 * connections to the socket bound to 127.0.0.1 than 1210 * to the * socket. 1211 */ 1212 key1 = &zeroin_addr; 1213 key2 = &laddr; 1214 } 1215 #endif 1216 1217 rdomain = rtable_l2(rtable); 1218 hash = in_pcbhash(table, rdomain, &zeroin_addr, 0, key1, lport); 1219 1220 mtx_enter(&table->inpt_mtx); 1221 inp = in_pcbhash_lookup(table, hash, rdomain, 1222 &zeroin_addr, 0, key1, lport); 1223 if (inp == NULL && key1->s_addr != key2->s_addr) { 1224 hash = in_pcbhash(table, rdomain, 1225 &zeroin_addr, 0, key2, lport); 1226 inp = in_pcbhash_lookup(table, hash, rdomain, 1227 &zeroin_addr, 0, key2, lport); 1228 } 1229 in_pcbref(inp); 1230 mtx_leave(&table->inpt_mtx); 1231 1232 #ifdef DIAGNOSTIC 1233 if (inp == NULL && in_pcbnotifymiss) { 1234 printf("%s: laddr=%08x lport=%d rdom=%u\n", 1235 __func__, ntohl(laddr.s_addr), ntohs(lport), rdomain); 1236 } 1237 #endif 1238 return (inp); 1239 } 1240 1241 int 1242 in_pcbset_rtableid(struct inpcb *inp, u_int rtableid) 1243 { 1244 struct inpcbtable *table = inp->inp_table; 1245 1246 /* table must exist */ 1247 if (!rtable_exists(rtableid)) 1248 return (EINVAL); 1249 1250 mtx_enter(&table->inpt_mtx); 1251 if (inp->inp_lport) { 1252 mtx_leave(&table->inpt_mtx); 1253 return (EBUSY); 1254 } 1255 inp->inp_rtableid = rtableid; 1256 in_pcbrehash(inp); 1257 mtx_leave(&table->inpt_mtx); 1258 1259 return (0); 1260 } 1261 1262 void 1263 in_pcbset_laddr(struct inpcb *inp, const struct sockaddr *sa, u_int rtableid) 1264 { 1265 struct inpcbtable *table = inp->inp_table; 1266 1267 mtx_enter(&table->inpt_mtx); 1268 inp->inp_rtableid = rtableid; 1269 #ifdef INET6 1270 if (ISSET(inp->inp_flags, INP_IPV6)) { 1271 const struct sockaddr_in6 *sin6; 1272 1273 KASSERT(sa->sa_family == AF_INET6); 1274 sin6 = satosin6_const(sa); 1275 inp->inp_lport = sin6->sin6_port; 1276 inp->inp_laddr6 = sin6->sin6_addr; 1277 } else 1278 #endif 1279 { 1280 const struct sockaddr_in *sin; 1281 1282 KASSERT(sa->sa_family == AF_INET); 1283 sin = satosin_const(sa); 1284 inp->inp_lport = sin->sin_port; 1285 inp->inp_laddr = sin->sin_addr; 1286 } 1287 in_pcbrehash(inp); 1288 mtx_leave(&table->inpt_mtx); 1289 } 1290 1291 void 1292 in_pcbunset_faddr(struct inpcb *inp) 1293 { 1294 struct inpcbtable *table = inp->inp_table; 1295 1296 mtx_enter(&table->inpt_mtx); 1297 #ifdef INET6 1298 if (ISSET(inp->inp_flags, INP_IPV6)) 1299 inp->inp_faddr6 = in6addr_any; 1300 else 1301 #endif 1302 inp->inp_faddr.s_addr = INADDR_ANY; 1303 inp->inp_fport = 0; 1304 in_pcbrehash(inp); 1305 mtx_leave(&table->inpt_mtx); 1306 } 1307 1308 void 1309 in_pcbunset_laddr(struct inpcb *inp) 1310 { 1311 struct inpcbtable *table = inp->inp_table; 1312 1313 mtx_enter(&table->inpt_mtx); 1314 #ifdef INET6 1315 if (ISSET(inp->inp_flags, INP_IPV6)) { 1316 inp->inp_faddr6 = in6addr_any; 1317 inp->inp_laddr6 = in6addr_any; 1318 } else 1319 #endif 1320 { 1321 inp->inp_faddr.s_addr = INADDR_ANY; 1322 inp->inp_laddr.s_addr = INADDR_ANY; 1323 } 1324 inp->inp_fport = 0; 1325 in_pcbrehash(inp); 1326 mtx_leave(&table->inpt_mtx); 1327 } 1328