xref: /openbsd/sys/netinet/ip_input.c (revision 07ea8d15)
1 /*	$OpenBSD: ip_input.c,v 1.19 1996/10/27 00:47:33 deraadt Exp $	*/
2 /*	$NetBSD: ip_input.c,v 1.30 1996/03/16 23:53:58 christos Exp $	*/
3 
4 /*
5  * Copyright (c) 1982, 1986, 1988, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
37  */
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/domain.h>
44 #include <sys/protosw.h>
45 #include <sys/socket.h>
46 #include <sys/errno.h>
47 #include <sys/time.h>
48 #include <sys/kernel.h>
49 #include <sys/syslog.h>
50 #include <sys/proc.h>
51 
52 #include <vm/vm.h>
53 #include <sys/sysctl.h>
54 
55 #include <net/if.h>
56 #include <net/route.h>
57 
58 #include <netinet/in.h>
59 #include <netinet/in_systm.h>
60 #include <netinet/ip.h>
61 #include <netinet/in_pcb.h>
62 #include <netinet/in_var.h>
63 #include <netinet/ip_var.h>
64 #include <netinet/ip_icmp.h>
65 
66 #ifndef	IPFORWARDING
67 #ifdef GATEWAY
68 #define	IPFORWARDING	1	/* forward IP packets not for us */
69 #else /* GATEWAY */
70 #define	IPFORWARDING	0	/* don't forward IP packets not for us */
71 #endif /* GATEWAY */
72 #endif /* IPFORWARDING */
73 #ifndef	IPSENDREDIRECTS
74 #define	IPSENDREDIRECTS	1
75 #endif
76 /*
77  * Note: DIRECTED_BROADCAST is handled this way so that previous
78  * configuration using this option will Just Work.
79  */
80 #ifndef IPDIRECTEDBCAST
81 #ifdef DIRECTED_BROADCAST
82 #define IPDIRECTEDBCAST	1
83 #else
84 #define	IPDIRECTEDBCAST	0
85 #endif /* DIRECTED_BROADCAST */
86 #endif /* IPDIRECTEDBCAST */
87 int	ipforwarding = IPFORWARDING;
88 int	ipsendredirects = IPSENDREDIRECTS;
89 int	ip_dosourceroute = 0;	/* no src-routing unless sysctl'd to enable */
90 int	ip_defttl = IPDEFTTL;
91 int	ip_directedbcast = IPDIRECTEDBCAST;
92 #ifdef DIAGNOSTIC
93 int	ipprintfs = 0;
94 #endif
95 
96 /* from in_pcb.c */
97 extern int ipport_firstauto;
98 extern int ipport_lastauto;
99 extern int ipport_hifirstauto;
100 extern int ipport_hilastauto;
101 
102 extern	struct domain inetdomain;
103 extern	struct protosw inetsw[];
104 u_char	ip_protox[IPPROTO_MAX];
105 int	ipqmaxlen = IFQ_MAXLEN;
106 struct	in_ifaddrhead in_ifaddr;
107 struct	ifqueue ipintrq;
108 #if defined(IPFILTER) || defined(IPFILTER_LKM)
109 int	(*fr_checkp) __P((struct ip *, int, struct ifnet *, int,
110 			  struct mbuf **));
111 #endif
112 
113 
114 char *
115 inet_ntoa(ina)
116 	struct in_addr ina;
117 {
118 	static char buf[4*sizeof "123"];
119 	unsigned char *ucp = (unsigned char *)&ina;
120 
121 	sprintf(buf, "%d.%d.%d.%d", ucp[0] & 0xff, ucp[1] & 0xff,
122 	    ucp[2] & 0xff, ucp[3] & 0xff);
123 	return (buf);
124 }
125 
126 /*
127  * We need to save the IP options in case a protocol wants to respond
128  * to an incoming packet over the same route if the packet got here
129  * using IP source routing.  This allows connection establishment and
130  * maintenance when the remote end is on a network that is not known
131  * to us.
132  */
133 int	ip_nhops = 0;
134 static	struct ip_srcrt {
135 	struct	in_addr dst;			/* final destination */
136 	char	nop;				/* one NOP to align */
137 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
138 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
139 } ip_srcrt;
140 
141 static void save_rte __P((u_char *, struct in_addr));
142 /*
143  * IP initialization: fill in IP protocol switch table.
144  * All protocols not implemented in kernel go to raw IP protocol handler.
145  */
146 void
147 ip_init()
148 {
149 	register struct protosw *pr;
150 	register int i;
151 
152 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
153 	if (pr == 0)
154 		panic("ip_init");
155 	for (i = 0; i < IPPROTO_MAX; i++)
156 		ip_protox[i] = pr - inetsw;
157 	for (pr = inetdomain.dom_protosw;
158 	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
159 		if (pr->pr_domain->dom_family == PF_INET &&
160 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
161 			ip_protox[pr->pr_protocol] = pr - inetsw;
162 	LIST_INIT(&ipq);
163 	ip_id = time.tv_sec & 0xffff;
164 	ipintrq.ifq_maxlen = ipqmaxlen;
165 	TAILQ_INIT(&in_ifaddr);
166 }
167 
168 struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
169 struct	route ipforward_rt;
170 
171 /*
172  * Ip input routine.  Checksum and byte swap header.  If fragmented
173  * try to reassemble.  Process options.  Pass to next level.
174  */
175 void
176 ipintr()
177 {
178 	register struct ip *ip;
179 	register struct mbuf *m;
180 	register struct ipq *fp;
181 	register struct in_ifaddr *ia;
182 	struct ipqent *ipqe;
183 	int hlen, mff, s;
184 
185 	if (needqueuedrain)
186 		m_reclaim ();
187 next:
188 	/*
189 	 * Get next datagram off input queue and get IP header
190 	 * in first mbuf.
191 	 */
192 	s = splimp();
193 	IF_DEQUEUE(&ipintrq, m);
194 	splx(s);
195 	if (m == 0)
196 		return;
197 #ifdef	DIAGNOSTIC
198 	if ((m->m_flags & M_PKTHDR) == 0)
199 		panic("ipintr no HDR");
200 #endif
201 	/*
202 	 * If no IP addresses have been set yet but the interfaces
203 	 * are receiving, can't do anything with incoming packets yet.
204 	 */
205 	if (in_ifaddr.tqh_first == 0)
206 		goto bad;
207 	ipstat.ips_total++;
208 	if (m->m_len < sizeof (struct ip) &&
209 	    (m = m_pullup(m, sizeof (struct ip))) == 0) {
210 		ipstat.ips_toosmall++;
211 		goto next;
212 	}
213 	ip = mtod(m, struct ip *);
214 	if (ip->ip_v != IPVERSION) {
215 		ipstat.ips_badvers++;
216 		goto bad;
217 	}
218 	hlen = ip->ip_hl << 2;
219 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
220 		ipstat.ips_badhlen++;
221 		goto bad;
222 	}
223 	if (hlen > m->m_len) {
224 		if ((m = m_pullup(m, hlen)) == 0) {
225 			ipstat.ips_badhlen++;
226 			goto next;
227 		}
228 		ip = mtod(m, struct ip *);
229 	}
230 	if ((ip->ip_sum = in_cksum(m, hlen)) != 0) {
231 		ipstat.ips_badsum++;
232 		goto bad;
233 	}
234 
235 	/*
236 	 * Convert fields to host representation.
237 	 */
238 	NTOHS(ip->ip_len);
239 	if (ip->ip_len < hlen) {
240 		ipstat.ips_badlen++;
241 		goto bad;
242 	}
243 	NTOHS(ip->ip_id);
244 	NTOHS(ip->ip_off);
245 
246 	/*
247 	 * Check that the amount of data in the buffers
248 	 * is as at least much as the IP header would have us expect.
249 	 * Trim mbufs if longer than we expect.
250 	 * Drop packet if shorter than we expect.
251 	 */
252 	if (m->m_pkthdr.len < ip->ip_len) {
253 		ipstat.ips_tooshort++;
254 		goto bad;
255 	}
256 	if (m->m_pkthdr.len > ip->ip_len) {
257 		if (m->m_len == m->m_pkthdr.len) {
258 			m->m_len = ip->ip_len;
259 			m->m_pkthdr.len = ip->ip_len;
260 		} else
261 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
262 	}
263 
264 #if defined(IPFILTER) || defined(IPFILTER_LKM)
265        /*
266 	* Check if we want to allow this packet to be processed.
267 	* Consider it to be bad if not.
268 	*/
269 	{
270 		struct mbuf *m0 = m;
271 		if (fr_checkp && (*fr_checkp)(ip, hlen, m->m_pkthdr.rcvif, 0, &m0))
272 			goto next;
273 		else
274 			ip = mtod(m = m0, struct ip *);
275 	}
276 #endif
277 
278 	/*
279 	 * Process options and, if not destined for us,
280 	 * ship it on.  ip_dooptions returns 1 when an
281 	 * error was detected (causing an icmp message
282 	 * to be sent and the original packet to be freed).
283 	 */
284 	ip_nhops = 0;		/* for source routed packets */
285 	if (hlen > sizeof (struct ip) && ip_dooptions(m))
286 		goto next;
287 
288 	/*
289 	 * Check our list of addresses, to see if the packet is for us.
290 	 */
291 	for (ia = in_ifaddr.tqh_first; ia; ia = ia->ia_list.tqe_next) {
292 		if (ip->ip_dst.s_addr == ia->ia_addr.sin_addr.s_addr)
293 			goto ours;
294 		if (((ip_directedbcast == 0) || (ip_directedbcast &&
295 		    ia->ia_ifp == m->m_pkthdr.rcvif)) &&
296 		    (ia->ia_ifp->if_flags & IFF_BROADCAST)) {
297 			if (ip->ip_dst.s_addr == ia->ia_broadaddr.sin_addr.s_addr ||
298 			    ip->ip_dst.s_addr == ia->ia_netbroadcast.s_addr ||
299 			    /*
300 			     * Look for all-0's host part (old broadcast addr),
301 			     * either for subnet or net.
302 			     */
303 			    ip->ip_dst.s_addr == ia->ia_subnet ||
304 			    ip->ip_dst.s_addr == ia->ia_net)
305 				goto ours;
306 		}
307 	}
308 	if (IN_MULTICAST(ip->ip_dst.s_addr)) {
309 		struct in_multi *inm;
310 #ifdef MROUTING
311 		extern struct socket *ip_mrouter;
312 
313 		if (m->m_flags & M_EXT) {
314 			if ((m = m_pullup(m, hlen)) == 0) {
315 				ipstat.ips_toosmall++;
316 				goto next;
317 			}
318 			ip = mtod(m, struct ip *);
319 		}
320 
321 		if (ip_mrouter) {
322 			/*
323 			 * If we are acting as a multicast router, all
324 			 * incoming multicast packets are passed to the
325 			 * kernel-level multicast forwarding function.
326 			 * The packet is returned (relatively) intact; if
327 			 * ip_mforward() returns a non-zero value, the packet
328 			 * must be discarded, else it may be accepted below.
329 			 *
330 			 * (The IP ident field is put in the same byte order
331 			 * as expected when ip_mforward() is called from
332 			 * ip_output().)
333 			 */
334 			ip->ip_id = htons(ip->ip_id);
335 			if (ip_mforward(m, m->m_pkthdr.rcvif) != 0) {
336 				ipstat.ips_cantforward++;
337 				m_freem(m);
338 				goto next;
339 			}
340 			ip->ip_id = ntohs(ip->ip_id);
341 
342 			/*
343 			 * The process-level routing demon needs to receive
344 			 * all multicast IGMP packets, whether or not this
345 			 * host belongs to their destination groups.
346 			 */
347 			if (ip->ip_p == IPPROTO_IGMP)
348 				goto ours;
349 			ipstat.ips_forward++;
350 		}
351 #endif
352 		/*
353 		 * See if we belong to the destination multicast group on the
354 		 * arrival interface.
355 		 */
356 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
357 		if (inm == NULL) {
358 			ipstat.ips_cantforward++;
359 			m_freem(m);
360 			goto next;
361 		}
362 		goto ours;
363 	}
364 	if (ip->ip_dst.s_addr == INADDR_BROADCAST ||
365 	    ip->ip_dst.s_addr == INADDR_ANY)
366 		goto ours;
367 
368 	/*
369 	 * Not for us; forward if possible and desirable.
370 	 */
371 	if (ipforwarding == 0) {
372 		ipstat.ips_cantforward++;
373 		m_freem(m);
374 	} else
375 		ip_forward(m, 0);
376 	goto next;
377 
378 ours:
379 	/*
380 	 * If offset or IP_MF are set, must reassemble.
381 	 * Otherwise, nothing need be done.
382 	 * (We could look in the reassembly queue to see
383 	 * if the packet was previously fragmented,
384 	 * but it's not worth the time; just let them time out.)
385 	 */
386 	if (ip->ip_off &~ (IP_DF | IP_RF)) {
387 		if (m->m_flags & M_EXT) {		/* XXX */
388 			if ((m = m_pullup(m, sizeof (struct ip))) == 0) {
389 				ipstat.ips_toosmall++;
390 				goto next;
391 			}
392 			ip = mtod(m, struct ip *);
393 		}
394 		/*
395 		 * Look for queue of fragments
396 		 * of this datagram.
397 		 */
398 		for (fp = ipq.lh_first; fp != NULL; fp = fp->ipq_q.le_next)
399 			if (ip->ip_id == fp->ipq_id &&
400 			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
401 			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
402 			    ip->ip_p == fp->ipq_p)
403 				goto found;
404 		fp = 0;
405 found:
406 
407 		/*
408 		 * Adjust ip_len to not reflect header,
409 		 * set ipqe_mff if more fragments are expected,
410 		 * convert offset of this to bytes.
411 		 */
412 		ip->ip_len -= hlen;
413 		mff = (ip->ip_off & IP_MF) != 0;
414 		if (mff) {
415 			/*
416 			 * Make sure that fragments have a data length
417 			 * that's a non-zero multiple of 8 bytes.
418 			 */
419 			if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
420 				ipstat.ips_badfrags++;
421 				goto bad;
422 			}
423 		}
424 		ip->ip_off <<= 3;
425 
426 		/*
427 		 * If datagram marked as having more fragments
428 		 * or if this is not the first fragment,
429 		 * attempt reassembly; if it succeeds, proceed.
430 		 */
431 		if (mff || ip->ip_off) {
432 			ipstat.ips_fragments++;
433 			MALLOC(ipqe, struct ipqent *, sizeof (struct ipqent),
434 			    M_IPQ, M_NOWAIT);
435 			if (ipqe == NULL) {
436 				ipstat.ips_rcvmemdrop++;
437 				goto bad;
438 			}
439 			ipqe->ipqe_mff = mff;
440 			ipqe->ipqe_ip = ip;
441 			ip = ip_reass(ipqe, fp);
442 			if (ip == 0)
443 				goto next;
444 			ipstat.ips_reassembled++;
445 			m = dtom(ip);
446 		} else
447 			if (fp)
448 				ip_freef(fp);
449 	} else
450 		ip->ip_len -= hlen;
451 
452 	/*
453 	 * Switch out to protocol's input routine.
454 	 */
455 	ipstat.ips_delivered++;
456 	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
457 	goto next;
458 bad:
459 	m_freem(m);
460 	goto next;
461 }
462 
463 /*
464  * Take incoming datagram fragment and try to
465  * reassemble it into whole datagram.  If a chain for
466  * reassembly of this datagram already exists, then it
467  * is given as fp; otherwise have to make a chain.
468  */
469 struct ip *
470 ip_reass(ipqe, fp)
471 	register struct ipqent *ipqe;
472 	register struct ipq *fp;
473 {
474 	register struct mbuf *m = dtom(ipqe->ipqe_ip);
475 	register struct ipqent *nq, *p, *q;
476 	struct ip *ip;
477 	struct mbuf *t;
478 	int hlen = ipqe->ipqe_ip->ip_hl << 2;
479 	int i, next;
480 
481 	/*
482 	 * Presence of header sizes in mbufs
483 	 * would confuse code below.
484 	 */
485 	m->m_data += hlen;
486 	m->m_len -= hlen;
487 
488 	/*
489 	 * If first fragment to arrive, create a reassembly queue.
490 	 */
491 	if (fp == 0) {
492 		if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
493 			goto dropfrag;
494 		fp = mtod(t, struct ipq *);
495 		LIST_INSERT_HEAD(&ipq, fp, ipq_q);
496 		fp->ipq_ttl = IPFRAGTTL;
497 		fp->ipq_p = ipqe->ipqe_ip->ip_p;
498 		fp->ipq_id = ipqe->ipqe_ip->ip_id;
499 		LIST_INIT(&fp->ipq_fragq);
500 		fp->ipq_src = ipqe->ipqe_ip->ip_src;
501 		fp->ipq_dst = ipqe->ipqe_ip->ip_dst;
502 		p = NULL;
503 		goto insert;
504 	}
505 
506 	/*
507 	 * Find a segment which begins after this one does.
508 	 */
509 	for (p = NULL, q = fp->ipq_fragq.lh_first; q != NULL;
510 	    p = q, q = q->ipqe_q.le_next)
511 		if (q->ipqe_ip->ip_off > ipqe->ipqe_ip->ip_off)
512 			break;
513 
514 	/*
515 	 * If there is a preceding segment, it may provide some of
516 	 * our data already.  If so, drop the data from the incoming
517 	 * segment.  If it provides all of our data, drop us.
518 	 */
519 	if (p != NULL) {
520 		i = p->ipqe_ip->ip_off + p->ipqe_ip->ip_len -
521 		    ipqe->ipqe_ip->ip_off;
522 		if (i > 0) {
523 			if (i >= ipqe->ipqe_ip->ip_len)
524 				goto dropfrag;
525 			m_adj(dtom(ipqe->ipqe_ip), i);
526 			ipqe->ipqe_ip->ip_off += i;
527 			ipqe->ipqe_ip->ip_len -= i;
528 		}
529 	}
530 
531 	/*
532 	 * While we overlap succeeding segments trim them or,
533 	 * if they are completely covered, dequeue them.
534 	 */
535 	for (; q != NULL && ipqe->ipqe_ip->ip_off + ipqe->ipqe_ip->ip_len >
536 	    q->ipqe_ip->ip_off; q = nq) {
537 		i = (ipqe->ipqe_ip->ip_off + ipqe->ipqe_ip->ip_len) -
538 		    q->ipqe_ip->ip_off;
539 		if (i < q->ipqe_ip->ip_len) {
540 			q->ipqe_ip->ip_len -= i;
541 			q->ipqe_ip->ip_off += i;
542 			m_adj(dtom(q->ipqe_ip), i);
543 			break;
544 		}
545 		nq = q->ipqe_q.le_next;
546 		m_freem(dtom(q->ipqe_ip));
547 		LIST_REMOVE(q, ipqe_q);
548 		FREE(q, M_IPQ);
549 	}
550 
551 insert:
552 	/*
553 	 * Stick new segment in its place;
554 	 * check for complete reassembly.
555 	 */
556 	if (p == NULL) {
557 		LIST_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
558 	} else {
559 		LIST_INSERT_AFTER(p, ipqe, ipqe_q);
560 	}
561 	next = 0;
562 	for (p = NULL, q = fp->ipq_fragq.lh_first; q != NULL;
563 	    p = q, q = q->ipqe_q.le_next) {
564 		if (q->ipqe_ip->ip_off != next)
565 			return (0);
566 		next += q->ipqe_ip->ip_len;
567 	}
568 	if (p->ipqe_mff)
569 		return (0);
570 
571 	/*
572 	 * Reassembly is complete; concatenate fragments.
573 	 */
574 	q = fp->ipq_fragq.lh_first;
575 	ip = q->ipqe_ip;
576 	m = dtom(q->ipqe_ip);
577 	t = m->m_next;
578 	m->m_next = 0;
579 	m_cat(m, t);
580 	nq = q->ipqe_q.le_next;
581 	FREE(q, M_IPQ);
582 	for (q = nq; q != NULL; q = nq) {
583 		t = dtom(q->ipqe_ip);
584 		nq = q->ipqe_q.le_next;
585 		FREE(q, M_IPQ);
586 		m_cat(m, t);
587 	}
588 
589 	/*
590 	 * Create header for new ip packet by
591 	 * modifying header of first packet;
592 	 * dequeue and discard fragment reassembly header.
593 	 * Make header visible.
594 	 */
595 	ip->ip_len = next;
596 	ip->ip_src = fp->ipq_src;
597 	ip->ip_dst = fp->ipq_dst;
598 	LIST_REMOVE(fp, ipq_q);
599 	(void) m_free(dtom(fp));
600 	m->m_len += (ip->ip_hl << 2);
601 	m->m_data -= (ip->ip_hl << 2);
602 	/* some debugging cruft by sklower, below, will go away soon */
603 	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
604 		register int plen = 0;
605 		for (t = m; m; m = m->m_next)
606 			plen += m->m_len;
607 		t->m_pkthdr.len = plen;
608 	}
609 	return (ip);
610 
611 dropfrag:
612 	ipstat.ips_fragdropped++;
613 	m_freem(m);
614 	FREE(ipqe, M_IPQ);
615 	return (0);
616 }
617 
618 /*
619  * Free a fragment reassembly header and all
620  * associated datagrams.
621  */
622 void
623 ip_freef(fp)
624 	struct ipq *fp;
625 {
626 	register struct ipqent *q, *p;
627 
628 	for (q = fp->ipq_fragq.lh_first; q != NULL; q = p) {
629 		p = q->ipqe_q.le_next;
630 		m_freem(dtom(q->ipqe_ip));
631 		LIST_REMOVE(q, ipqe_q);
632 		FREE(q, M_IPQ);
633 	}
634 	LIST_REMOVE(fp, ipq_q);
635 	(void) m_free(dtom(fp));
636 }
637 
638 /*
639  * IP timer processing;
640  * if a timer expires on a reassembly
641  * queue, discard it.
642  */
643 void
644 ip_slowtimo()
645 {
646 	register struct ipq *fp, *nfp;
647 	int s = splsoftnet();
648 
649 	for (fp = ipq.lh_first; fp != NULL; fp = nfp) {
650 		nfp = fp->ipq_q.le_next;
651 		if (--fp->ipq_ttl == 0) {
652 			ipstat.ips_fragtimeout++;
653 			ip_freef(fp);
654 		}
655 	}
656 	splx(s);
657 }
658 
659 /*
660  * Drain off all datagram fragments.
661  */
662 void
663 ip_drain()
664 {
665 
666 	while (ipq.lh_first != NULL) {
667 		ipstat.ips_fragdropped++;
668 		ip_freef(ipq.lh_first);
669 	}
670 }
671 
672 /*
673  * Do option processing on a datagram,
674  * possibly discarding it if bad options are encountered,
675  * or forwarding it if source-routed.
676  * Returns 1 if packet has been forwarded/freed,
677  * 0 if the packet should be processed further.
678  */
679 int
680 ip_dooptions(m)
681 	struct mbuf *m;
682 {
683 	register struct ip *ip = mtod(m, struct ip *);
684 	register u_char *cp;
685 	register struct ip_timestamp *ipt;
686 	register struct in_ifaddr *ia;
687 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
688 	struct in_addr *sin, dst;
689 	n_time ntime;
690 
691 	dst = ip->ip_dst;
692 	cp = (u_char *)(ip + 1);
693 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
694 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
695 		opt = cp[IPOPT_OPTVAL];
696 		if (opt == IPOPT_EOL)
697 			break;
698 		if (opt == IPOPT_NOP)
699 			optlen = 1;
700 		else {
701 			optlen = cp[IPOPT_OLEN];
702 			if (optlen <= 0 || optlen > cnt) {
703 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
704 				goto bad;
705 			}
706 		}
707 		switch (opt) {
708 
709 		default:
710 			break;
711 
712 		/*
713 		 * Source routing with record.
714 		 * Find interface with current destination address.
715 		 * If none on this machine then drop if strictly routed,
716 		 * or do nothing if loosely routed.
717 		 * Record interface address and bring up next address
718 		 * component.  If strictly routed make sure next
719 		 * address is on directly accessible net.
720 		 */
721 		case IPOPT_LSRR:
722 		case IPOPT_SSRR:
723 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
724 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
725 				goto bad;
726 			}
727 			ipaddr.sin_addr = ip->ip_dst;
728 			ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)));
729 			if (ia == 0) {
730 				if (opt == IPOPT_SSRR) {
731 					type = ICMP_UNREACH;
732 					code = ICMP_UNREACH_SRCFAIL;
733 					goto bad;
734 				}
735 				/*
736 				 * Loose routing, and not at next destination
737 				 * yet; nothing to do except forward.
738 				 */
739 				break;
740 			}
741 			off--;			/* 0 origin */
742 			if (off > optlen - sizeof(struct in_addr)) {
743 				/*
744 				 * End of source route.  Should be for us.
745 				 */
746 				save_rte(cp, ip->ip_src);
747 				break;
748 			}
749 
750 			if (!ip_dosourceroute) {
751 				char buf[4*sizeof "123"];
752 
753 				strcpy(buf, inet_ntoa(ip->ip_dst));
754 				log(LOG_WARNING,
755 				    "attempted source route from %s to %s\n",
756 				    inet_ntoa(ip->ip_src), buf);
757 				type = ICMP_UNREACH;
758 				code = ICMP_UNREACH_SRCFAIL;
759 				goto bad;
760 			}
761 
762 			/*
763 			 * locate outgoing interface
764 			 */
765 			bcopy((caddr_t)(cp + off), (caddr_t)&ipaddr.sin_addr,
766 			    sizeof(ipaddr.sin_addr));
767 			if (opt == IPOPT_SSRR) {
768 #define	INA	struct in_ifaddr *
769 #define	SA	struct sockaddr *
770 			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
771 				ia = (INA)ifa_ifwithnet((SA)&ipaddr);
772 			} else
773 				ia = ip_rtaddr(ipaddr.sin_addr);
774 			if (ia == 0) {
775 				type = ICMP_UNREACH;
776 				code = ICMP_UNREACH_SRCFAIL;
777 				goto bad;
778 			}
779 			ip->ip_dst = ipaddr.sin_addr;
780 			bcopy((caddr_t)&ia->ia_addr.sin_addr,
781 			    (caddr_t)(cp + off), sizeof(struct in_addr));
782 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
783 			/*
784 			 * Let ip_intr's mcast routing check handle mcast pkts
785 			 */
786 			forward = !IN_MULTICAST(ip->ip_dst.s_addr);
787 			break;
788 
789 		case IPOPT_RR:
790 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
791 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
792 				goto bad;
793 			}
794 
795 			/*
796 			 * If no space remains, ignore.
797 			 */
798 			off--;			/* 0 origin */
799 			if (off > optlen - sizeof(struct in_addr))
800 				break;
801 			bcopy((caddr_t)(&ip->ip_dst), (caddr_t)&ipaddr.sin_addr,
802 			    sizeof(ipaddr.sin_addr));
803 			/*
804 			 * locate outgoing interface; if we're the destination,
805 			 * use the incoming interface (should be same).
806 			 */
807 			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
808 			    (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
809 				type = ICMP_UNREACH;
810 				code = ICMP_UNREACH_HOST;
811 				goto bad;
812 			}
813 			bcopy((caddr_t)&ia->ia_addr.sin_addr,
814 			    (caddr_t)(cp + off), sizeof(struct in_addr));
815 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
816 			break;
817 
818 		case IPOPT_TS:
819 			code = cp - (u_char *)ip;
820 			ipt = (struct ip_timestamp *)cp;
821 			if (ipt->ipt_len < 5)
822 				goto bad;
823 			if (ipt->ipt_ptr > ipt->ipt_len - sizeof (int32_t)) {
824 				if (++ipt->ipt_oflw == 0)
825 					goto bad;
826 				break;
827 			}
828 			sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1);
829 			switch (ipt->ipt_flg) {
830 
831 			case IPOPT_TS_TSONLY:
832 				break;
833 
834 			case IPOPT_TS_TSANDADDR:
835 				if (ipt->ipt_ptr + sizeof(n_time) +
836 				    sizeof(struct in_addr) > ipt->ipt_len)
837 					goto bad;
838 				ipaddr.sin_addr = dst;
839 				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
840 							    m->m_pkthdr.rcvif);
841 				if (ia == 0)
842 					continue;
843 				bcopy((caddr_t)&ia->ia_addr.sin_addr,
844 				    (caddr_t)sin, sizeof(struct in_addr));
845 				ipt->ipt_ptr += sizeof(struct in_addr);
846 				break;
847 
848 			case IPOPT_TS_PRESPEC:
849 				if (ipt->ipt_ptr + sizeof(n_time) +
850 				    sizeof(struct in_addr) > ipt->ipt_len)
851 					goto bad;
852 				bcopy((caddr_t)sin, (caddr_t)&ipaddr.sin_addr,
853 				    sizeof(struct in_addr));
854 				if (ifa_ifwithaddr((SA)&ipaddr) == 0)
855 					continue;
856 				ipt->ipt_ptr += sizeof(struct in_addr);
857 				break;
858 
859 			default:
860 				goto bad;
861 			}
862 			ntime = iptime();
863 			bcopy((caddr_t)&ntime, (caddr_t)cp + ipt->ipt_ptr - 1,
864 			    sizeof(n_time));
865 			ipt->ipt_ptr += sizeof(n_time);
866 		}
867 	}
868 	if (forward) {
869 		ip_forward(m, 1);
870 		return (1);
871 	}
872 	return (0);
873 bad:
874 	ip->ip_len -= ip->ip_hl << 2;   /* XXX icmp_error adds in hdr length */
875 	icmp_error(m, type, code, 0, 0);
876 	ipstat.ips_badoptions++;
877 	return (1);
878 }
879 
880 /*
881  * Given address of next destination (final or next hop),
882  * return internet address info of interface to be used to get there.
883  */
884 struct in_ifaddr *
885 ip_rtaddr(dst)
886 	 struct in_addr dst;
887 {
888 	register struct sockaddr_in *sin;
889 
890 	sin = satosin(&ipforward_rt.ro_dst);
891 
892 	if (ipforward_rt.ro_rt == 0 || dst.s_addr != sin->sin_addr.s_addr) {
893 		if (ipforward_rt.ro_rt) {
894 			RTFREE(ipforward_rt.ro_rt);
895 			ipforward_rt.ro_rt = 0;
896 		}
897 		sin->sin_family = AF_INET;
898 		sin->sin_len = sizeof(*sin);
899 		sin->sin_addr = dst;
900 
901 		rtalloc(&ipforward_rt);
902 	}
903 	if (ipforward_rt.ro_rt == 0)
904 		return ((struct in_ifaddr *)0);
905 	return (ifatoia(ipforward_rt.ro_rt->rt_ifa));
906 }
907 
908 /*
909  * Save incoming source route for use in replies,
910  * to be picked up later by ip_srcroute if the receiver is interested.
911  */
912 void
913 save_rte(option, dst)
914 	u_char *option;
915 	struct in_addr dst;
916 {
917 	unsigned olen;
918 
919 	olen = option[IPOPT_OLEN];
920 #ifdef DIAGNOSTIC
921 	if (ipprintfs)
922 		printf("save_rte: olen %d\n", olen);
923 #endif
924 	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
925 		return;
926 	bcopy((caddr_t)option, (caddr_t)ip_srcrt.srcopt, olen);
927 	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
928 	ip_srcrt.dst = dst;
929 }
930 
931 /*
932  * Retrieve incoming source route for use in replies,
933  * in the same form used by setsockopt.
934  * The first hop is placed before the options, will be removed later.
935  */
936 struct mbuf *
937 ip_srcroute()
938 {
939 	register struct in_addr *p, *q;
940 	register struct mbuf *m;
941 
942 	if (ip_nhops == 0)
943 		return ((struct mbuf *)0);
944 	m = m_get(M_DONTWAIT, MT_SOOPTS);
945 	if (m == 0)
946 		return ((struct mbuf *)0);
947 
948 #define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
949 
950 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
951 	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
952 	    OPTSIZ;
953 #ifdef DIAGNOSTIC
954 	if (ipprintfs)
955 		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
956 #endif
957 
958 	/*
959 	 * First save first hop for return route
960 	 */
961 	p = &ip_srcrt.route[ip_nhops - 1];
962 	*(mtod(m, struct in_addr *)) = *p--;
963 #ifdef DIAGNOSTIC
964 	if (ipprintfs)
965 		printf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
966 #endif
967 
968 	/*
969 	 * Copy option fields and padding (nop) to mbuf.
970 	 */
971 	ip_srcrt.nop = IPOPT_NOP;
972 	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
973 	bcopy((caddr_t)&ip_srcrt.nop,
974 	    mtod(m, caddr_t) + sizeof(struct in_addr), OPTSIZ);
975 	q = (struct in_addr *)(mtod(m, caddr_t) +
976 	    sizeof(struct in_addr) + OPTSIZ);
977 #undef OPTSIZ
978 	/*
979 	 * Record return path as an IP source route,
980 	 * reversing the path (pointers are now aligned).
981 	 */
982 	while (p >= ip_srcrt.route) {
983 #ifdef DIAGNOSTIC
984 		if (ipprintfs)
985 			printf(" %x", ntohl(q->s_addr));
986 #endif
987 		*q++ = *p--;
988 	}
989 	/*
990 	 * Last hop goes to final destination.
991 	 */
992 	*q = ip_srcrt.dst;
993 #ifdef DIAGNOSTIC
994 	if (ipprintfs)
995 		printf(" %x\n", ntohl(q->s_addr));
996 #endif
997 	return (m);
998 }
999 
1000 /*
1001  * Strip out IP options, at higher
1002  * level protocol in the kernel.
1003  * Second argument is buffer to which options
1004  * will be moved, and return value is their length.
1005  * XXX should be deleted; last arg currently ignored.
1006  */
1007 void
1008 ip_stripoptions(m, mopt)
1009 	register struct mbuf *m;
1010 	struct mbuf *mopt;
1011 {
1012 	register int i;
1013 	struct ip *ip = mtod(m, struct ip *);
1014 	register caddr_t opts;
1015 	int olen;
1016 
1017 	olen = (ip->ip_hl<<2) - sizeof (struct ip);
1018 	opts = (caddr_t)(ip + 1);
1019 	i = m->m_len - (sizeof (struct ip) + olen);
1020 	bcopy(opts  + olen, opts, (unsigned)i);
1021 	m->m_len -= olen;
1022 	if (m->m_flags & M_PKTHDR)
1023 		m->m_pkthdr.len -= olen;
1024 	ip->ip_hl = sizeof(struct ip) >> 2;
1025 }
1026 
1027 int inetctlerrmap[PRC_NCMDS] = {
1028 	0,		0,		0,		0,
1029 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1030 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1031 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1032 	0,		0,		0,		0,
1033 	ENOPROTOOPT
1034 };
1035 
1036 /*
1037  * Forward a packet.  If some error occurs return the sender
1038  * an icmp packet.  Note we can't always generate a meaningful
1039  * icmp message because icmp doesn't have a large enough repertoire
1040  * of codes and types.
1041  *
1042  * If not forwarding, just drop the packet.  This could be confusing
1043  * if ipforwarding was zero but some routing protocol was advancing
1044  * us as a gateway to somewhere.  However, we must let the routing
1045  * protocol deal with that.
1046  *
1047  * The srcrt parameter indicates whether the packet is being forwarded
1048  * via a source route.
1049  */
1050 void
1051 ip_forward(m, srcrt)
1052 	struct mbuf *m;
1053 	int srcrt;
1054 {
1055 	register struct ip *ip = mtod(m, struct ip *);
1056 	register struct sockaddr_in *sin;
1057 	register struct rtentry *rt;
1058 	int error, type = 0, code = 0;
1059 	struct mbuf *mcopy;
1060 	n_long dest;
1061 	struct ifnet *destifp;
1062 
1063 	dest = 0;
1064 #ifdef DIAGNOSTIC
1065 	if (ipprintfs)
1066 		printf("forward: src %x dst %x ttl %x\n", ip->ip_src.s_addr,
1067 		    ip->ip_dst.s_addr, ip->ip_ttl);
1068 #endif
1069 	if (m->m_flags & M_BCAST || in_canforward(ip->ip_dst) == 0) {
1070 		ipstat.ips_cantforward++;
1071 		m_freem(m);
1072 		return;
1073 	}
1074 	HTONS(ip->ip_id);
1075 	if (ip->ip_ttl <= IPTTLDEC) {
1076 		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1077 		return;
1078 	}
1079 	ip->ip_ttl -= IPTTLDEC;
1080 
1081 	sin = satosin(&ipforward_rt.ro_dst);
1082 	if ((rt = ipforward_rt.ro_rt) == 0 ||
1083 	    ip->ip_dst.s_addr != sin->sin_addr.s_addr) {
1084 		if (ipforward_rt.ro_rt) {
1085 			RTFREE(ipforward_rt.ro_rt);
1086 			ipforward_rt.ro_rt = 0;
1087 		}
1088 		sin->sin_family = AF_INET;
1089 		sin->sin_len = sizeof(*sin);
1090 		sin->sin_addr = ip->ip_dst;
1091 
1092 		rtalloc(&ipforward_rt);
1093 		if (ipforward_rt.ro_rt == 0) {
1094 			icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1095 			return;
1096 		}
1097 		rt = ipforward_rt.ro_rt;
1098 	}
1099 
1100 	/*
1101 	 * Save at most 68 bytes of the packet in case
1102 	 * we need to generate an ICMP message to the src.
1103 	 */
1104 	mcopy = m_copy(m, 0, imin((int)ip->ip_len, 68));
1105 
1106 	/*
1107 	 * If forwarding packet using same interface that it came in on,
1108 	 * perhaps should send a redirect to sender to shortcut a hop.
1109 	 * Only send redirect if source is sending directly to us,
1110 	 * and if packet was not source routed (or has any options).
1111 	 * Also, don't send redirect if forwarding using a default route
1112 	 * or a route modified by a redirect.
1113 	 */
1114 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1115 	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1116 	    satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1117 	    ipsendredirects && !srcrt) {
1118 		if (rt->rt_ifa &&
1119 		    (ip->ip_src.s_addr & ifatoia(rt->rt_ifa)->ia_subnetmask) ==
1120 		    ifatoia(rt->rt_ifa)->ia_subnet) {
1121 		    if (rt->rt_flags & RTF_GATEWAY)
1122 			dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1123 		    else
1124 			dest = ip->ip_dst.s_addr;
1125 		    /* Router requirements says to only send host redirects */
1126 		    type = ICMP_REDIRECT;
1127 		    code = ICMP_REDIRECT_HOST;
1128 #ifdef DIAGNOSTIC
1129 		    if (ipprintfs)
1130 			printf("redirect (%d) to %x\n", code, (u_int32_t)dest);
1131 #endif
1132 		}
1133 	}
1134 
1135 	error = ip_output(m, (struct mbuf *)0, &ipforward_rt,
1136 	    (IP_FORWARDING | (ip_directedbcast ? IP_ALLOWBROADCAST : 0)), 0);
1137 	if (error)
1138 		ipstat.ips_cantforward++;
1139 	else {
1140 		ipstat.ips_forward++;
1141 		if (type)
1142 			ipstat.ips_redirectsent++;
1143 		else {
1144 			if (mcopy)
1145 				m_freem(mcopy);
1146 			return;
1147 		}
1148 	}
1149 	if (mcopy == NULL)
1150 		return;
1151 	destifp = NULL;
1152 
1153 	switch (error) {
1154 
1155 	case 0:				/* forwarded, but need redirect */
1156 		/* type, code set above */
1157 		break;
1158 
1159 	case ENETUNREACH:		/* shouldn't happen, checked above */
1160 	case EHOSTUNREACH:
1161 	case ENETDOWN:
1162 	case EHOSTDOWN:
1163 	default:
1164 		type = ICMP_UNREACH;
1165 		code = ICMP_UNREACH_HOST;
1166 		break;
1167 
1168 	case EMSGSIZE:
1169 		type = ICMP_UNREACH;
1170 		code = ICMP_UNREACH_NEEDFRAG;
1171 		if (ipforward_rt.ro_rt)
1172 			destifp = ipforward_rt.ro_rt->rt_ifp;
1173 		ipstat.ips_cantfrag++;
1174 		break;
1175 
1176 	case ENOBUFS:
1177 		type = ICMP_SOURCEQUENCH;
1178 		code = 0;
1179 		break;
1180 	}
1181 	icmp_error(mcopy, type, code, dest, destifp);
1182 }
1183 
1184 int
1185 ip_sysctl(name, namelen, oldp, oldlenp, newp, newlen)
1186 	int *name;
1187 	u_int namelen;
1188 	void *oldp;
1189 	size_t *oldlenp;
1190 	void *newp;
1191 	size_t newlen;
1192 {
1193 	/* All sysctl names at this level are terminal. */
1194 	if (namelen != 1)
1195 		return (ENOTDIR);
1196 
1197 	switch (name[0]) {
1198 	case IPCTL_FORWARDING:
1199 		return (sysctl_int(oldp, oldlenp, newp, newlen, &ipforwarding));
1200 	case IPCTL_SENDREDIRECTS:
1201 		return (sysctl_int(oldp, oldlenp, newp, newlen,
1202 			&ipsendredirects));
1203 	case IPCTL_DEFTTL:
1204 		return (sysctl_int(oldp, oldlenp, newp, newlen, &ip_defttl));
1205 #ifdef notyet
1206 	case IPCTL_DEFMTU:
1207 		return (sysctl_int(oldp, oldlenp, newp, newlen, &ip_mtu));
1208 #endif
1209 	case IPCTL_SOURCEROUTE:
1210 		/*
1211 		 * Don't allow this to change in a secure environment.
1212 		 */
1213 		if (newp && securelevel > 0)
1214 			return (EPERM);
1215 		return (sysctl_int(oldp, oldlenp, newp, newlen,
1216 		    &ip_dosourceroute));
1217 	case IPCTL_DIRECTEDBCAST:
1218 		return (sysctl_int(oldp, oldlenp, newp, newlen,
1219 		    &ip_directedbcast));
1220 	case IPCTL_IPPORT_FIRSTAUTO:
1221 		return (sysctl_int(oldp, oldlenp, newp, newlen,
1222 		    &ipport_firstauto));
1223 	case IPCTL_IPPORT_LASTAUTO:
1224 		return (sysctl_int(oldp, oldlenp, newp, newlen,
1225 		    &ipport_lastauto));
1226 	case IPCTL_IPPORT_HIFIRSTAUTO:
1227 		return (sysctl_int(oldp, oldlenp, newp, newlen,
1228 		    &ipport_hifirstauto));
1229 	case IPCTL_IPPORT_HILASTAUTO:
1230 		return (sysctl_int(oldp, oldlenp, newp, newlen,
1231 		    &ipport_hilastauto));
1232 	default:
1233 		return (EOPNOTSUPP);
1234 	}
1235 	/* NOTREACHED */
1236 }
1237