1 /* $OpenBSD: ip6_output.c,v 1.263 2021/12/03 17:18:34 bluhm Exp $ */ 2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1988, 1990, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 62 */ 63 64 #include "pf.h" 65 66 #include <sys/param.h> 67 #include <sys/malloc.h> 68 #include <sys/mbuf.h> 69 #include <sys/errno.h> 70 #include <sys/protosw.h> 71 #include <sys/socket.h> 72 #include <sys/socketvar.h> 73 #include <sys/proc.h> 74 #include <sys/systm.h> 75 76 #include <net/if.h> 77 #include <net/if_var.h> 78 #include <net/if_enc.h> 79 #include <net/route.h> 80 81 #include <netinet/in.h> 82 #include <netinet/ip.h> 83 #include <netinet/in_pcb.h> 84 #include <netinet/udp.h> 85 #include <netinet/tcp.h> 86 87 #include <netinet/ip_var.h> 88 #include <netinet/tcp_timer.h> 89 #include <netinet/tcp_var.h> 90 #include <netinet/udp_var.h> 91 92 #include <netinet6/in6_var.h> 93 #include <netinet/ip6.h> 94 #include <netinet/icmp6.h> 95 #include <netinet6/ip6_var.h> 96 #include <netinet6/nd6.h> 97 #include <netinet6/ip6protosw.h> 98 99 #include <crypto/idgen.h> 100 101 #if NPF > 0 102 #include <net/pfvar.h> 103 #endif 104 105 #ifdef IPSEC 106 #include <netinet/ip_ipsp.h> 107 #include <netinet/ip_ah.h> 108 #include <netinet/ip_esp.h> 109 110 #ifdef ENCDEBUG 111 #define DPRINTF(fmt, args...) \ 112 do { \ 113 if (encdebug) \ 114 printf("%s: " fmt "\n", __func__, ## args); \ 115 } while (0) 116 #else 117 #define DPRINTF(fmt, args...) \ 118 do { } while (0) 119 #endif 120 #endif /* IPSEC */ 121 122 struct ip6_exthdrs { 123 struct mbuf *ip6e_ip6; 124 struct mbuf *ip6e_hbh; 125 struct mbuf *ip6e_dest1; 126 struct mbuf *ip6e_rthdr; 127 struct mbuf *ip6e_dest2; 128 }; 129 130 int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, int, int); 131 int ip6_getpcbopt(struct ip6_pktopts *, int, struct mbuf *); 132 int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, int, int, int); 133 int ip6_setmoptions(int, struct ip6_moptions **, struct mbuf *, unsigned int); 134 int ip6_getmoptions(int, struct ip6_moptions *, struct mbuf *); 135 int ip6_copyexthdr(struct mbuf **, caddr_t, int); 136 int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 137 struct ip6_frag **); 138 int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 139 int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 140 int ip6_getpmtu(struct rtentry *, struct ifnet *, u_long *); 141 int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *); 142 static __inline u_int16_t __attribute__((__unused__)) 143 in6_cksum_phdr(const struct in6_addr *, const struct in6_addr *, 144 u_int32_t, u_int32_t); 145 void in6_delayed_cksum(struct mbuf *, u_int8_t); 146 147 int ip6_output_ipsec_pmtu_update(struct tdb *, struct route_in6 *, 148 struct in6_addr *, int, int, int); 149 150 /* Context for non-repeating IDs */ 151 struct idgen32_ctx ip6_id_ctx; 152 153 /* 154 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 155 * header (with pri, len, nxt, hlim, src, dst). 156 * This function may modify ver and hlim only. 157 * The mbuf chain containing the packet will be freed. 158 * The mbuf opt, if present, will not be freed. 159 * 160 * type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and 161 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 162 * which is rt_mtu. 163 */ 164 int 165 ip6_output(struct mbuf *m, struct ip6_pktopts *opt, struct route_in6 *ro, 166 int flags, struct ip6_moptions *im6o, struct inpcb *inp) 167 { 168 struct ip6_hdr *ip6; 169 struct ifnet *ifp = NULL; 170 struct mbuf_list fml; 171 int hlen, tlen; 172 struct route_in6 ip6route; 173 struct rtentry *rt = NULL; 174 struct sockaddr_in6 *dst, dstsock; 175 int error = 0; 176 u_long mtu; 177 int dontfrag; 178 u_int16_t src_scope, dst_scope; 179 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 180 struct ip6_exthdrs exthdrs; 181 struct in6_addr finaldst; 182 struct route_in6 *ro_pmtu = NULL; 183 int hdrsplit = 0; 184 u_int8_t sproto = 0; 185 u_char nextproto; 186 #ifdef IPSEC 187 struct tdb *tdb = NULL; 188 #endif /* IPSEC */ 189 190 #ifdef IPSEC 191 if (inp && (inp->inp_flags & INP_IPV6) == 0) 192 panic("%s: IPv4 pcb is passed", __func__); 193 #endif /* IPSEC */ 194 195 ip6 = mtod(m, struct ip6_hdr *); 196 finaldst = ip6->ip6_dst; 197 198 #define MAKE_EXTHDR(hp, mp) \ 199 do { \ 200 if (hp) { \ 201 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 202 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 203 ((eh)->ip6e_len + 1) << 3); \ 204 if (error) \ 205 goto freehdrs; \ 206 } \ 207 } while (0) 208 209 bzero(&exthdrs, sizeof(exthdrs)); 210 211 if (opt) { 212 /* Hop-by-Hop options header */ 213 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 214 /* Destination options header(1st part) */ 215 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 216 /* Routing header */ 217 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 218 /* Destination options header(2nd part) */ 219 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 220 } 221 222 #ifdef IPSEC 223 if (ipsec_in_use || inp != NULL) { 224 error = ip6_output_ipsec_lookup(m, inp, &tdb); 225 if (error) { 226 /* 227 * -EINVAL is used to indicate that the packet should 228 * be silently dropped, typically because we've asked 229 * key management for an SA. 230 */ 231 if (error == -EINVAL) /* Should silently drop packet */ 232 error = 0; 233 234 goto freehdrs; 235 } 236 } 237 #endif /* IPSEC */ 238 239 /* 240 * Calculate the total length of the extension header chain. 241 * Keep the length of the unfragmentable part for fragmentation. 242 */ 243 optlen = 0; 244 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len; 245 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len; 246 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len; 247 unfragpartlen = optlen + sizeof(struct ip6_hdr); 248 /* NOTE: we don't add AH/ESP length here. do that later. */ 249 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len; 250 251 /* 252 * If we need IPsec, or there is at least one extension header, 253 * separate IP6 header from the payload. 254 */ 255 if ((sproto || optlen) && !hdrsplit) { 256 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 257 m = NULL; 258 goto freehdrs; 259 } 260 m = exthdrs.ip6e_ip6; 261 hdrsplit++; 262 } 263 264 /* adjust pointer */ 265 ip6 = mtod(m, struct ip6_hdr *); 266 267 /* adjust mbuf packet header length */ 268 m->m_pkthdr.len += optlen; 269 plen = m->m_pkthdr.len - sizeof(*ip6); 270 271 /* If this is a jumbo payload, insert a jumbo payload option. */ 272 if (plen > IPV6_MAXPACKET) { 273 if (!hdrsplit) { 274 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 275 m = NULL; 276 goto freehdrs; 277 } 278 m = exthdrs.ip6e_ip6; 279 hdrsplit++; 280 } 281 /* adjust pointer */ 282 ip6 = mtod(m, struct ip6_hdr *); 283 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 284 goto freehdrs; 285 ip6->ip6_plen = 0; 286 } else 287 ip6->ip6_plen = htons(plen); 288 289 /* 290 * Concatenate headers and fill in next header fields. 291 * Here we have, on "m" 292 * IPv6 payload 293 * and we insert headers accordingly. Finally, we should be getting: 294 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 295 * 296 * during the header composing process, "m" points to IPv6 header. 297 * "mprev" points to an extension header prior to esp. 298 */ 299 { 300 u_char *nexthdrp = &ip6->ip6_nxt; 301 struct mbuf *mprev = m; 302 303 /* 304 * we treat dest2 specially. this makes IPsec processing 305 * much easier. the goal here is to make mprev point the 306 * mbuf prior to dest2. 307 * 308 * result: IPv6 dest2 payload 309 * m and mprev will point to IPv6 header. 310 */ 311 if (exthdrs.ip6e_dest2) { 312 if (!hdrsplit) 313 panic("%s: assumption failed: hdr not split", 314 __func__); 315 exthdrs.ip6e_dest2->m_next = m->m_next; 316 m->m_next = exthdrs.ip6e_dest2; 317 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 318 ip6->ip6_nxt = IPPROTO_DSTOPTS; 319 } 320 321 #define MAKE_CHAIN(m, mp, p, i)\ 322 do {\ 323 if (m) {\ 324 if (!hdrsplit) \ 325 panic("assumption failed: hdr not split"); \ 326 *mtod((m), u_char *) = *(p);\ 327 *(p) = (i);\ 328 p = mtod((m), u_char *);\ 329 (m)->m_next = (mp)->m_next;\ 330 (mp)->m_next = (m);\ 331 (mp) = (m);\ 332 }\ 333 } while (0) 334 /* 335 * result: IPv6 hbh dest1 rthdr dest2 payload 336 * m will point to IPv6 header. mprev will point to the 337 * extension header prior to dest2 (rthdr in the above case). 338 */ 339 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 340 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 341 IPPROTO_DSTOPTS); 342 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 343 IPPROTO_ROUTING); 344 } 345 346 /* 347 * If there is a routing header, replace the destination address field 348 * with the first hop of the routing header. 349 */ 350 if (exthdrs.ip6e_rthdr) { 351 struct ip6_rthdr *rh; 352 struct ip6_rthdr0 *rh0; 353 struct in6_addr *addr; 354 355 rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr, 356 struct ip6_rthdr *)); 357 switch (rh->ip6r_type) { 358 case IPV6_RTHDR_TYPE_0: 359 rh0 = (struct ip6_rthdr0 *)rh; 360 addr = (struct in6_addr *)(rh0 + 1); 361 ip6->ip6_dst = addr[0]; 362 bcopy(&addr[1], &addr[0], 363 sizeof(struct in6_addr) * (rh0->ip6r0_segleft - 1)); 364 addr[rh0->ip6r0_segleft - 1] = finaldst; 365 break; 366 default: /* is it possible? */ 367 error = EINVAL; 368 goto bad; 369 } 370 } 371 372 /* Source address validation */ 373 if (!(flags & IPV6_UNSPECSRC) && 374 IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) { 375 /* 376 * XXX: we can probably assume validation in the caller, but 377 * we explicitly check the address here for safety. 378 */ 379 error = EOPNOTSUPP; 380 ip6stat_inc(ip6s_badscope); 381 goto bad; 382 } 383 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 384 error = EOPNOTSUPP; 385 ip6stat_inc(ip6s_badscope); 386 goto bad; 387 } 388 389 ip6stat_inc(ip6s_localout); 390 391 /* 392 * Route packet. 393 */ 394 #if NPF > 0 395 reroute: 396 #endif 397 398 /* initialize cached route */ 399 if (ro == NULL) { 400 ro = &ip6route; 401 bzero((caddr_t)ro, sizeof(*ro)); 402 } 403 ro_pmtu = ro; 404 if (opt && opt->ip6po_rthdr) 405 ro = &opt->ip6po_route; 406 dst = &ro->ro_dst; 407 408 /* 409 * if specified, try to fill in the traffic class field. 410 * do not override if a non-zero value is already set. 411 * we check the diffserv field and the ecn field separately. 412 */ 413 if (opt && opt->ip6po_tclass >= 0) { 414 int mask = 0; 415 416 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 417 mask |= 0xfc; 418 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 419 mask |= 0x03; 420 if (mask != 0) 421 ip6->ip6_flow |= 422 htonl((opt->ip6po_tclass & mask) << 20); 423 } 424 425 /* fill in or override the hop limit field, if necessary. */ 426 if (opt && opt->ip6po_hlim != -1) 427 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 428 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 429 if (im6o != NULL) 430 ip6->ip6_hlim = im6o->im6o_hlim; 431 else 432 ip6->ip6_hlim = ip6_defmcasthlim; 433 } 434 435 #ifdef IPSEC 436 if (tdb != NULL) { 437 /* 438 * XXX what should we do if ip6_hlim == 0 and the 439 * packet gets tunneled? 440 */ 441 /* 442 * if we are source-routing, do not attempt to tunnel the 443 * packet just because ip6_dst is different from what tdb has. 444 * XXX 445 */ 446 error = ip6_output_ipsec_send(tdb, m, ro, 447 exthdrs.ip6e_rthdr ? 1 : 0, 0); 448 goto done; 449 } 450 #endif /* IPSEC */ 451 452 bzero(&dstsock, sizeof(dstsock)); 453 dstsock.sin6_family = AF_INET6; 454 dstsock.sin6_addr = ip6->ip6_dst; 455 dstsock.sin6_len = sizeof(dstsock); 456 ro->ro_tableid = m->m_pkthdr.ph_rtableid; 457 458 if (IN6_IS_ADDR_MULTICAST(&dstsock.sin6_addr)) { 459 struct in6_pktinfo *pi = NULL; 460 461 /* 462 * If the caller specify the outgoing interface 463 * explicitly, use it. 464 */ 465 if (opt != NULL && (pi = opt->ip6po_pktinfo) != NULL) 466 ifp = if_get(pi->ipi6_ifindex); 467 468 if (ifp == NULL && im6o != NULL) 469 ifp = if_get(im6o->im6o_ifidx); 470 } 471 472 if (ifp == NULL) { 473 rt = in6_selectroute(&dstsock, opt, ro, ro->ro_tableid); 474 if (rt == NULL) { 475 ip6stat_inc(ip6s_noroute); 476 error = EHOSTUNREACH; 477 goto bad; 478 } 479 if (ISSET(rt->rt_flags, RTF_LOCAL)) 480 ifp = if_get(rtable_loindex(m->m_pkthdr.ph_rtableid)); 481 else 482 ifp = if_get(rt->rt_ifidx); 483 /* 484 * We aren't using rtisvalid() here because the UP/DOWN state 485 * machine is broken with some Ethernet drivers like em(4). 486 * As a result we might try to use an invalid cached route 487 * entry while an interface is being detached. 488 */ 489 if (ifp == NULL) { 490 ip6stat_inc(ip6s_noroute); 491 error = EHOSTUNREACH; 492 goto bad; 493 } 494 } else { 495 *dst = dstsock; 496 } 497 498 if (rt && (rt->rt_flags & RTF_GATEWAY) && 499 !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) 500 dst = satosin6(rt->rt_gateway); 501 502 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 503 /* Unicast */ 504 505 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 506 } else { 507 /* Multicast */ 508 509 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 510 511 /* 512 * Confirm that the outgoing interface supports multicast. 513 */ 514 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 515 ip6stat_inc(ip6s_noroute); 516 error = ENETUNREACH; 517 goto bad; 518 } 519 520 if ((im6o == NULL || im6o->im6o_loop) && 521 in6_hasmulti(&ip6->ip6_dst, ifp)) { 522 /* 523 * If we belong to the destination multicast group 524 * on the outgoing interface, and the caller did not 525 * forbid loopback, loop back a copy. 526 * Can't defer TCP/UDP checksumming, do the 527 * computation now. 528 */ 529 in6_proto_cksum_out(m, NULL); 530 ip6_mloopback(ifp, m, dst); 531 } 532 #ifdef MROUTING 533 else { 534 /* 535 * If we are acting as a multicast router, perform 536 * multicast forwarding as if the packet had just 537 * arrived on the interface to which we are about 538 * to send. The multicast forwarding function 539 * recursively calls this function, using the 540 * IPV6_FORWARDING flag to prevent infinite recursion. 541 * 542 * Multicasts that are looped back by ip6_mloopback(), 543 * above, will be forwarded by the ip6_input() routine, 544 * if necessary. 545 */ 546 if (ip6_mforwarding && ip6_mrouter[ifp->if_rdomain] && 547 (flags & IPV6_FORWARDING) == 0) { 548 if (ip6_mforward(ip6, ifp, m) != 0) { 549 m_freem(m); 550 goto done; 551 } 552 } 553 } 554 #endif 555 /* 556 * Multicasts with a hoplimit of zero may be looped back, 557 * above, but must not be transmitted on a network. 558 * Also, multicasts addressed to the loopback interface 559 * are not sent -- the above call to ip6_mloopback() will 560 * loop back a copy if this host actually belongs to the 561 * destination group on the loopback interface. 562 */ 563 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 564 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 565 m_freem(m); 566 goto done; 567 } 568 } 569 570 /* 571 * If this packet is going through a loopback interface we won't 572 * be able to restore its scope ID using the interface index. 573 */ 574 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) { 575 if (ifp->if_flags & IFF_LOOPBACK) 576 src_scope = ip6->ip6_src.s6_addr16[1]; 577 ip6->ip6_src.s6_addr16[1] = 0; 578 } 579 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) { 580 if (ifp->if_flags & IFF_LOOPBACK) 581 dst_scope = ip6->ip6_dst.s6_addr16[1]; 582 ip6->ip6_dst.s6_addr16[1] = 0; 583 } 584 585 /* Determine path MTU. */ 586 if ((error = ip6_getpmtu(ro_pmtu->ro_rt, ifp, &mtu)) != 0) 587 goto bad; 588 589 /* 590 * The caller of this function may specify to use the minimum MTU 591 * in some cases. 592 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 593 * setting. The logic is a bit complicated; by default, unicast 594 * packets will follow path MTU while multicast packets will be sent at 595 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 596 * including unicast ones will be sent at the minimum MTU. Multicast 597 * packets will always be sent at the minimum MTU unless 598 * IP6PO_MINMTU_DISABLE is explicitly specified. 599 * See RFC 3542 for more details. 600 */ 601 if (mtu > IPV6_MMTU) { 602 if ((flags & IPV6_MINMTU)) 603 mtu = IPV6_MMTU; 604 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 605 mtu = IPV6_MMTU; 606 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && (opt == NULL || 607 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 608 mtu = IPV6_MMTU; 609 } 610 } 611 612 /* 613 * If the outgoing packet contains a hop-by-hop options header, 614 * it must be examined and processed even by the source node. 615 * (RFC 2460, section 4.) 616 */ 617 if (exthdrs.ip6e_hbh) { 618 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 619 u_int32_t rtalert; /* returned value is ignored */ 620 u_int32_t plen = 0; /* no more than 1 jumbo payload option! */ 621 622 m->m_pkthdr.ph_ifidx = ifp->if_index; 623 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 624 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 625 &rtalert, &plen) < 0) { 626 /* m was already freed at this point */ 627 error = EINVAL;/* better error? */ 628 goto done; 629 } 630 m->m_pkthdr.ph_ifidx = 0; 631 } 632 633 #if NPF > 0 634 if (pf_test(AF_INET6, PF_OUT, ifp, &m) != PF_PASS) { 635 error = EACCES; 636 m_freem(m); 637 goto done; 638 } 639 if (m == NULL) 640 goto done; 641 ip6 = mtod(m, struct ip6_hdr *); 642 if ((m->m_pkthdr.pf.flags & (PF_TAG_REROUTE | PF_TAG_GENERATED)) == 643 (PF_TAG_REROUTE | PF_TAG_GENERATED)) { 644 /* already rerun the route lookup, go on */ 645 m->m_pkthdr.pf.flags &= ~(PF_TAG_GENERATED | PF_TAG_REROUTE); 646 } else if (m->m_pkthdr.pf.flags & PF_TAG_REROUTE) { 647 /* tag as generated to skip over pf_test on rerun */ 648 m->m_pkthdr.pf.flags |= PF_TAG_GENERATED; 649 finaldst = ip6->ip6_dst; 650 ro = NULL; 651 if_put(ifp); /* drop reference since destination changed */ 652 ifp = NULL; 653 goto reroute; 654 } 655 #endif 656 657 /* 658 * If the packet is not going on the wire it can be destinated 659 * to any local address. In this case do not clear its scopes 660 * to let ip6_input() find a matching local route. 661 */ 662 if (ifp->if_flags & IFF_LOOPBACK) { 663 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) 664 ip6->ip6_src.s6_addr16[1] = src_scope; 665 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) 666 ip6->ip6_dst.s6_addr16[1] = dst_scope; 667 } 668 669 in6_proto_cksum_out(m, ifp); 670 671 /* 672 * Send the packet to the outgoing interface. 673 * If necessary, do IPv6 fragmentation before sending. 674 * 675 * the logic here is rather complex: 676 * 1: normal case (dontfrag == 0) 677 * 1-a: send as is if tlen <= path mtu 678 * 1-b: fragment if tlen > path mtu 679 * 680 * 2: if user asks us not to fragment (dontfrag == 1) 681 * 2-a: send as is if tlen <= interface mtu 682 * 2-b: error if tlen > interface mtu 683 */ 684 tlen = m->m_pkthdr.len; 685 686 if (ISSET(m->m_pkthdr.csum_flags, M_IPV6_DF_OUT)) { 687 CLR(m->m_pkthdr.csum_flags, M_IPV6_DF_OUT); 688 dontfrag = 1; 689 } else if (opt && ISSET(opt->ip6po_flags, IP6PO_DONTFRAG)) 690 dontfrag = 1; 691 else 692 dontfrag = 0; 693 if (dontfrag && tlen > ifp->if_mtu) { /* case 2-b */ 694 #ifdef IPSEC 695 if (ip_mtudisc) 696 ipsec_adjust_mtu(m, mtu); 697 #endif 698 error = EMSGSIZE; 699 goto bad; 700 } 701 702 /* 703 * transmit packet without fragmentation 704 */ 705 if (dontfrag || (tlen <= mtu)) { /* case 1-a and 2-a */ 706 error = ifp->if_output(ifp, m, sin6tosa(dst), ro->ro_rt); 707 goto done; 708 } 709 710 /* 711 * try to fragment the packet. case 1-b 712 */ 713 if (mtu < IPV6_MMTU) { 714 /* path MTU cannot be less than IPV6_MMTU */ 715 error = EMSGSIZE; 716 goto bad; 717 } else if (ip6->ip6_plen == 0) { 718 /* jumbo payload cannot be fragmented */ 719 error = EMSGSIZE; 720 goto bad; 721 } 722 723 /* 724 * Too large for the destination or interface; 725 * fragment if possible. 726 * Must be able to put at least 8 bytes per fragment. 727 */ 728 hlen = unfragpartlen; 729 if (mtu > IPV6_MAXPACKET) 730 mtu = IPV6_MAXPACKET; 731 732 /* 733 * Change the next header field of the last header in the 734 * unfragmentable part. 735 */ 736 if (exthdrs.ip6e_rthdr) { 737 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 738 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 739 } else if (exthdrs.ip6e_dest1) { 740 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 741 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 742 } else if (exthdrs.ip6e_hbh) { 743 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 744 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 745 } else { 746 nextproto = ip6->ip6_nxt; 747 ip6->ip6_nxt = IPPROTO_FRAGMENT; 748 } 749 750 error = ip6_fragment(m, &fml, hlen, nextproto, mtu); 751 if (error) 752 goto done; 753 754 while ((m = ml_dequeue(&fml)) != NULL) { 755 error = ifp->if_output(ifp, m, sin6tosa(dst), ro->ro_rt); 756 if (error) 757 break; 758 } 759 if (error) 760 ml_purge(&fml); 761 else 762 ip6stat_inc(ip6s_fragmented); 763 764 done: 765 if (ro == &ip6route && ro->ro_rt) { 766 rtfree(ro->ro_rt); 767 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) { 768 rtfree(ro_pmtu->ro_rt); 769 } 770 if_put(ifp); 771 #ifdef IPSEC 772 tdb_unref(tdb); 773 #endif /* IPSEC */ 774 return (error); 775 776 freehdrs: 777 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 778 m_freem(exthdrs.ip6e_dest1); 779 m_freem(exthdrs.ip6e_rthdr); 780 m_freem(exthdrs.ip6e_dest2); 781 /* FALLTHROUGH */ 782 bad: 783 m_freem(m); 784 goto done; 785 } 786 787 int 788 ip6_fragment(struct mbuf *m0, struct mbuf_list *fml, int hlen, 789 u_char nextproto, u_long mtu) 790 { 791 struct mbuf *m, *m_frgpart; 792 struct ip6_hdr *mhip6; 793 struct ip6_frag *ip6f; 794 u_int32_t id; 795 int tlen, len, off; 796 int error; 797 798 ml_init(fml); 799 800 tlen = m0->m_pkthdr.len; 801 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 802 if (len < 8) { 803 error = EMSGSIZE; 804 goto bad; 805 } 806 807 id = htonl(ip6_randomid()); 808 809 /* 810 * Loop through length of segment after first fragment, 811 * make new header and copy data of each part and link onto chain. 812 */ 813 for (off = hlen; off < tlen; off += len) { 814 struct mbuf *mlast; 815 816 MGETHDR(m, M_DONTWAIT, MT_HEADER); 817 if (m == NULL) { 818 error = ENOBUFS; 819 goto bad; 820 } 821 ml_enqueue(fml, m); 822 if ((error = m_dup_pkthdr(m, m0, M_DONTWAIT)) != 0) 823 goto bad; 824 m->m_data += max_linkhdr; 825 mhip6 = mtod(m, struct ip6_hdr *); 826 *mhip6 = *mtod(m0, struct ip6_hdr *); 827 m->m_len = sizeof(*mhip6); 828 if ((error = ip6_insertfraghdr(m0, m, hlen, &ip6f)) != 0) 829 goto bad; 830 ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7)); 831 if (off + len >= tlen) 832 len = tlen - off; 833 else 834 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 835 mhip6->ip6_plen = htons((u_int16_t)(len + hlen + 836 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 837 if ((m_frgpart = m_copym(m0, off, len, M_DONTWAIT)) == NULL) { 838 error = ENOBUFS; 839 goto bad; 840 } 841 for (mlast = m; mlast->m_next; mlast = mlast->m_next) 842 ; 843 mlast->m_next = m_frgpart; 844 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 845 ip6f->ip6f_reserved = 0; 846 ip6f->ip6f_ident = id; 847 ip6f->ip6f_nxt = nextproto; 848 } 849 850 ip6stat_add(ip6s_ofragments, ml_len(fml)); 851 m_freem(m0); 852 return (0); 853 854 bad: 855 ip6stat_inc(ip6s_odropped); 856 ml_purge(fml); 857 m_freem(m0); 858 return (error); 859 } 860 861 int 862 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 863 { 864 struct mbuf *m; 865 866 if (hlen > MCLBYTES) 867 return (ENOBUFS); /* XXX */ 868 869 MGET(m, M_DONTWAIT, MT_DATA); 870 if (!m) 871 return (ENOBUFS); 872 873 if (hlen > MLEN) { 874 MCLGET(m, M_DONTWAIT); 875 if ((m->m_flags & M_EXT) == 0) { 876 m_free(m); 877 return (ENOBUFS); 878 } 879 } 880 m->m_len = hlen; 881 if (hdr) 882 memcpy(mtod(m, caddr_t), hdr, hlen); 883 884 *mp = m; 885 return (0); 886 } 887 888 /* 889 * Insert jumbo payload option. 890 */ 891 int 892 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 893 { 894 struct mbuf *mopt; 895 u_int8_t *optbuf; 896 u_int32_t v; 897 898 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 899 900 /* 901 * If there is no hop-by-hop options header, allocate new one. 902 * If there is one but it doesn't have enough space to store the 903 * jumbo payload option, allocate a cluster to store the whole options. 904 * Otherwise, use it to store the options. 905 */ 906 if (exthdrs->ip6e_hbh == 0) { 907 MGET(mopt, M_DONTWAIT, MT_DATA); 908 if (mopt == NULL) 909 return (ENOBUFS); 910 mopt->m_len = JUMBOOPTLEN; 911 optbuf = mtod(mopt, u_int8_t *); 912 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 913 exthdrs->ip6e_hbh = mopt; 914 } else { 915 struct ip6_hbh *hbh; 916 917 mopt = exthdrs->ip6e_hbh; 918 if (m_trailingspace(mopt) < JUMBOOPTLEN) { 919 /* 920 * XXX assumption: 921 * - exthdrs->ip6e_hbh is not referenced from places 922 * other than exthdrs. 923 * - exthdrs->ip6e_hbh is not an mbuf chain. 924 */ 925 int oldoptlen = mopt->m_len; 926 struct mbuf *n; 927 928 /* 929 * XXX: give up if the whole (new) hbh header does 930 * not fit even in an mbuf cluster. 931 */ 932 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 933 return (ENOBUFS); 934 935 /* 936 * As a consequence, we must always prepare a cluster 937 * at this point. 938 */ 939 MGET(n, M_DONTWAIT, MT_DATA); 940 if (n) { 941 MCLGET(n, M_DONTWAIT); 942 if ((n->m_flags & M_EXT) == 0) { 943 m_freem(n); 944 n = NULL; 945 } 946 } 947 if (!n) 948 return (ENOBUFS); 949 n->m_len = oldoptlen + JUMBOOPTLEN; 950 memcpy(mtod(n, caddr_t), mtod(mopt, caddr_t), 951 oldoptlen); 952 optbuf = mtod(n, u_int8_t *) + oldoptlen; 953 m_freem(mopt); 954 mopt = exthdrs->ip6e_hbh = n; 955 } else { 956 optbuf = mtod(mopt, u_int8_t *) + mopt->m_len; 957 mopt->m_len += JUMBOOPTLEN; 958 } 959 optbuf[0] = IP6OPT_PADN; 960 optbuf[1] = 0; 961 962 /* 963 * Adjust the header length according to the pad and 964 * the jumbo payload option. 965 */ 966 hbh = mtod(mopt, struct ip6_hbh *); 967 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 968 } 969 970 /* fill in the option. */ 971 optbuf[2] = IP6OPT_JUMBO; 972 optbuf[3] = 4; 973 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 974 memcpy(&optbuf[4], &v, sizeof(u_int32_t)); 975 976 /* finally, adjust the packet header length */ 977 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 978 979 return (0); 980 #undef JUMBOOPTLEN 981 } 982 983 /* 984 * Insert fragment header and copy unfragmentable header portions. 985 */ 986 int 987 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 988 struct ip6_frag **frghdrp) 989 { 990 struct mbuf *n, *mlast; 991 992 if (hlen > sizeof(struct ip6_hdr)) { 993 n = m_copym(m0, sizeof(struct ip6_hdr), 994 hlen - sizeof(struct ip6_hdr), M_DONTWAIT); 995 if (n == NULL) 996 return (ENOBUFS); 997 m->m_next = n; 998 } else 999 n = m; 1000 1001 /* Search for the last mbuf of unfragmentable part. */ 1002 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1003 ; 1004 1005 if ((mlast->m_flags & M_EXT) == 0 && 1006 m_trailingspace(mlast) >= sizeof(struct ip6_frag)) { 1007 /* use the trailing space of the last mbuf for fragment hdr */ 1008 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1009 mlast->m_len); 1010 mlast->m_len += sizeof(struct ip6_frag); 1011 m->m_pkthdr.len += sizeof(struct ip6_frag); 1012 } else { 1013 /* allocate a new mbuf for the fragment header */ 1014 struct mbuf *mfrg; 1015 1016 MGET(mfrg, M_DONTWAIT, MT_DATA); 1017 if (mfrg == NULL) 1018 return (ENOBUFS); 1019 mfrg->m_len = sizeof(struct ip6_frag); 1020 *frghdrp = mtod(mfrg, struct ip6_frag *); 1021 mlast->m_next = mfrg; 1022 } 1023 1024 return (0); 1025 } 1026 1027 int 1028 ip6_getpmtu(struct rtentry *rt, struct ifnet *ifp, u_long *mtup) 1029 { 1030 u_int32_t mtu = 0; 1031 int error = 0; 1032 1033 if (rt != NULL) { 1034 mtu = rt->rt_mtu; 1035 if (mtu == 0) 1036 mtu = ifp->if_mtu; 1037 else if (mtu < IPV6_MMTU) { 1038 /* RFC8021 IPv6 Atomic Fragments Considered Harmful */ 1039 mtu = IPV6_MMTU; 1040 } else if (mtu > ifp->if_mtu) { 1041 /* 1042 * The MTU on the route is larger than the MTU on 1043 * the interface! This shouldn't happen, unless the 1044 * MTU of the interface has been changed after the 1045 * interface was brought up. Change the MTU in the 1046 * route to match the interface MTU (as long as the 1047 * field isn't locked). 1048 */ 1049 mtu = ifp->if_mtu; 1050 if (!(rt->rt_locks & RTV_MTU)) 1051 rt->rt_mtu = mtu; 1052 } 1053 } else { 1054 mtu = ifp->if_mtu; 1055 } 1056 1057 *mtup = mtu; 1058 return (error); 1059 } 1060 1061 /* 1062 * IP6 socket option processing. 1063 */ 1064 int 1065 ip6_ctloutput(int op, struct socket *so, int level, int optname, 1066 struct mbuf *m) 1067 { 1068 int privileged, optdatalen, uproto; 1069 void *optdata; 1070 struct inpcb *inp = sotoinpcb(so); 1071 int error, optval; 1072 struct proc *p = curproc; /* For IPsec and rdomain */ 1073 u_int rtableid, rtid = 0; 1074 1075 error = optval = 0; 1076 1077 privileged = (inp->inp_socket->so_state & SS_PRIV); 1078 uproto = (int)so->so_proto->pr_protocol; 1079 1080 if (level != IPPROTO_IPV6) 1081 return (EINVAL); 1082 1083 rtableid = p->p_p->ps_rtableid; 1084 1085 switch (op) { 1086 case PRCO_SETOPT: 1087 switch (optname) { 1088 /* 1089 * Use of some Hop-by-Hop options or some 1090 * Destination options, might require special 1091 * privilege. That is, normal applications 1092 * (without special privilege) might be forbidden 1093 * from setting certain options in outgoing packets, 1094 * and might never see certain options in received 1095 * packets. [RFC 2292 Section 6] 1096 * KAME specific note: 1097 * KAME prevents non-privileged users from sending or 1098 * receiving ANY hbh/dst options in order to avoid 1099 * overhead of parsing options in the kernel. 1100 */ 1101 case IPV6_RECVHOPOPTS: 1102 case IPV6_RECVDSTOPTS: 1103 if (!privileged) { 1104 error = EPERM; 1105 break; 1106 } 1107 /* FALLTHROUGH */ 1108 case IPV6_UNICAST_HOPS: 1109 case IPV6_MINHOPCOUNT: 1110 case IPV6_HOPLIMIT: 1111 1112 case IPV6_RECVPKTINFO: 1113 case IPV6_RECVHOPLIMIT: 1114 case IPV6_RECVRTHDR: 1115 case IPV6_RECVPATHMTU: 1116 case IPV6_RECVTCLASS: 1117 case IPV6_V6ONLY: 1118 case IPV6_AUTOFLOWLABEL: 1119 case IPV6_RECVDSTPORT: 1120 if (m == NULL || m->m_len != sizeof(int)) { 1121 error = EINVAL; 1122 break; 1123 } 1124 optval = *mtod(m, int *); 1125 switch (optname) { 1126 1127 case IPV6_UNICAST_HOPS: 1128 if (optval < -1 || optval >= 256) 1129 error = EINVAL; 1130 else { 1131 /* -1 = kernel default */ 1132 inp->inp_hops = optval; 1133 } 1134 break; 1135 1136 case IPV6_MINHOPCOUNT: 1137 if (optval < 0 || optval > 255) 1138 error = EINVAL; 1139 else 1140 inp->inp_ip6_minhlim = optval; 1141 break; 1142 1143 #define OPTSET(bit) \ 1144 do { \ 1145 if (optval) \ 1146 inp->inp_flags |= (bit); \ 1147 else \ 1148 inp->inp_flags &= ~(bit); \ 1149 } while (/*CONSTCOND*/ 0) 1150 #define OPTBIT(bit) (inp->inp_flags & (bit) ? 1 : 0) 1151 1152 case IPV6_RECVPKTINFO: 1153 OPTSET(IN6P_PKTINFO); 1154 break; 1155 1156 case IPV6_HOPLIMIT: 1157 { 1158 struct ip6_pktopts **optp; 1159 1160 optp = &inp->inp_outputopts6; 1161 error = ip6_pcbopt(IPV6_HOPLIMIT, 1162 (u_char *)&optval, sizeof(optval), optp, 1163 privileged, uproto); 1164 break; 1165 } 1166 1167 case IPV6_RECVHOPLIMIT: 1168 OPTSET(IN6P_HOPLIMIT); 1169 break; 1170 1171 case IPV6_RECVHOPOPTS: 1172 OPTSET(IN6P_HOPOPTS); 1173 break; 1174 1175 case IPV6_RECVDSTOPTS: 1176 OPTSET(IN6P_DSTOPTS); 1177 break; 1178 1179 case IPV6_RECVRTHDR: 1180 OPTSET(IN6P_RTHDR); 1181 break; 1182 1183 case IPV6_RECVPATHMTU: 1184 /* 1185 * We ignore this option for TCP 1186 * sockets. 1187 * (RFC3542 leaves this case 1188 * unspecified.) 1189 */ 1190 if (uproto != IPPROTO_TCP) 1191 OPTSET(IN6P_MTU); 1192 break; 1193 1194 case IPV6_V6ONLY: 1195 /* 1196 * make setsockopt(IPV6_V6ONLY) 1197 * available only prior to bind(2). 1198 * see ipng mailing list, Jun 22 2001. 1199 */ 1200 if (inp->inp_lport || !IN6_IS_ADDR_UNSPECIFIED( 1201 &inp->inp_laddr6)) { 1202 error = EINVAL; 1203 break; 1204 } 1205 /* No support for IPv4-mapped addresses. */ 1206 if (!optval) 1207 error = EINVAL; 1208 else 1209 error = 0; 1210 break; 1211 case IPV6_RECVTCLASS: 1212 OPTSET(IN6P_TCLASS); 1213 break; 1214 case IPV6_AUTOFLOWLABEL: 1215 OPTSET(IN6P_AUTOFLOWLABEL); 1216 break; 1217 1218 case IPV6_RECVDSTPORT: 1219 OPTSET(IN6P_RECVDSTPORT); 1220 break; 1221 } 1222 break; 1223 1224 case IPV6_TCLASS: 1225 case IPV6_DONTFRAG: 1226 case IPV6_USE_MIN_MTU: 1227 if (m == NULL || m->m_len != sizeof(optval)) { 1228 error = EINVAL; 1229 break; 1230 } 1231 optval = *mtod(m, int *); 1232 { 1233 struct ip6_pktopts **optp; 1234 optp = &inp->inp_outputopts6; 1235 error = ip6_pcbopt(optname, (u_char *)&optval, 1236 sizeof(optval), optp, privileged, uproto); 1237 break; 1238 } 1239 1240 case IPV6_PKTINFO: 1241 case IPV6_HOPOPTS: 1242 case IPV6_RTHDR: 1243 case IPV6_DSTOPTS: 1244 case IPV6_RTHDRDSTOPTS: 1245 { 1246 /* new advanced API (RFC3542) */ 1247 u_char *optbuf; 1248 int optbuflen; 1249 struct ip6_pktopts **optp; 1250 1251 if (m && m->m_next) { 1252 error = EINVAL; /* XXX */ 1253 break; 1254 } 1255 if (m) { 1256 optbuf = mtod(m, u_char *); 1257 optbuflen = m->m_len; 1258 } else { 1259 optbuf = NULL; 1260 optbuflen = 0; 1261 } 1262 optp = &inp->inp_outputopts6; 1263 error = ip6_pcbopt(optname, optbuf, optbuflen, optp, 1264 privileged, uproto); 1265 break; 1266 } 1267 #undef OPTSET 1268 1269 case IPV6_MULTICAST_IF: 1270 case IPV6_MULTICAST_HOPS: 1271 case IPV6_MULTICAST_LOOP: 1272 case IPV6_JOIN_GROUP: 1273 case IPV6_LEAVE_GROUP: 1274 error = ip6_setmoptions(optname, 1275 &inp->inp_moptions6, 1276 m, inp->inp_rtableid); 1277 break; 1278 1279 case IPV6_PORTRANGE: 1280 if (m == NULL || m->m_len != sizeof(int)) { 1281 error = EINVAL; 1282 break; 1283 } 1284 optval = *mtod(m, int *); 1285 1286 switch (optval) { 1287 case IPV6_PORTRANGE_DEFAULT: 1288 inp->inp_flags &= ~(IN6P_LOWPORT); 1289 inp->inp_flags &= ~(IN6P_HIGHPORT); 1290 break; 1291 1292 case IPV6_PORTRANGE_HIGH: 1293 inp->inp_flags &= ~(IN6P_LOWPORT); 1294 inp->inp_flags |= IN6P_HIGHPORT; 1295 break; 1296 1297 case IPV6_PORTRANGE_LOW: 1298 inp->inp_flags &= ~(IN6P_HIGHPORT); 1299 inp->inp_flags |= IN6P_LOWPORT; 1300 break; 1301 1302 default: 1303 error = EINVAL; 1304 break; 1305 } 1306 break; 1307 1308 case IPSEC6_OUTSA: 1309 error = EINVAL; 1310 break; 1311 1312 case IPV6_AUTH_LEVEL: 1313 case IPV6_ESP_TRANS_LEVEL: 1314 case IPV6_ESP_NETWORK_LEVEL: 1315 case IPV6_IPCOMP_LEVEL: 1316 #ifndef IPSEC 1317 error = EINVAL; 1318 #else 1319 if (m == NULL || m->m_len != sizeof(int)) { 1320 error = EINVAL; 1321 break; 1322 } 1323 optval = *mtod(m, int *); 1324 1325 if (optval < IPSEC_LEVEL_BYPASS || 1326 optval > IPSEC_LEVEL_UNIQUE) { 1327 error = EINVAL; 1328 break; 1329 } 1330 1331 switch (optname) { 1332 case IPV6_AUTH_LEVEL: 1333 if (optval < IPSEC_AUTH_LEVEL_DEFAULT && 1334 suser(p)) { 1335 error = EACCES; 1336 break; 1337 } 1338 inp->inp_seclevel[SL_AUTH] = optval; 1339 break; 1340 1341 case IPV6_ESP_TRANS_LEVEL: 1342 if (optval < IPSEC_ESP_TRANS_LEVEL_DEFAULT && 1343 suser(p)) { 1344 error = EACCES; 1345 break; 1346 } 1347 inp->inp_seclevel[SL_ESP_TRANS] = optval; 1348 break; 1349 1350 case IPV6_ESP_NETWORK_LEVEL: 1351 if (optval < IPSEC_ESP_NETWORK_LEVEL_DEFAULT && 1352 suser(p)) { 1353 error = EACCES; 1354 break; 1355 } 1356 inp->inp_seclevel[SL_ESP_NETWORK] = optval; 1357 break; 1358 1359 case IPV6_IPCOMP_LEVEL: 1360 if (optval < IPSEC_IPCOMP_LEVEL_DEFAULT && 1361 suser(p)) { 1362 error = EACCES; 1363 break; 1364 } 1365 inp->inp_seclevel[SL_IPCOMP] = optval; 1366 break; 1367 } 1368 #endif 1369 break; 1370 case SO_RTABLE: 1371 if (m == NULL || m->m_len < sizeof(u_int)) { 1372 error = EINVAL; 1373 break; 1374 } 1375 rtid = *mtod(m, u_int *); 1376 if (inp->inp_rtableid == rtid) 1377 break; 1378 /* needs privileges to switch when already set */ 1379 if (rtableid != rtid && rtableid != 0 && 1380 (error = suser(p)) != 0) 1381 break; 1382 /* table must exist */ 1383 if (!rtable_exists(rtid)) { 1384 error = EINVAL; 1385 break; 1386 } 1387 if (inp->inp_lport) { 1388 error = EBUSY; 1389 break; 1390 } 1391 inp->inp_rtableid = rtid; 1392 in_pcbrehash(inp); 1393 break; 1394 case IPV6_PIPEX: 1395 if (m != NULL && m->m_len == sizeof(int)) 1396 inp->inp_pipex = *mtod(m, int *); 1397 else 1398 error = EINVAL; 1399 break; 1400 1401 default: 1402 error = ENOPROTOOPT; 1403 break; 1404 } 1405 break; 1406 1407 case PRCO_GETOPT: 1408 switch (optname) { 1409 1410 case IPV6_RECVHOPOPTS: 1411 case IPV6_RECVDSTOPTS: 1412 case IPV6_UNICAST_HOPS: 1413 case IPV6_MINHOPCOUNT: 1414 case IPV6_RECVPKTINFO: 1415 case IPV6_RECVHOPLIMIT: 1416 case IPV6_RECVRTHDR: 1417 case IPV6_RECVPATHMTU: 1418 1419 case IPV6_V6ONLY: 1420 case IPV6_PORTRANGE: 1421 case IPV6_RECVTCLASS: 1422 case IPV6_AUTOFLOWLABEL: 1423 case IPV6_RECVDSTPORT: 1424 switch (optname) { 1425 1426 case IPV6_RECVHOPOPTS: 1427 optval = OPTBIT(IN6P_HOPOPTS); 1428 break; 1429 1430 case IPV6_RECVDSTOPTS: 1431 optval = OPTBIT(IN6P_DSTOPTS); 1432 break; 1433 1434 case IPV6_UNICAST_HOPS: 1435 optval = inp->inp_hops; 1436 break; 1437 1438 case IPV6_MINHOPCOUNT: 1439 optval = inp->inp_ip6_minhlim; 1440 break; 1441 1442 case IPV6_RECVPKTINFO: 1443 optval = OPTBIT(IN6P_PKTINFO); 1444 break; 1445 1446 case IPV6_RECVHOPLIMIT: 1447 optval = OPTBIT(IN6P_HOPLIMIT); 1448 break; 1449 1450 case IPV6_RECVRTHDR: 1451 optval = OPTBIT(IN6P_RTHDR); 1452 break; 1453 1454 case IPV6_RECVPATHMTU: 1455 optval = OPTBIT(IN6P_MTU); 1456 break; 1457 1458 case IPV6_V6ONLY: 1459 optval = 1; 1460 break; 1461 1462 case IPV6_PORTRANGE: 1463 { 1464 int flags; 1465 flags = inp->inp_flags; 1466 if (flags & IN6P_HIGHPORT) 1467 optval = IPV6_PORTRANGE_HIGH; 1468 else if (flags & IN6P_LOWPORT) 1469 optval = IPV6_PORTRANGE_LOW; 1470 else 1471 optval = 0; 1472 break; 1473 } 1474 case IPV6_RECVTCLASS: 1475 optval = OPTBIT(IN6P_TCLASS); 1476 break; 1477 1478 case IPV6_AUTOFLOWLABEL: 1479 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 1480 break; 1481 1482 case IPV6_RECVDSTPORT: 1483 optval = OPTBIT(IN6P_RECVDSTPORT); 1484 break; 1485 } 1486 if (error) 1487 break; 1488 m->m_len = sizeof(int); 1489 *mtod(m, int *) = optval; 1490 break; 1491 1492 case IPV6_PATHMTU: 1493 { 1494 u_long pmtu = 0; 1495 struct ip6_mtuinfo mtuinfo; 1496 struct ifnet *ifp; 1497 struct rtentry *rt; 1498 1499 if (!(so->so_state & SS_ISCONNECTED)) 1500 return (ENOTCONN); 1501 1502 rt = in_pcbrtentry(inp); 1503 if (!rtisvalid(rt)) 1504 return (EHOSTUNREACH); 1505 1506 ifp = if_get(rt->rt_ifidx); 1507 if (ifp == NULL) 1508 return (EHOSTUNREACH); 1509 /* 1510 * XXX: we dot not consider the case of source 1511 * routing, or optional information to specify 1512 * the outgoing interface. 1513 */ 1514 error = ip6_getpmtu(rt, ifp, &pmtu); 1515 if_put(ifp); 1516 if (error) 1517 break; 1518 if (pmtu > IPV6_MAXPACKET) 1519 pmtu = IPV6_MAXPACKET; 1520 1521 bzero(&mtuinfo, sizeof(mtuinfo)); 1522 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 1523 optdata = (void *)&mtuinfo; 1524 optdatalen = sizeof(mtuinfo); 1525 if (optdatalen > MCLBYTES) 1526 return (EMSGSIZE); /* XXX */ 1527 if (optdatalen > MLEN) 1528 MCLGET(m, M_WAIT); 1529 m->m_len = optdatalen; 1530 bcopy(optdata, mtod(m, void *), optdatalen); 1531 break; 1532 } 1533 1534 case IPV6_PKTINFO: 1535 case IPV6_HOPOPTS: 1536 case IPV6_RTHDR: 1537 case IPV6_DSTOPTS: 1538 case IPV6_RTHDRDSTOPTS: 1539 case IPV6_TCLASS: 1540 case IPV6_DONTFRAG: 1541 case IPV6_USE_MIN_MTU: 1542 error = ip6_getpcbopt(inp->inp_outputopts6, 1543 optname, m); 1544 break; 1545 1546 case IPV6_MULTICAST_IF: 1547 case IPV6_MULTICAST_HOPS: 1548 case IPV6_MULTICAST_LOOP: 1549 case IPV6_JOIN_GROUP: 1550 case IPV6_LEAVE_GROUP: 1551 error = ip6_getmoptions(optname, 1552 inp->inp_moptions6, m); 1553 break; 1554 1555 case IPSEC6_OUTSA: 1556 error = EINVAL; 1557 break; 1558 1559 case IPV6_AUTH_LEVEL: 1560 case IPV6_ESP_TRANS_LEVEL: 1561 case IPV6_ESP_NETWORK_LEVEL: 1562 case IPV6_IPCOMP_LEVEL: 1563 #ifndef IPSEC 1564 m->m_len = sizeof(int); 1565 *mtod(m, int *) = IPSEC_LEVEL_NONE; 1566 #else 1567 m->m_len = sizeof(int); 1568 switch (optname) { 1569 case IPV6_AUTH_LEVEL: 1570 optval = inp->inp_seclevel[SL_AUTH]; 1571 break; 1572 1573 case IPV6_ESP_TRANS_LEVEL: 1574 optval = 1575 inp->inp_seclevel[SL_ESP_TRANS]; 1576 break; 1577 1578 case IPV6_ESP_NETWORK_LEVEL: 1579 optval = 1580 inp->inp_seclevel[SL_ESP_NETWORK]; 1581 break; 1582 1583 case IPV6_IPCOMP_LEVEL: 1584 optval = inp->inp_seclevel[SL_IPCOMP]; 1585 break; 1586 } 1587 *mtod(m, int *) = optval; 1588 #endif 1589 break; 1590 case SO_RTABLE: 1591 m->m_len = sizeof(u_int); 1592 *mtod(m, u_int *) = inp->inp_rtableid; 1593 break; 1594 case IPV6_PIPEX: 1595 m->m_len = sizeof(int); 1596 *mtod(m, int *) = inp->inp_pipex; 1597 break; 1598 1599 default: 1600 error = ENOPROTOOPT; 1601 break; 1602 } 1603 break; 1604 } 1605 return (error); 1606 } 1607 1608 int 1609 ip6_raw_ctloutput(int op, struct socket *so, int level, int optname, 1610 struct mbuf *m) 1611 { 1612 int error = 0, optval; 1613 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 1614 struct inpcb *inp = sotoinpcb(so); 1615 1616 if (level != IPPROTO_IPV6) 1617 return (EINVAL); 1618 1619 switch (optname) { 1620 case IPV6_CHECKSUM: 1621 /* 1622 * For ICMPv6 sockets, no modification allowed for checksum 1623 * offset, permit "no change" values to help existing apps. 1624 * 1625 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 1626 * for an ICMPv6 socket will fail." 1627 * The current behavior does not meet RFC3542. 1628 */ 1629 switch (op) { 1630 case PRCO_SETOPT: 1631 if (m == NULL || m->m_len != sizeof(int)) { 1632 error = EINVAL; 1633 break; 1634 } 1635 optval = *mtod(m, int *); 1636 if (optval < -1 || 1637 (optval > 0 && (optval % 2) != 0)) { 1638 /* 1639 * The API assumes non-negative even offset 1640 * values or -1 as a special value. 1641 */ 1642 error = EINVAL; 1643 } else if (so->so_proto->pr_protocol == 1644 IPPROTO_ICMPV6) { 1645 if (optval != icmp6off) 1646 error = EINVAL; 1647 } else 1648 inp->inp_cksum6 = optval; 1649 break; 1650 1651 case PRCO_GETOPT: 1652 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 1653 optval = icmp6off; 1654 else 1655 optval = inp->inp_cksum6; 1656 1657 m->m_len = sizeof(int); 1658 *mtod(m, int *) = optval; 1659 break; 1660 1661 default: 1662 error = EINVAL; 1663 break; 1664 } 1665 break; 1666 1667 default: 1668 error = ENOPROTOOPT; 1669 break; 1670 } 1671 1672 return (error); 1673 } 1674 1675 /* 1676 * initialize ip6_pktopts. beware that there are non-zero default values in 1677 * the struct. 1678 */ 1679 void 1680 ip6_initpktopts(struct ip6_pktopts *opt) 1681 { 1682 bzero(opt, sizeof(*opt)); 1683 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 1684 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 1685 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 1686 } 1687 1688 int 1689 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 1690 int priv, int uproto) 1691 { 1692 struct ip6_pktopts *opt; 1693 1694 if (*pktopt == NULL) { 1695 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 1696 M_WAITOK); 1697 ip6_initpktopts(*pktopt); 1698 } 1699 opt = *pktopt; 1700 1701 return (ip6_setpktopt(optname, buf, len, opt, priv, 1, uproto)); 1702 } 1703 1704 int 1705 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct mbuf *m) 1706 { 1707 void *optdata = NULL; 1708 int optdatalen = 0; 1709 struct ip6_ext *ip6e; 1710 int error = 0; 1711 struct in6_pktinfo null_pktinfo; 1712 int deftclass = 0, on; 1713 int defminmtu = IP6PO_MINMTU_MCASTONLY; 1714 1715 switch (optname) { 1716 case IPV6_PKTINFO: 1717 if (pktopt && pktopt->ip6po_pktinfo) 1718 optdata = (void *)pktopt->ip6po_pktinfo; 1719 else { 1720 /* XXX: we don't have to do this every time... */ 1721 bzero(&null_pktinfo, sizeof(null_pktinfo)); 1722 optdata = (void *)&null_pktinfo; 1723 } 1724 optdatalen = sizeof(struct in6_pktinfo); 1725 break; 1726 case IPV6_TCLASS: 1727 if (pktopt && pktopt->ip6po_tclass >= 0) 1728 optdata = (void *)&pktopt->ip6po_tclass; 1729 else 1730 optdata = (void *)&deftclass; 1731 optdatalen = sizeof(int); 1732 break; 1733 case IPV6_HOPOPTS: 1734 if (pktopt && pktopt->ip6po_hbh) { 1735 optdata = (void *)pktopt->ip6po_hbh; 1736 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 1737 optdatalen = (ip6e->ip6e_len + 1) << 3; 1738 } 1739 break; 1740 case IPV6_RTHDR: 1741 if (pktopt && pktopt->ip6po_rthdr) { 1742 optdata = (void *)pktopt->ip6po_rthdr; 1743 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 1744 optdatalen = (ip6e->ip6e_len + 1) << 3; 1745 } 1746 break; 1747 case IPV6_RTHDRDSTOPTS: 1748 if (pktopt && pktopt->ip6po_dest1) { 1749 optdata = (void *)pktopt->ip6po_dest1; 1750 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 1751 optdatalen = (ip6e->ip6e_len + 1) << 3; 1752 } 1753 break; 1754 case IPV6_DSTOPTS: 1755 if (pktopt && pktopt->ip6po_dest2) { 1756 optdata = (void *)pktopt->ip6po_dest2; 1757 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 1758 optdatalen = (ip6e->ip6e_len + 1) << 3; 1759 } 1760 break; 1761 case IPV6_USE_MIN_MTU: 1762 if (pktopt) 1763 optdata = (void *)&pktopt->ip6po_minmtu; 1764 else 1765 optdata = (void *)&defminmtu; 1766 optdatalen = sizeof(int); 1767 break; 1768 case IPV6_DONTFRAG: 1769 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 1770 on = 1; 1771 else 1772 on = 0; 1773 optdata = (void *)&on; 1774 optdatalen = sizeof(on); 1775 break; 1776 default: /* should not happen */ 1777 #ifdef DIAGNOSTIC 1778 panic("%s: unexpected option", __func__); 1779 #endif 1780 return (ENOPROTOOPT); 1781 } 1782 1783 if (optdatalen > MCLBYTES) 1784 return (EMSGSIZE); /* XXX */ 1785 if (optdatalen > MLEN) 1786 MCLGET(m, M_WAIT); 1787 m->m_len = optdatalen; 1788 if (optdatalen) 1789 bcopy(optdata, mtod(m, void *), optdatalen); 1790 1791 return (error); 1792 } 1793 1794 void 1795 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 1796 { 1797 if (optname == -1 || optname == IPV6_PKTINFO) { 1798 if (pktopt->ip6po_pktinfo) 1799 free(pktopt->ip6po_pktinfo, M_IP6OPT, 0); 1800 pktopt->ip6po_pktinfo = NULL; 1801 } 1802 if (optname == -1 || optname == IPV6_HOPLIMIT) 1803 pktopt->ip6po_hlim = -1; 1804 if (optname == -1 || optname == IPV6_TCLASS) 1805 pktopt->ip6po_tclass = -1; 1806 if (optname == -1 || optname == IPV6_HOPOPTS) { 1807 if (pktopt->ip6po_hbh) 1808 free(pktopt->ip6po_hbh, M_IP6OPT, 0); 1809 pktopt->ip6po_hbh = NULL; 1810 } 1811 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 1812 if (pktopt->ip6po_dest1) 1813 free(pktopt->ip6po_dest1, M_IP6OPT, 0); 1814 pktopt->ip6po_dest1 = NULL; 1815 } 1816 if (optname == -1 || optname == IPV6_RTHDR) { 1817 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 1818 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT, 0); 1819 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 1820 if (pktopt->ip6po_route.ro_rt) { 1821 rtfree(pktopt->ip6po_route.ro_rt); 1822 pktopt->ip6po_route.ro_rt = NULL; 1823 } 1824 } 1825 if (optname == -1 || optname == IPV6_DSTOPTS) { 1826 if (pktopt->ip6po_dest2) 1827 free(pktopt->ip6po_dest2, M_IP6OPT, 0); 1828 pktopt->ip6po_dest2 = NULL; 1829 } 1830 } 1831 1832 #define PKTOPT_EXTHDRCPY(type) \ 1833 do {\ 1834 if (src->type) {\ 1835 size_t hlen;\ 1836 hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 1837 dst->type = malloc(hlen, M_IP6OPT, M_NOWAIT);\ 1838 if (dst->type == NULL)\ 1839 goto bad;\ 1840 memcpy(dst->type, src->type, hlen);\ 1841 }\ 1842 } while (/*CONSTCOND*/ 0) 1843 1844 int 1845 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src) 1846 { 1847 dst->ip6po_hlim = src->ip6po_hlim; 1848 dst->ip6po_tclass = src->ip6po_tclass; 1849 dst->ip6po_flags = src->ip6po_flags; 1850 if (src->ip6po_pktinfo) { 1851 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 1852 M_IP6OPT, M_NOWAIT); 1853 if (dst->ip6po_pktinfo == NULL) 1854 goto bad; 1855 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 1856 } 1857 PKTOPT_EXTHDRCPY(ip6po_hbh); 1858 PKTOPT_EXTHDRCPY(ip6po_dest1); 1859 PKTOPT_EXTHDRCPY(ip6po_dest2); 1860 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 1861 return (0); 1862 1863 bad: 1864 ip6_clearpktopts(dst, -1); 1865 return (ENOBUFS); 1866 } 1867 #undef PKTOPT_EXTHDRCPY 1868 1869 void 1870 ip6_freepcbopts(struct ip6_pktopts *pktopt) 1871 { 1872 if (pktopt == NULL) 1873 return; 1874 1875 ip6_clearpktopts(pktopt, -1); 1876 1877 free(pktopt, M_IP6OPT, 0); 1878 } 1879 1880 /* 1881 * Set the IP6 multicast options in response to user setsockopt(). 1882 */ 1883 int 1884 ip6_setmoptions(int optname, struct ip6_moptions **im6op, struct mbuf *m, 1885 unsigned int rtableid) 1886 { 1887 int error = 0; 1888 u_int loop, ifindex; 1889 struct ipv6_mreq *mreq; 1890 struct ifnet *ifp; 1891 struct ip6_moptions *im6o = *im6op; 1892 struct in6_multi_mship *imm; 1893 struct proc *p = curproc; /* XXX */ 1894 1895 if (im6o == NULL) { 1896 /* 1897 * No multicast option buffer attached to the pcb; 1898 * allocate one and initialize to default values. 1899 */ 1900 im6o = malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK); 1901 if (im6o == NULL) 1902 return (ENOBUFS); 1903 *im6op = im6o; 1904 im6o->im6o_ifidx = 0; 1905 im6o->im6o_hlim = ip6_defmcasthlim; 1906 im6o->im6o_loop = IPV6_DEFAULT_MULTICAST_LOOP; 1907 LIST_INIT(&im6o->im6o_memberships); 1908 } 1909 1910 switch (optname) { 1911 1912 case IPV6_MULTICAST_IF: 1913 /* 1914 * Select the interface for outgoing multicast packets. 1915 */ 1916 if (m == NULL || m->m_len != sizeof(u_int)) { 1917 error = EINVAL; 1918 break; 1919 } 1920 memcpy(&ifindex, mtod(m, u_int *), sizeof(ifindex)); 1921 if (ifindex != 0) { 1922 ifp = if_get(ifindex); 1923 if (ifp == NULL) { 1924 error = ENXIO; /* XXX EINVAL? */ 1925 break; 1926 } 1927 if (ifp->if_rdomain != rtable_l2(rtableid) || 1928 (ifp->if_flags & IFF_MULTICAST) == 0) { 1929 error = EADDRNOTAVAIL; 1930 if_put(ifp); 1931 break; 1932 } 1933 if_put(ifp); 1934 } 1935 im6o->im6o_ifidx = ifindex; 1936 break; 1937 1938 case IPV6_MULTICAST_HOPS: 1939 { 1940 /* 1941 * Set the IP6 hoplimit for outgoing multicast packets. 1942 */ 1943 int optval; 1944 if (m == NULL || m->m_len != sizeof(int)) { 1945 error = EINVAL; 1946 break; 1947 } 1948 memcpy(&optval, mtod(m, u_int *), sizeof(optval)); 1949 if (optval < -1 || optval >= 256) 1950 error = EINVAL; 1951 else if (optval == -1) 1952 im6o->im6o_hlim = ip6_defmcasthlim; 1953 else 1954 im6o->im6o_hlim = optval; 1955 break; 1956 } 1957 1958 case IPV6_MULTICAST_LOOP: 1959 /* 1960 * Set the loopback flag for outgoing multicast packets. 1961 * Must be zero or one. 1962 */ 1963 if (m == NULL || m->m_len != sizeof(u_int)) { 1964 error = EINVAL; 1965 break; 1966 } 1967 memcpy(&loop, mtod(m, u_int *), sizeof(loop)); 1968 if (loop > 1) { 1969 error = EINVAL; 1970 break; 1971 } 1972 im6o->im6o_loop = loop; 1973 break; 1974 1975 case IPV6_JOIN_GROUP: 1976 /* 1977 * Add a multicast group membership. 1978 * Group must be a valid IP6 multicast address. 1979 */ 1980 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 1981 error = EINVAL; 1982 break; 1983 } 1984 mreq = mtod(m, struct ipv6_mreq *); 1985 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 1986 /* 1987 * We use the unspecified address to specify to accept 1988 * all multicast addresses. Only super user is allowed 1989 * to do this. 1990 */ 1991 if (suser(p)) 1992 { 1993 error = EACCES; 1994 break; 1995 } 1996 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 1997 error = EINVAL; 1998 break; 1999 } 2000 2001 /* 2002 * If no interface was explicitly specified, choose an 2003 * appropriate one according to the given multicast address. 2004 */ 2005 if (mreq->ipv6mr_interface == 0) { 2006 struct rtentry *rt; 2007 struct sockaddr_in6 dst; 2008 2009 memset(&dst, 0, sizeof(dst)); 2010 dst.sin6_len = sizeof(dst); 2011 dst.sin6_family = AF_INET6; 2012 dst.sin6_addr = mreq->ipv6mr_multiaddr; 2013 rt = rtalloc(sin6tosa(&dst), RT_RESOLVE, rtableid); 2014 if (rt == NULL) { 2015 error = EADDRNOTAVAIL; 2016 break; 2017 } 2018 ifp = if_get(rt->rt_ifidx); 2019 rtfree(rt); 2020 } else { 2021 /* 2022 * If the interface is specified, validate it. 2023 */ 2024 ifp = if_get(mreq->ipv6mr_interface); 2025 if (ifp == NULL) { 2026 error = ENXIO; /* XXX EINVAL? */ 2027 break; 2028 } 2029 } 2030 2031 /* 2032 * See if we found an interface, and confirm that it 2033 * supports multicast 2034 */ 2035 if (ifp == NULL || ifp->if_rdomain != rtable_l2(rtableid) || 2036 (ifp->if_flags & IFF_MULTICAST) == 0) { 2037 if_put(ifp); 2038 error = EADDRNOTAVAIL; 2039 break; 2040 } 2041 /* 2042 * Put interface index into the multicast address, 2043 * if the address has link/interface-local scope. 2044 */ 2045 if (IN6_IS_SCOPE_EMBED(&mreq->ipv6mr_multiaddr)) { 2046 mreq->ipv6mr_multiaddr.s6_addr16[1] = 2047 htons(ifp->if_index); 2048 } 2049 /* 2050 * See if the membership already exists. 2051 */ 2052 LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) 2053 if (imm->i6mm_maddr->in6m_ifidx == ifp->if_index && 2054 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2055 &mreq->ipv6mr_multiaddr)) 2056 break; 2057 if (imm != NULL) { 2058 if_put(ifp); 2059 error = EADDRINUSE; 2060 break; 2061 } 2062 /* 2063 * Everything looks good; add a new record to the multicast 2064 * address list for the given interface. 2065 */ 2066 imm = in6_joingroup(ifp, &mreq->ipv6mr_multiaddr, &error); 2067 if_put(ifp); 2068 if (!imm) 2069 break; 2070 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); 2071 break; 2072 2073 case IPV6_LEAVE_GROUP: 2074 /* 2075 * Drop a multicast group membership. 2076 * Group must be a valid IP6 multicast address. 2077 */ 2078 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 2079 error = EINVAL; 2080 break; 2081 } 2082 mreq = mtod(m, struct ipv6_mreq *); 2083 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 2084 if (suser(p)) { 2085 error = EACCES; 2086 break; 2087 } 2088 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 2089 error = EINVAL; 2090 break; 2091 } 2092 2093 /* 2094 * Put interface index into the multicast address, 2095 * if the address has link-local scope. 2096 */ 2097 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 2098 mreq->ipv6mr_multiaddr.s6_addr16[1] = 2099 htons(mreq->ipv6mr_interface); 2100 } 2101 2102 /* 2103 * If an interface address was specified, get a pointer 2104 * to its ifnet structure. 2105 */ 2106 if (mreq->ipv6mr_interface == 0) 2107 ifp = NULL; 2108 else { 2109 ifp = if_get(mreq->ipv6mr_interface); 2110 if (ifp == NULL) { 2111 error = ENXIO; /* XXX EINVAL? */ 2112 break; 2113 } 2114 } 2115 2116 /* 2117 * Find the membership in the membership list. 2118 */ 2119 LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) { 2120 if ((ifp == NULL || 2121 imm->i6mm_maddr->in6m_ifidx == ifp->if_index) && 2122 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2123 &mreq->ipv6mr_multiaddr)) 2124 break; 2125 } 2126 2127 if_put(ifp); 2128 2129 if (imm == NULL) { 2130 /* Unable to resolve interface */ 2131 error = EADDRNOTAVAIL; 2132 break; 2133 } 2134 /* 2135 * Give up the multicast address record to which the 2136 * membership points. 2137 */ 2138 LIST_REMOVE(imm, i6mm_chain); 2139 in6_leavegroup(imm); 2140 break; 2141 2142 default: 2143 error = EOPNOTSUPP; 2144 break; 2145 } 2146 2147 /* 2148 * If all options have default values, no need to keep the option 2149 * structure. 2150 */ 2151 if (im6o->im6o_ifidx == 0 && 2152 im6o->im6o_hlim == ip6_defmcasthlim && 2153 im6o->im6o_loop == IPV6_DEFAULT_MULTICAST_LOOP && 2154 LIST_EMPTY(&im6o->im6o_memberships)) { 2155 free(*im6op, M_IPMOPTS, sizeof(**im6op)); 2156 *im6op = NULL; 2157 } 2158 2159 return (error); 2160 } 2161 2162 /* 2163 * Return the IP6 multicast options in response to user getsockopt(). 2164 */ 2165 int 2166 ip6_getmoptions(int optname, struct ip6_moptions *im6o, struct mbuf *m) 2167 { 2168 u_int *hlim, *loop, *ifindex; 2169 2170 switch (optname) { 2171 case IPV6_MULTICAST_IF: 2172 ifindex = mtod(m, u_int *); 2173 m->m_len = sizeof(u_int); 2174 if (im6o == NULL || im6o->im6o_ifidx == 0) 2175 *ifindex = 0; 2176 else 2177 *ifindex = im6o->im6o_ifidx; 2178 return (0); 2179 2180 case IPV6_MULTICAST_HOPS: 2181 hlim = mtod(m, u_int *); 2182 m->m_len = sizeof(u_int); 2183 if (im6o == NULL) 2184 *hlim = ip6_defmcasthlim; 2185 else 2186 *hlim = im6o->im6o_hlim; 2187 return (0); 2188 2189 case IPV6_MULTICAST_LOOP: 2190 loop = mtod(m, u_int *); 2191 m->m_len = sizeof(u_int); 2192 if (im6o == NULL) 2193 *loop = ip6_defmcasthlim; 2194 else 2195 *loop = im6o->im6o_loop; 2196 return (0); 2197 2198 default: 2199 return (EOPNOTSUPP); 2200 } 2201 } 2202 2203 /* 2204 * Discard the IP6 multicast options. 2205 */ 2206 void 2207 ip6_freemoptions(struct ip6_moptions *im6o) 2208 { 2209 struct in6_multi_mship *imm; 2210 2211 if (im6o == NULL) 2212 return; 2213 2214 while (!LIST_EMPTY(&im6o->im6o_memberships)) { 2215 imm = LIST_FIRST(&im6o->im6o_memberships); 2216 LIST_REMOVE(imm, i6mm_chain); 2217 in6_leavegroup(imm); 2218 } 2219 free(im6o, M_IPMOPTS, sizeof(*im6o)); 2220 } 2221 2222 /* 2223 * Set IPv6 outgoing packet options based on advanced API. 2224 */ 2225 int 2226 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2227 struct ip6_pktopts *stickyopt, int priv, int uproto) 2228 { 2229 u_int clen; 2230 struct cmsghdr *cm = 0; 2231 caddr_t cmsgs; 2232 int error; 2233 2234 if (control == NULL || opt == NULL) 2235 return (EINVAL); 2236 2237 ip6_initpktopts(opt); 2238 if (stickyopt) { 2239 int error; 2240 2241 /* 2242 * If stickyopt is provided, make a local copy of the options 2243 * for this particular packet, then override them by ancillary 2244 * objects. 2245 * XXX: copypktopts() does not copy the cached route to a next 2246 * hop (if any). This is not very good in terms of efficiency, 2247 * but we can allow this since this option should be rarely 2248 * used. 2249 */ 2250 if ((error = copypktopts(opt, stickyopt)) != 0) 2251 return (error); 2252 } 2253 2254 /* 2255 * XXX: Currently, we assume all the optional information is stored 2256 * in a single mbuf. 2257 */ 2258 if (control->m_next) 2259 return (EINVAL); 2260 2261 clen = control->m_len; 2262 cmsgs = mtod(control, caddr_t); 2263 do { 2264 if (clen < CMSG_LEN(0)) 2265 return (EINVAL); 2266 cm = (struct cmsghdr *)cmsgs; 2267 if (cm->cmsg_len < CMSG_LEN(0) || cm->cmsg_len > clen || 2268 CMSG_ALIGN(cm->cmsg_len) > clen) 2269 return (EINVAL); 2270 if (cm->cmsg_level == IPPROTO_IPV6) { 2271 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2272 cm->cmsg_len - CMSG_LEN(0), opt, priv, 0, uproto); 2273 if (error) 2274 return (error); 2275 } 2276 2277 clen -= CMSG_ALIGN(cm->cmsg_len); 2278 cmsgs += CMSG_ALIGN(cm->cmsg_len); 2279 } while (clen); 2280 2281 return (0); 2282 } 2283 2284 /* 2285 * Set a particular packet option, as a sticky option or an ancillary data 2286 * item. "len" can be 0 only when it's a sticky option. 2287 */ 2288 int 2289 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2290 int priv, int sticky, int uproto) 2291 { 2292 int minmtupolicy; 2293 2294 switch (optname) { 2295 case IPV6_PKTINFO: 2296 { 2297 struct ifnet *ifp = NULL; 2298 struct in6_pktinfo *pktinfo; 2299 2300 if (len != sizeof(struct in6_pktinfo)) 2301 return (EINVAL); 2302 2303 pktinfo = (struct in6_pktinfo *)buf; 2304 2305 /* 2306 * An application can clear any sticky IPV6_PKTINFO option by 2307 * doing a "regular" setsockopt with ipi6_addr being 2308 * in6addr_any and ipi6_ifindex being zero. 2309 * [RFC 3542, Section 6] 2310 */ 2311 if (opt->ip6po_pktinfo && 2312 pktinfo->ipi6_ifindex == 0 && 2313 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2314 ip6_clearpktopts(opt, optname); 2315 break; 2316 } 2317 2318 if (uproto == IPPROTO_TCP && 2319 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2320 return (EINVAL); 2321 } 2322 2323 if (pktinfo->ipi6_ifindex) { 2324 ifp = if_get(pktinfo->ipi6_ifindex); 2325 if (ifp == NULL) 2326 return (ENXIO); 2327 if_put(ifp); 2328 } 2329 2330 /* 2331 * We store the address anyway, and let in6_selectsrc() 2332 * validate the specified address. This is because ipi6_addr 2333 * may not have enough information about its scope zone, and 2334 * we may need additional information (such as outgoing 2335 * interface or the scope zone of a destination address) to 2336 * disambiguate the scope. 2337 * XXX: the delay of the validation may confuse the 2338 * application when it is used as a sticky option. 2339 */ 2340 if (opt->ip6po_pktinfo == NULL) { 2341 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2342 M_IP6OPT, M_NOWAIT); 2343 if (opt->ip6po_pktinfo == NULL) 2344 return (ENOBUFS); 2345 } 2346 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2347 break; 2348 } 2349 2350 case IPV6_HOPLIMIT: 2351 { 2352 int *hlimp; 2353 2354 /* 2355 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2356 * to simplify the ordering among hoplimit options. 2357 */ 2358 if (sticky) 2359 return (ENOPROTOOPT); 2360 2361 if (len != sizeof(int)) 2362 return (EINVAL); 2363 hlimp = (int *)buf; 2364 if (*hlimp < -1 || *hlimp > 255) 2365 return (EINVAL); 2366 2367 opt->ip6po_hlim = *hlimp; 2368 break; 2369 } 2370 2371 case IPV6_TCLASS: 2372 { 2373 int tclass; 2374 2375 if (len != sizeof(int)) 2376 return (EINVAL); 2377 tclass = *(int *)buf; 2378 if (tclass < -1 || tclass > 255) 2379 return (EINVAL); 2380 2381 opt->ip6po_tclass = tclass; 2382 break; 2383 } 2384 case IPV6_HOPOPTS: 2385 { 2386 struct ip6_hbh *hbh; 2387 int hbhlen; 2388 2389 /* 2390 * XXX: We don't allow a non-privileged user to set ANY HbH 2391 * options, since per-option restriction has too much 2392 * overhead. 2393 */ 2394 if (!priv) 2395 return (EPERM); 2396 2397 if (len == 0) { 2398 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2399 break; /* just remove the option */ 2400 } 2401 2402 /* message length validation */ 2403 if (len < sizeof(struct ip6_hbh)) 2404 return (EINVAL); 2405 hbh = (struct ip6_hbh *)buf; 2406 hbhlen = (hbh->ip6h_len + 1) << 3; 2407 if (len != hbhlen) 2408 return (EINVAL); 2409 2410 /* turn off the previous option, then set the new option. */ 2411 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2412 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 2413 if (opt->ip6po_hbh == NULL) 2414 return (ENOBUFS); 2415 memcpy(opt->ip6po_hbh, hbh, hbhlen); 2416 2417 break; 2418 } 2419 2420 case IPV6_DSTOPTS: 2421 case IPV6_RTHDRDSTOPTS: 2422 { 2423 struct ip6_dest *dest, **newdest = NULL; 2424 int destlen; 2425 2426 if (!priv) /* XXX: see the comment for IPV6_HOPOPTS */ 2427 return (EPERM); 2428 2429 if (len == 0) { 2430 ip6_clearpktopts(opt, optname); 2431 break; /* just remove the option */ 2432 } 2433 2434 /* message length validation */ 2435 if (len < sizeof(struct ip6_dest)) 2436 return (EINVAL); 2437 dest = (struct ip6_dest *)buf; 2438 destlen = (dest->ip6d_len + 1) << 3; 2439 if (len != destlen) 2440 return (EINVAL); 2441 /* 2442 * Determine the position that the destination options header 2443 * should be inserted; before or after the routing header. 2444 */ 2445 switch (optname) { 2446 case IPV6_RTHDRDSTOPTS: 2447 newdest = &opt->ip6po_dest1; 2448 break; 2449 case IPV6_DSTOPTS: 2450 newdest = &opt->ip6po_dest2; 2451 break; 2452 } 2453 2454 /* turn off the previous option, then set the new option. */ 2455 ip6_clearpktopts(opt, optname); 2456 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 2457 if (*newdest == NULL) 2458 return (ENOBUFS); 2459 memcpy(*newdest, dest, destlen); 2460 2461 break; 2462 } 2463 2464 case IPV6_RTHDR: 2465 { 2466 struct ip6_rthdr *rth; 2467 int rthlen; 2468 2469 if (len == 0) { 2470 ip6_clearpktopts(opt, IPV6_RTHDR); 2471 break; /* just remove the option */ 2472 } 2473 2474 /* message length validation */ 2475 if (len < sizeof(struct ip6_rthdr)) 2476 return (EINVAL); 2477 rth = (struct ip6_rthdr *)buf; 2478 rthlen = (rth->ip6r_len + 1) << 3; 2479 if (len != rthlen) 2480 return (EINVAL); 2481 2482 switch (rth->ip6r_type) { 2483 case IPV6_RTHDR_TYPE_0: 2484 if (rth->ip6r_len == 0) /* must contain one addr */ 2485 return (EINVAL); 2486 if (rth->ip6r_len % 2) /* length must be even */ 2487 return (EINVAL); 2488 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 2489 return (EINVAL); 2490 break; 2491 default: 2492 return (EINVAL); /* not supported */ 2493 } 2494 /* turn off the previous option */ 2495 ip6_clearpktopts(opt, IPV6_RTHDR); 2496 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 2497 if (opt->ip6po_rthdr == NULL) 2498 return (ENOBUFS); 2499 memcpy(opt->ip6po_rthdr, rth, rthlen); 2500 break; 2501 } 2502 2503 case IPV6_USE_MIN_MTU: 2504 if (len != sizeof(int)) 2505 return (EINVAL); 2506 minmtupolicy = *(int *)buf; 2507 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 2508 minmtupolicy != IP6PO_MINMTU_DISABLE && 2509 minmtupolicy != IP6PO_MINMTU_ALL) { 2510 return (EINVAL); 2511 } 2512 opt->ip6po_minmtu = minmtupolicy; 2513 break; 2514 2515 case IPV6_DONTFRAG: 2516 if (len != sizeof(int)) 2517 return (EINVAL); 2518 2519 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 2520 /* 2521 * we ignore this option for TCP sockets. 2522 * (RFC3542 leaves this case unspecified.) 2523 */ 2524 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 2525 } else 2526 opt->ip6po_flags |= IP6PO_DONTFRAG; 2527 break; 2528 2529 default: 2530 return (ENOPROTOOPT); 2531 } /* end of switch */ 2532 2533 return (0); 2534 } 2535 2536 /* 2537 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 2538 * packet to the input queue of a specified interface. 2539 */ 2540 void 2541 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst) 2542 { 2543 struct mbuf *copym; 2544 struct ip6_hdr *ip6; 2545 2546 /* 2547 * Duplicate the packet. 2548 */ 2549 copym = m_copym(m, 0, M_COPYALL, M_NOWAIT); 2550 if (copym == NULL) 2551 return; 2552 2553 /* 2554 * Make sure to deep-copy IPv6 header portion in case the data 2555 * is in an mbuf cluster, so that we can safely override the IPv6 2556 * header portion later. 2557 */ 2558 if ((copym->m_flags & M_EXT) != 0 || 2559 copym->m_len < sizeof(struct ip6_hdr)) { 2560 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 2561 if (copym == NULL) 2562 return; 2563 } 2564 2565 #ifdef DIAGNOSTIC 2566 if (copym->m_len < sizeof(*ip6)) { 2567 m_freem(copym); 2568 return; 2569 } 2570 #endif 2571 2572 ip6 = mtod(copym, struct ip6_hdr *); 2573 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) 2574 ip6->ip6_src.s6_addr16[1] = 0; 2575 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) 2576 ip6->ip6_dst.s6_addr16[1] = 0; 2577 2578 if_input_local(ifp, copym, dst->sin6_family); 2579 } 2580 2581 /* 2582 * Chop IPv6 header off from the payload. 2583 */ 2584 int 2585 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 2586 { 2587 struct mbuf *mh; 2588 struct ip6_hdr *ip6; 2589 2590 ip6 = mtod(m, struct ip6_hdr *); 2591 if (m->m_len > sizeof(*ip6)) { 2592 MGET(mh, M_DONTWAIT, MT_HEADER); 2593 if (mh == NULL) { 2594 m_freem(m); 2595 return ENOBUFS; 2596 } 2597 M_MOVE_PKTHDR(mh, m); 2598 m_align(mh, sizeof(*ip6)); 2599 m->m_len -= sizeof(*ip6); 2600 m->m_data += sizeof(*ip6); 2601 mh->m_next = m; 2602 m = mh; 2603 m->m_len = sizeof(*ip6); 2604 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 2605 } 2606 exthdrs->ip6e_ip6 = m; 2607 return 0; 2608 } 2609 2610 u_int32_t 2611 ip6_randomid(void) 2612 { 2613 return idgen32(&ip6_id_ctx); 2614 } 2615 2616 void 2617 ip6_randomid_init(void) 2618 { 2619 idgen32_init(&ip6_id_ctx); 2620 } 2621 2622 /* 2623 * Compute significant parts of the IPv6 checksum pseudo-header 2624 * for use in a delayed TCP/UDP checksum calculation. 2625 */ 2626 static __inline u_int16_t __attribute__((__unused__)) 2627 in6_cksum_phdr(const struct in6_addr *src, const struct in6_addr *dst, 2628 u_int32_t len, u_int32_t nxt) 2629 { 2630 u_int32_t sum = 0; 2631 const u_int16_t *w; 2632 2633 w = (const u_int16_t *) src; 2634 sum += w[0]; 2635 if (!IN6_IS_SCOPE_EMBED(src)) 2636 sum += w[1]; 2637 sum += w[2]; sum += w[3]; sum += w[4]; sum += w[5]; 2638 sum += w[6]; sum += w[7]; 2639 2640 w = (const u_int16_t *) dst; 2641 sum += w[0]; 2642 if (!IN6_IS_SCOPE_EMBED(dst)) 2643 sum += w[1]; 2644 sum += w[2]; sum += w[3]; sum += w[4]; sum += w[5]; 2645 sum += w[6]; sum += w[7]; 2646 2647 sum += (u_int16_t)(len >> 16) + (u_int16_t)(len /*& 0xffff*/); 2648 2649 sum += (u_int16_t)(nxt >> 16) + (u_int16_t)(nxt /*& 0xffff*/); 2650 2651 sum = (u_int16_t)(sum >> 16) + (u_int16_t)(sum /*& 0xffff*/); 2652 2653 if (sum > 0xffff) 2654 sum -= 0xffff; 2655 2656 return (sum); 2657 } 2658 2659 /* 2660 * Process a delayed payload checksum calculation. 2661 */ 2662 void 2663 in6_delayed_cksum(struct mbuf *m, u_int8_t nxt) 2664 { 2665 int nxtp, offset; 2666 u_int16_t csum; 2667 2668 offset = ip6_lasthdr(m, 0, IPPROTO_IPV6, &nxtp); 2669 if (offset <= 0 || nxtp != nxt) 2670 /* If the desired next protocol isn't found, punt. */ 2671 return; 2672 csum = (u_int16_t)(in6_cksum(m, 0, offset, m->m_pkthdr.len - offset)); 2673 2674 switch (nxt) { 2675 case IPPROTO_TCP: 2676 offset += offsetof(struct tcphdr, th_sum); 2677 break; 2678 2679 case IPPROTO_UDP: 2680 offset += offsetof(struct udphdr, uh_sum); 2681 if (csum == 0) 2682 csum = 0xffff; 2683 break; 2684 2685 case IPPROTO_ICMPV6: 2686 offset += offsetof(struct icmp6_hdr, icmp6_cksum); 2687 break; 2688 } 2689 2690 if ((offset + sizeof(u_int16_t)) > m->m_len) 2691 m_copyback(m, offset, sizeof(csum), &csum, M_NOWAIT); 2692 else 2693 *(u_int16_t *)(mtod(m, caddr_t) + offset) = csum; 2694 } 2695 2696 void 2697 in6_proto_cksum_out(struct mbuf *m, struct ifnet *ifp) 2698 { 2699 struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *); 2700 2701 /* some hw and in6_delayed_cksum need the pseudo header cksum */ 2702 if (m->m_pkthdr.csum_flags & 2703 (M_TCP_CSUM_OUT|M_UDP_CSUM_OUT|M_ICMP_CSUM_OUT)) { 2704 int nxt, offset; 2705 u_int16_t csum; 2706 2707 offset = ip6_lasthdr(m, 0, IPPROTO_IPV6, &nxt); 2708 csum = in6_cksum_phdr(&ip6->ip6_src, &ip6->ip6_dst, 2709 htonl(m->m_pkthdr.len - offset), htonl(nxt)); 2710 if (nxt == IPPROTO_TCP) 2711 offset += offsetof(struct tcphdr, th_sum); 2712 else if (nxt == IPPROTO_UDP) 2713 offset += offsetof(struct udphdr, uh_sum); 2714 else if (nxt == IPPROTO_ICMPV6) 2715 offset += offsetof(struct icmp6_hdr, icmp6_cksum); 2716 if ((offset + sizeof(u_int16_t)) > m->m_len) 2717 m_copyback(m, offset, sizeof(csum), &csum, M_NOWAIT); 2718 else 2719 *(u_int16_t *)(mtod(m, caddr_t) + offset) = csum; 2720 } 2721 2722 if (m->m_pkthdr.csum_flags & M_TCP_CSUM_OUT) { 2723 if (!ifp || !(ifp->if_capabilities & IFCAP_CSUM_TCPv6) || 2724 ip6->ip6_nxt != IPPROTO_TCP || 2725 ifp->if_bridgeidx != 0) { 2726 tcpstat_inc(tcps_outswcsum); 2727 in6_delayed_cksum(m, IPPROTO_TCP); 2728 m->m_pkthdr.csum_flags &= ~M_TCP_CSUM_OUT; /* Clear */ 2729 } 2730 } else if (m->m_pkthdr.csum_flags & M_UDP_CSUM_OUT) { 2731 if (!ifp || !(ifp->if_capabilities & IFCAP_CSUM_UDPv6) || 2732 ip6->ip6_nxt != IPPROTO_UDP || 2733 ifp->if_bridgeidx != 0) { 2734 udpstat_inc(udps_outswcsum); 2735 in6_delayed_cksum(m, IPPROTO_UDP); 2736 m->m_pkthdr.csum_flags &= ~M_UDP_CSUM_OUT; /* Clear */ 2737 } 2738 } else if (m->m_pkthdr.csum_flags & M_ICMP_CSUM_OUT) { 2739 in6_delayed_cksum(m, IPPROTO_ICMPV6); 2740 m->m_pkthdr.csum_flags &= ~M_ICMP_CSUM_OUT; /* Clear */ 2741 } 2742 } 2743 2744 #ifdef IPSEC 2745 int 2746 ip6_output_ipsec_lookup(struct mbuf *m, struct inpcb *inp, struct tdb **tdbout) 2747 { 2748 struct tdb *tdb; 2749 struct m_tag *mtag; 2750 struct tdb_ident *tdbi; 2751 int error; 2752 2753 /* 2754 * Check if there was an outgoing SA bound to the flow 2755 * from a transport protocol. 2756 */ 2757 2758 /* Do we have any pending SAs to apply ? */ 2759 error = ipsp_spd_lookup(m, AF_INET6, sizeof(struct ip6_hdr), 2760 IPSP_DIRECTION_OUT, NULL, inp, &tdb, 0); 2761 if (error || tdb == NULL) { 2762 *tdbout = NULL; 2763 return error; 2764 } 2765 /* Loop detection */ 2766 for (mtag = m_tag_first(m); mtag != NULL; mtag = m_tag_next(m, mtag)) { 2767 if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE) 2768 continue; 2769 tdbi = (struct tdb_ident *)(mtag + 1); 2770 if (tdbi->spi == tdb->tdb_spi && 2771 tdbi->proto == tdb->tdb_sproto && 2772 tdbi->rdomain == tdb->tdb_rdomain && 2773 !memcmp(&tdbi->dst, &tdb->tdb_dst, 2774 sizeof(union sockaddr_union))) { 2775 /* no IPsec needed */ 2776 tdb_unref(tdb); 2777 *tdbout = NULL; 2778 return 0; 2779 } 2780 } 2781 *tdbout = tdb; 2782 return 0; 2783 } 2784 2785 int 2786 ip6_output_ipsec_pmtu_update(struct tdb *tdb, struct route_in6 *ro, 2787 struct in6_addr *dst, int ifidx, int rtableid, int transportmode) 2788 { 2789 struct rtentry *rt = NULL; 2790 int rt_mtucloned = 0; 2791 2792 /* Find a host route to store the mtu in */ 2793 if (ro != NULL) 2794 rt = ro->ro_rt; 2795 /* but don't add a PMTU route for transport mode SAs */ 2796 if (transportmode) 2797 rt = NULL; 2798 else if (rt == NULL || (rt->rt_flags & RTF_HOST) == 0) { 2799 struct sockaddr_in6 sin6; 2800 int error; 2801 2802 memset(&sin6, 0, sizeof(sin6)); 2803 sin6.sin6_family = AF_INET6; 2804 sin6.sin6_len = sizeof(sin6); 2805 sin6.sin6_addr = *dst; 2806 sin6.sin6_scope_id = in6_addr2scopeid(ifidx, dst); 2807 error = in6_embedscope(dst, &sin6, NULL); 2808 if (error) { 2809 /* should be impossible */ 2810 return error; 2811 } 2812 rt = icmp6_mtudisc_clone(&sin6, rtableid, 1); 2813 rt_mtucloned = 1; 2814 } 2815 DPRINTF("spi %08x mtu %d rt %p cloned %d", 2816 ntohl(tdb->tdb_spi), tdb->tdb_mtu, rt, rt_mtucloned); 2817 if (rt != NULL) { 2818 rt->rt_mtu = tdb->tdb_mtu; 2819 if (ro != NULL && ro->ro_rt != NULL) { 2820 rtfree(ro->ro_rt); 2821 ro->ro_rt = rtalloc(sin6tosa(&ro->ro_dst), RT_RESOLVE, 2822 rtableid); 2823 } 2824 if (rt_mtucloned) 2825 rtfree(rt); 2826 } 2827 return 0; 2828 } 2829 2830 int 2831 ip6_output_ipsec_send(struct tdb *tdb, struct mbuf *m, struct route_in6 *ro, 2832 int tunalready, int fwd) 2833 { 2834 #if NPF > 0 2835 struct ifnet *encif; 2836 #endif 2837 struct ip6_hdr *ip6; 2838 struct in6_addr dst; 2839 int error, ifidx, rtableid; 2840 2841 #if NPF > 0 2842 /* 2843 * Packet filter 2844 */ 2845 if ((encif = enc_getif(tdb->tdb_rdomain, tdb->tdb_tap)) == NULL || 2846 pf_test(AF_INET6, fwd ? PF_FWD : PF_OUT, encif, &m) != PF_PASS) { 2847 m_freem(m); 2848 return EACCES; 2849 } 2850 if (m == NULL) 2851 return 0; 2852 /* 2853 * PF_TAG_REROUTE handling or not... 2854 * Packet is entering IPsec so the routing is 2855 * already overruled by the IPsec policy. 2856 * Until now the change was not reconsidered. 2857 * What's the behaviour? 2858 */ 2859 in6_proto_cksum_out(m, encif); 2860 #endif 2861 2862 /* Check if we are allowed to fragment */ 2863 ip6 = mtod(m, struct ip6_hdr *); 2864 dst = ip6->ip6_dst; 2865 ifidx = m->m_pkthdr.ph_ifidx; 2866 rtableid = m->m_pkthdr.ph_rtableid; 2867 if (ip_mtudisc && tdb->tdb_mtu && 2868 sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen) > tdb->tdb_mtu && 2869 tdb->tdb_mtutimeout > gettime()) { 2870 int transportmode; 2871 2872 transportmode = (tdb->tdb_dst.sa.sa_family == AF_INET6) && 2873 (IN6_ARE_ADDR_EQUAL(&tdb->tdb_dst.sin6.sin6_addr, &dst)); 2874 error = ip6_output_ipsec_pmtu_update(tdb, ro, &dst, ifidx, 2875 rtableid, transportmode); 2876 if (error) { 2877 ipsecstat_inc(ipsec_odrops); 2878 tdb->tdb_odrops++; 2879 m_freem(m); 2880 return error; 2881 } 2882 ipsec_adjust_mtu(m, tdb->tdb_mtu); 2883 m_freem(m); 2884 return EMSGSIZE; 2885 } 2886 /* propagate don't fragment for v6-over-v6 */ 2887 if (ip_mtudisc) 2888 SET(m->m_pkthdr.csum_flags, M_IPV6_DF_OUT); 2889 2890 /* 2891 * Clear these -- they'll be set in the recursive invocation 2892 * as needed. 2893 */ 2894 m->m_flags &= ~(M_BCAST | M_MCAST); 2895 2896 /* Callee frees mbuf */ 2897 error = ipsp_process_packet(m, tdb, AF_INET6, tunalready); 2898 if (error) { 2899 ipsecstat_inc(ipsec_odrops); 2900 tdb->tdb_odrops++; 2901 } 2902 if (ip_mtudisc && error == EMSGSIZE) 2903 ip6_output_ipsec_pmtu_update(tdb, ro, &dst, ifidx, rtableid, 0); 2904 return error; 2905 } 2906 #endif /* IPSEC */ 2907