xref: /openbsd/sys/scsi/ses.c (revision d485f761)
1 /*	$OpenBSD: ses.c,v 1.2 2001/06/22 14:35:43 deraadt Exp $ */
2 /*	$NetBSD: ses.c,v 1.3 2000/01/21 21:19:57 mjacob Exp $ */
3 /*
4  * Copyright (C) 2000 National Aeronautics & Space Administration
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. The name of the author may not be used to endorse or promote products
13  *    derived from this software without specific prior written permission
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * Author:	mjacob@nas.nasa.gov
27  */
28 
29 
30 #ifdef	__NetBSD__
31 #include "opt_scsi.h"
32 #endif
33 
34 #include <sys/types.h>
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/file.h>
39 #include <sys/stat.h>
40 #include <sys/ioctl.h>
41 #include <sys/scsiio.h>
42 #include <sys/buf.h>
43 #include <sys/uio.h>
44 #include <sys/malloc.h>
45 #include <sys/errno.h>
46 #include <sys/device.h>
47 #include <sys/disklabel.h>
48 #include <sys/disk.h>
49 #include <sys/proc.h>
50 #include <sys/conf.h>
51 #include <sys/vnode.h>
52 #include <machine/stdarg.h>
53 
54 #ifdef	__NetBSD__
55 #include <dev/scsipi/scsipi_all.h>
56 #include <dev/scsipi/scsi_all.h>
57 #include <dev/scsipi/scsipi_disk.h>
58 #include <dev/scsipi/scsi_disk.h>
59 #include <dev/scsipi/scsiconf.h>
60 #include <dev/scsipi/ses.h>
61 #else
62 #include <scsi/scsi_all.h>
63 #include <scsi/scsi_disk.h>
64 #include <scsi/scsiconf.h>
65 #include <scsi/ses.h>
66 #define	scsipi_link			scsi_link
67 #define	scsipibus_attach_args		scsibus_attach_args
68 #define	scsipi_device 			scsi_device
69 #define sa_inqptr			sa_inqbuf
70 #define	SCSIPIRETRIES			4
71 #define	scsipi_generic			scsi_generic
72 #define	scsipi_command			scsi_scsi_cmd
73 #define	scsipi_inquiry_data		scsi_inquiry_data
74 #define	scsipi_do_ioctl			scsi_do_ioctl
75 #define	scsipi_wait_drain(x)
76 #define	scsipi_adapter_addref(x)	0
77 #define	scsipi_adapter_delref(x)
78 #define	XS_CTL_DATA_IN			SCSI_DATA_IN
79 #define	XS_CTL_DATA_OUT			SCSI_DATA_OUT
80 #define	XS_CTL_DISCOVERY		SCSI_AUTOCONF
81 #define	XS_CTL_SILENT			SCSI_SILENT
82 #endif
83 
84 /*
85  * Platform Independent Driver Internal Definitions for SES devices.
86  */
87 typedef enum {
88 	SES_NONE,
89 	SES_SES_SCSI2,
90 	SES_SES,
91 	SES_SES_PASSTHROUGH,
92 	SES_SEN,
93 	SES_SAFT
94 } enctyp;
95 
96 struct ses_softc;
97 typedef struct ses_softc ses_softc_t;
98 typedef struct {
99 	int (*softc_init) 	__P((ses_softc_t *, int));
100 	int (*init_enc)		__P((ses_softc_t *));
101 	int (*get_encstat)	__P((ses_softc_t *, int));
102 	int (*set_encstat)	__P((ses_softc_t *, ses_encstat, int));
103 	int (*get_objstat)	__P((ses_softc_t *, ses_objstat *, int));
104 	int (*set_objstat)	__P((ses_softc_t *, ses_objstat *, int));
105 } encvec;
106 
107 #define	ENCI_SVALID	0x80
108 
109 typedef struct {
110 	uint32_t
111 		enctype	: 8,		/* enclosure type */
112 		subenclosure : 8,	/* subenclosure id */
113 		svalid	: 1,		/* enclosure information valid */
114 		priv	: 15;		/* private data, per object */
115 	uint8_t	encstat[4];	/* state && stats */
116 } encobj;
117 
118 #define	SEN_ID		"UNISYS           SUN_SEN"
119 #define	SEN_ID_LEN	24
120 
121 static enctyp ses_type __P((void *, int));
122 
123 
124 /* Forward reference to Enclosure Functions */
125 static int ses_softc_init __P((ses_softc_t *, int));
126 static int ses_init_enc __P((ses_softc_t *));
127 static int ses_get_encstat __P((ses_softc_t *, int));
128 static int ses_set_encstat __P((ses_softc_t *, uint8_t, int));
129 static int ses_get_objstat __P((ses_softc_t *, ses_objstat *, int));
130 static int ses_set_objstat __P((ses_softc_t *, ses_objstat *, int));
131 
132 static int safte_softc_init __P((ses_softc_t *, int));
133 static int safte_init_enc __P((ses_softc_t *));
134 static int safte_get_encstat __P((ses_softc_t *, int));
135 static int safte_set_encstat __P((ses_softc_t *, uint8_t, int));
136 static int safte_get_objstat __P((ses_softc_t *, ses_objstat *, int));
137 static int safte_set_objstat __P((ses_softc_t *, ses_objstat *, int));
138 
139 /*
140  * Platform implementation defines/functions for SES internal kernel stuff
141  */
142 
143 #define	STRNCMP			strncmp
144 #define	PRINTF			printf
145 #define	SES_LOG			ses_log
146 #if	defined(DEBUG)
147 #define	SES_DLOG		ses_log
148 #else
149 #define	SES_DLOG		if (0) ses_log
150 #endif
151 #if	defined(DEBUG) || defined(SCSIDEBUG)
152 #define	SES_VLOG		ses_log
153 #else
154 #define	SES_VLOG		if (0) ses_log
155 #endif
156 #define	SES_MALLOC(amt)		malloc(amt, M_DEVBUF, M_NOWAIT)
157 #define	SES_FREE(ptr, amt)	free(ptr, M_DEVBUF)
158 #define	MEMZERO			bzero
159 #define	MEMCPY(dest, src, amt)	bcopy(src, dest, amt)
160 #define	RECEIVE_DIAGNOSTIC	0x1c
161 #define	SEND_DIAGNOSTIC		0x1d
162 #define	WRITE_BUFFER		0x3b
163 #define	READ_BUFFER		0x3c
164 
165 int sesopen __P((dev_t, int, int, struct proc *));
166 int sesclose __P((dev_t, int, int, struct proc *));
167 int sesioctl __P((dev_t, u_long, caddr_t, int, struct proc *));
168 
169 static int ses_runcmd	__P((struct ses_softc *, char *, int, char *, int *));
170 static void ses_log	__P((struct ses_softc *, const char *, ...));
171 
172 /*
173  * General NetBSD kernel stuff.
174  */
175 
176 struct ses_softc {
177 	struct device	sc_device;
178 	struct scsipi_link *sc_link;
179 	enctyp		ses_type;	/* type of enclosure */
180 	encvec		ses_vec;	/* vector to handlers */
181 	void *		ses_private;	/* per-type private data */
182 	encobj *	ses_objmap;	/* objects */
183 	u_int32_t	ses_nobjects;	/* number of objects */
184 	ses_encstat	ses_encstat;	/* overall status */
185 	u_int8_t	ses_flags;
186 };
187 #define	SES_FLAG_INVALID	0x01
188 #define	SES_FLAG_OPEN		0x02
189 #define	SES_FLAG_INITIALIZED	0x04
190 
191 #define SESUNIT(x)       (minor((x)))
192 
193 #ifdef	__NetBSD__
194 #define	MATCHTYPE	struct cfdata
195 #else
196 #define	MATCHTYPE	void
197 #endif
198 
199 static int ses_match __P((struct device *, MATCHTYPE *, void *));
200 static void ses_attach __P((struct device *, struct device *, void *));
201 static enctyp ses_device_type __P((struct scsipibus_attach_args *));
202 
203 struct cfattach ses_ca = {
204 	sizeof (struct ses_softc), ses_match, ses_attach
205 };
206 
207 #ifdef	__NetBSD__
208 extern struct cfdriver ses_cd;
209 #else
210 struct cfdriver ses_cd = {
211 	NULL, "ses", DV_DULL
212 };
213 #endif
214 
215 struct scsipi_device ses_switch = {
216 	NULL,
217 	NULL,
218 	NULL,
219 	NULL
220 };
221 
222 
223 int
224 ses_match(parent, matcharg, aux)
225 	struct device *parent;
226 	MATCHTYPE *matcharg;
227 	void *aux;
228 {
229 	struct scsipibus_attach_args *sa = aux;
230 	matcharg = matcharg;
231 	switch (ses_device_type(sa)) {
232 	case SES_SES:
233 	case SES_SES_SCSI2:
234 	case SES_SEN:
235 	case SES_SAFT:
236 	case SES_SES_PASSTHROUGH:
237 		/*
238 		 * For these devices, it's a perfect match.
239 		 */
240 		return (24);
241 	default:
242 		return (0);
243 	}
244 }
245 
246 
247 /*
248  * Complete the attachment.
249  *
250  * We have to repeat the rerun of INQUIRY data as above because
251  * it's not until the return from the match routine that we have
252  * the softc available to set stuff in.
253  */
254 void
255 ses_attach(parent, self, aux)
256 	struct device *parent;
257 	struct device *self;
258 	void *aux;
259 {
260 	char *tname;
261 	struct ses_softc *softc = (void *)self;
262 	struct scsipibus_attach_args *sa = aux;
263 	struct scsipi_link *sc_link = sa->sa_sc_link;
264 
265 	SC_DEBUG(sc_link, SDEV_DB2, ("ssattach: "));
266 	softc->sc_link = sa->sa_sc_link;
267 	sc_link->device = &ses_switch;
268 	sc_link->device_softc = softc;
269 	sc_link->openings = 1;
270 
271 	softc->ses_type = ses_device_type(sa);
272 	switch (softc->ses_type) {
273 	case SES_SES:
274 	case SES_SES_SCSI2:
275 	case SES_SES_PASSTHROUGH:
276 		softc->ses_vec.softc_init = ses_softc_init;
277 		softc->ses_vec.init_enc = ses_init_enc;
278 		softc->ses_vec.get_encstat = ses_get_encstat;
279 		softc->ses_vec.set_encstat = ses_set_encstat;
280 		softc->ses_vec.get_objstat = ses_get_objstat;
281 		softc->ses_vec.set_objstat = ses_set_objstat;
282 		break;
283 	case SES_SAFT:
284 		softc->ses_vec.softc_init = safte_softc_init;
285 		softc->ses_vec.init_enc = safte_init_enc;
286 		softc->ses_vec.get_encstat = safte_get_encstat;
287 		softc->ses_vec.set_encstat = safte_set_encstat;
288 		softc->ses_vec.get_objstat = safte_get_objstat;
289 		softc->ses_vec.set_objstat = safte_set_objstat;
290 		break;
291 	case SES_SEN:
292 		break;
293 	case SES_NONE:
294 	default:
295 		break;
296 	}
297 
298 	switch (softc->ses_type) {
299 	default:
300 	case SES_NONE:
301 		tname = "No SES device";
302 		break;
303 	case SES_SES_SCSI2:
304 		tname = "SCSI-2 SES Device";
305 		break;
306 	case SES_SES:
307 		tname = "SCSI-3 SES Device";
308 		break;
309 	case SES_SES_PASSTHROUGH:
310 		tname = "SES Passthrough Device";
311 		break;
312 	case SES_SEN:
313 		tname = "UNISYS SEN Device (NOT HANDLED YET)";
314 		break;
315 	case SES_SAFT:
316 		tname = "SAF-TE Compliant Device";
317 		break;
318 	}
319 	printf("\n%s: %s\n", softc->sc_device.dv_xname, tname);
320 }
321 
322 
323 #define	NETBSD_SAFTE_END	50
324 
325 static enctyp
326 ses_device_type(sa)
327 	struct scsipibus_attach_args *sa;
328 {
329 	struct scsipi_inquiry_data *inqp = sa->sa_inqptr;
330 	int length;
331 
332 	if (inqp == NULL)
333 		return (SES_NONE);
334 
335 #ifdef	__NetBSD__
336 	/*
337 	 * If we can get longer data to check for the
338 	 * presence of a  SAF-TE device, try and do so.
339 	 *
340 	 * Because we do deferred target attach in NetBSD,
341 	 * we don't have to run this as a polled command.
342 	 */
343 
344 	if (inqp->additional_length >= NETBSD_SAFTE_END-4) {
345 		size_t amt = inqp->additional_length + 4;
346 		struct scsipi_generic cmd;
347 		static u_char more[64];
348 
349 		bzero(&cmd, sizeof(cmd));
350 		cmd.opcode = INQUIRY;
351 		cmd.bytes[3] = amt;
352 		if (scsipi_command(sa->sa_sc_link, &cmd, 6, more, amt,
353 		    SCSIPIRETRIES, 10000, NULL,
354 		    XS_CTL_DATA_IN | XS_CTL_DISCOVERY) == 0) {
355 			length = amt;
356 			inqp = (struct scsipi_inquiry_data *) more;
357 		}
358 	} else
359 #endif
360 		length = sizeof (struct scsipi_inquiry_data);
361 	return (ses_type(inqp, length));
362 }
363 
364 int
365 sesopen(dev, flags, fmt, p)
366 	dev_t dev;
367 	int flags;
368 	int fmt;
369 	struct proc *p;
370 {
371 	struct ses_softc *softc;
372 	int error, unit;
373 
374 	unit = SESUNIT(dev);
375 	if (unit >= ses_cd.cd_ndevs)
376 		return (ENXIO);
377 	softc = ses_cd.cd_devs[unit];
378 	if (softc == NULL)
379 		return (ENXIO);
380 
381 	if (softc->ses_flags & SES_FLAG_INVALID) {
382 		error = ENXIO;
383 		goto out;
384 	}
385 	if (softc->ses_flags & SES_FLAG_OPEN) {
386 		error = EBUSY;
387 		goto out;
388 	}
389 	if (softc->ses_vec.softc_init == NULL) {
390 		error = ENXIO;
391 		goto out;
392 	}
393 	error = scsipi_adapter_addref(softc->sc_link);
394 	if (error != 0)
395 		goto out;
396 
397 
398 	softc->ses_flags |= SES_FLAG_OPEN;
399 	if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
400 		error = (*softc->ses_vec.softc_init)(softc, 1);
401 		if (error)
402 			softc->ses_flags &= ~SES_FLAG_OPEN;
403 		else
404 			softc->ses_flags |= SES_FLAG_INITIALIZED;
405 	}
406 
407 out:
408 	return (error);
409 }
410 
411 int
412 sesclose(dev, flags, fmt, p)
413 	dev_t dev;
414 	int flags;
415 	int fmt;
416 	struct proc *p;
417 {
418 	struct ses_softc *softc;
419 	int unit;
420 
421 	unit = SESUNIT(dev);
422 	if (unit >= ses_cd.cd_ndevs)
423 		return (ENXIO);
424 	softc = ses_cd.cd_devs[unit];
425 	if (softc == NULL)
426 		return (ENXIO);
427 
428 	scsipi_wait_drain(softc->sc_link);
429 	scsipi_adapter_delref(softc->sc_link);
430 	softc->ses_flags &= ~SES_FLAG_OPEN;
431 	return (0);
432 }
433 
434 int
435 sesioctl(dev, cmd, arg_addr, flag, p)
436 	dev_t dev;
437 	u_long cmd;
438 	caddr_t arg_addr;
439 	int flag;
440 	struct proc *p;
441 {
442 	ses_encstat tmp;
443 	ses_objstat objs;
444 	ses_object obj, *uobj;
445 	struct ses_softc *ssc = ses_cd.cd_devs[SESUNIT(dev)];
446 	void *addr;
447 	int error, i;
448 
449 
450 	if (arg_addr)
451 		addr = *((caddr_t *) arg_addr);
452 	else
453 		addr = NULL;
454 
455 	SC_DEBUG(ssc->sc_link, SDEV_DB2, ("sesioctl 0x%lx ", cmd));
456 
457 	/*
458 	 * Now check to see whether we're initialized or not.
459 	 */
460 	if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
461 		return (ENODEV);
462 	}
463 
464 	error = 0;
465 
466 	/*
467 	 * If this command can change the device's state,
468 	 * we must have the device open for writing.
469 	 */
470 	switch (cmd) {
471 	case SESIOC_GETNOBJ:
472 	case SESIOC_GETOBJMAP:
473 	case SESIOC_GETENCSTAT:
474 	case SESIOC_GETOBJSTAT:
475 		break;
476 	default:
477 		if ((flag & FWRITE) == 0) {
478 			return (EBADF);
479 		}
480 	}
481 
482 	switch (cmd) {
483 	case SESIOC_GETNOBJ:
484 		error = copyout(&ssc->ses_nobjects, addr,
485 		    sizeof (ssc->ses_nobjects));
486 		break;
487 
488 	case SESIOC_GETOBJMAP:
489 		for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
490 			obj.obj_id = i;
491 			obj.subencid = ssc->ses_objmap[i].subenclosure;
492 			obj.object_type = ssc->ses_objmap[i].enctype;
493 			error = copyout(&obj, uobj, sizeof (ses_object));
494 			if (error) {
495 				break;
496 			}
497 		}
498 		break;
499 
500 	case SESIOC_GETENCSTAT:
501 		error = (*ssc->ses_vec.get_encstat)(ssc, 1);
502 		if (error)
503 			break;
504 		tmp = ssc->ses_encstat & ~ENCI_SVALID;
505 		error = copyout(&tmp, addr, sizeof (ses_encstat));
506 		ssc->ses_encstat = tmp;
507 		break;
508 
509 	case SESIOC_SETENCSTAT:
510 		error = copyin(addr, &tmp, sizeof (ses_encstat));
511 		if (error)
512 			break;
513 		error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
514 		break;
515 
516 	case SESIOC_GETOBJSTAT:
517 		error = copyin(addr, &objs, sizeof (ses_objstat));
518 		if (error)
519 			break;
520 		if (objs.obj_id >= ssc->ses_nobjects) {
521 			error = EINVAL;
522 			break;
523 		}
524 		error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
525 		if (error)
526 			break;
527 		error = copyout(&objs, addr, sizeof (ses_objstat));
528 		/*
529 		 * Always (for now) invalidate entry.
530 		 */
531 		ssc->ses_objmap[objs.obj_id].svalid = 0;
532 		break;
533 
534 	case SESIOC_SETOBJSTAT:
535 		error = copyin(addr, &objs, sizeof (ses_objstat));
536 		if (error)
537 			break;
538 
539 		if (objs.obj_id >= ssc->ses_nobjects) {
540 			error = EINVAL;
541 			break;
542 		}
543 		error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
544 
545 		/*
546 		 * Always (for now) invalidate entry.
547 		 */
548 		ssc->ses_objmap[objs.obj_id].svalid = 0;
549 		break;
550 
551 	case SESIOC_INIT:
552 
553 		error = (*ssc->ses_vec.init_enc)(ssc);
554 		break;
555 
556 	default:
557 		error = scsipi_do_ioctl(ssc->sc_link, dev, cmd, addr, flag, p);
558 		break;
559 	}
560 	return (error);
561 }
562 
563 static int
564 ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
565 {
566 	struct scsipi_generic sgen;
567 	int dl, flg, error;
568 
569 	if (dptr) {
570 		if ((dl = *dlenp) < 0) {
571 			dl = -dl;
572 			flg = XS_CTL_DATA_OUT;
573 		} else {
574 			flg = XS_CTL_DATA_IN;
575 		}
576 	} else {
577 		dl = 0;
578 		flg = 0;
579 	}
580 
581 	if (cdbl > sizeof (struct scsipi_generic)) {
582 		cdbl = sizeof (struct scsipi_generic);
583 	}
584 	bcopy(cdb, &sgen, cdbl);
585 #ifndef	SCSIDEBUG
586 	flg |= XS_CTL_SILENT;
587 #endif
588 	error = scsipi_command(ssc->sc_link, &sgen, cdbl,
589 	    (u_char *) dptr, dl, SCSIPIRETRIES, 30000, NULL, flg);
590 
591 	if (error == 0 && dptr)
592 		*dlenp = 0;
593 
594 	return (error);
595 }
596 
597 #ifdef	__STDC__
598 static void
599 ses_log(struct ses_softc *ssc, const char *fmt, ...)
600 {
601 	va_list ap;
602 
603 	printf("%s: ", ssc->sc_device.dv_xname);
604 	va_start(ap, fmt);
605 	vprintf(fmt, ap);
606 	va_end(ap);
607 }
608 #else
609 static void
610 ses_log(ssc, fmt, va_alist)
611 	struct ses_softc *ssc;
612 	char *fmt;
613 	va_dcl
614 {
615 	va_list ap;
616 
617 	printf("%s: ", ssc->sc_device.dv_xname);
618 	va_start(ap, fmt);
619 	vprintf(fmt, ap);
620 	va_end(ap);
621 }
622 #endif
623 
624 /*
625  * The code after this point runs on many platforms,
626  * so forgive the slightly awkward and nonconforming
627  * appearance.
628  */
629 
630 /*
631  * Is this a device that supports enclosure services?
632  *
633  * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
634  * an SES device. If it happens to be an old UNISYS SEN device, we can
635  * handle that too.
636  */
637 
638 #define	SAFTE_START	44
639 #define	SAFTE_END	50
640 #define	SAFTE_LEN	SAFTE_END-SAFTE_START
641 
642 static enctyp
643 ses_type(void *buf, int buflen)
644 {
645 	unsigned char *iqd = buf;
646 
647 	if (buflen < 8+SEN_ID_LEN)
648 		return (SES_NONE);
649 
650 	if ((iqd[0] & 0x1f) == T_ENCLOSURE) {
651 		if (STRNCMP(&iqd[8], SEN_ID, SEN_ID_LEN) == 0) {
652 			return (SES_SEN);
653 		} else if ((iqd[2] & 0x7) > 2) {
654 			return (SES_SES);
655 		} else {
656 			return (SES_SES_SCSI2);
657 		}
658 		return (SES_NONE);
659 	}
660 
661 #ifdef	SES_ENABLE_PASSTHROUGH
662 	if ((iqd[6] & 0x40) && (iqd[2] & 0x7) >= 2) {
663 		/*
664 		 * PassThrough Device.
665 		 */
666 		return (SES_SES_PASSTHROUGH);
667 	}
668 #endif
669 
670 	/*
671 	 * The comparison is short for a reason-
672 	 * some vendors were chopping it short.
673 	 */
674 
675 	if (buflen < SAFTE_END - 2) {
676 		return (SES_NONE);
677 	}
678 
679 	if (STRNCMP((char *)&iqd[SAFTE_START], "SAF-TE", SAFTE_LEN - 2) == 0) {
680 		return (SES_SAFT);
681 	}
682 	return (SES_NONE);
683 }
684 
685 /*
686  * SES Native Type Device Support
687  */
688 
689 /*
690  * SES Diagnostic Page Codes
691  */
692 
693 typedef enum {
694 	SesConfigPage = 0x1,
695 	SesControlPage,
696 #define	SesStatusPage SesControlPage
697 	SesHelpTxt,
698 	SesStringOut,
699 #define	SesStringIn	SesStringOut
700 	SesThresholdOut,
701 #define	SesThresholdIn SesThresholdOut
702 	SesArrayControl,
703 #define	SesArrayStatus	SesArrayControl
704 	SesElementDescriptor,
705 	SesShortStatus
706 } SesDiagPageCodes;
707 
708 /*
709  * minimal amounts
710  */
711 
712 /*
713  * Minimum amount of data, starting from byte 0, to have
714  * the config header.
715  */
716 #define	SES_CFGHDR_MINLEN	12
717 
718 /*
719  * Minimum amount of data, starting from byte 0, to have
720  * the config header and one enclosure header.
721  */
722 #define	SES_ENCHDR_MINLEN	48
723 
724 /*
725  * Take this value, subtract it from VEnclen and you know
726  * the length of the vendor unique bytes.
727  */
728 #define	SES_ENCHDR_VMIN		36
729 
730 /*
731  * SES Data Structures
732  */
733 
734 typedef struct {
735 	uint32_t GenCode;	/* Generation Code */
736 	uint8_t	Nsubenc;	/* Number of Subenclosures */
737 } SesCfgHdr;
738 
739 typedef struct {
740 	uint8_t	Subencid;	/* SubEnclosure Identifier */
741 	uint8_t	Ntypes;		/* # of supported types */
742 	uint8_t	VEnclen;	/* Enclosure Descriptor Length */
743 } SesEncHdr;
744 
745 typedef struct {
746 	uint8_t	encWWN[8];	/* XXX- Not Right Yet */
747 	uint8_t	encVid[8];
748 	uint8_t	encPid[16];
749 	uint8_t	encRev[4];
750 	uint8_t	encVen[1];
751 } SesEncDesc;
752 
753 typedef struct {
754 	uint8_t	enc_type;		/* type of element */
755 	uint8_t	enc_maxelt;		/* maximum supported */
756 	uint8_t	enc_subenc;		/* in SubEnc # N */
757 	uint8_t	enc_tlen;		/* Type Descriptor Text Length */
758 } SesThdr;
759 
760 typedef struct {
761 	uint8_t	comstatus;
762 	uint8_t	comstat[3];
763 } SesComStat;
764 
765 struct typidx {
766 	int ses_tidx;
767 	int ses_oidx;
768 };
769 
770 struct sscfg {
771 	uint8_t ses_ntypes;	/* total number of types supported */
772 
773 	/*
774 	 * We need to keep a type index as well as an
775 	 * object index for each object in an enclosure.
776 	 */
777 	struct typidx *ses_typidx;
778 
779 	/*
780 	 * We also need to keep track of the number of elements
781 	 * per type of element. This is needed later so that we
782 	 * can find precisely in the returned status data the
783 	 * status for the Nth element of the Kth type.
784 	 */
785 	uint8_t *	ses_eltmap;
786 };
787 
788 
789 /*
790  * (de)canonicalization defines
791  */
792 #define	sbyte(x, byte)		((((uint32_t)(x)) >> (byte * 8)) & 0xff)
793 #define	sbit(x, bit)		(((uint32_t)(x)) << bit)
794 #define	sset8(outp, idx, sval)	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
795 
796 #define	sset16(outp, idx, sval)	\
797 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
798 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
799 
800 
801 #define	sset24(outp, idx, sval)	\
802 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
803 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
804 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
805 
806 
807 #define	sset32(outp, idx, sval)	\
808 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
809 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
810 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
811 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
812 
813 #define	gbyte(x, byte)	((((uint32_t)(x)) & 0xff) << (byte * 8))
814 #define	gbit(lv, in, idx, shft, mask)	lv = ((in[idx] >> shft) & mask)
815 #define	sget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx++])
816 #define	gget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx])
817 
818 #define	sget16(inp, idx, lval)	\
819 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
820 		(((uint8_t *)(inp))[idx+1]), idx += 2
821 
822 #define	gget16(inp, idx, lval)	\
823 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
824 		(((uint8_t *)(inp))[idx+1])
825 
826 #define	sget24(inp, idx, lval)	\
827 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
828 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
829 			(((uint8_t *)(inp))[idx+2]), idx += 3
830 
831 #define	gget24(inp, idx, lval)	\
832 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
833 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
834 			(((uint8_t *)(inp))[idx+2])
835 
836 #define	sget32(inp, idx, lval)	\
837 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
838 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
839 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
840 			(((uint8_t *)(inp))[idx+3]), idx += 4
841 
842 #define	gget32(inp, idx, lval)	\
843 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
844 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
845 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
846 			(((uint8_t *)(inp))[idx+3])
847 
848 #define	SCSZ	0x2000
849 #define	CFLEN	(256 + SES_ENCHDR_MINLEN)
850 
851 /*
852  * Routines specific && private to SES only
853  */
854 
855 static int ses_getconfig(ses_softc_t *);
856 static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
857 static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
858 static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
859 static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
860 static int ses_getthdr(uint8_t *, int,  int, SesThdr *);
861 static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
862 static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
863 
864 static int
865 ses_softc_init(ses_softc_t *ssc, int doinit)
866 {
867 	if (doinit == 0) {
868 		struct sscfg *cc;
869 		if (ssc->ses_nobjects) {
870 			SES_FREE(ssc->ses_objmap,
871 			    ssc->ses_nobjects * sizeof (encobj));
872 			ssc->ses_objmap = NULL;
873 		}
874 		if ((cc = ssc->ses_private) != NULL) {
875 			if (cc->ses_eltmap && cc->ses_ntypes) {
876 				SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
877 				cc->ses_eltmap = NULL;
878 				cc->ses_ntypes = 0;
879 			}
880 			if (cc->ses_typidx && ssc->ses_nobjects) {
881 				SES_FREE(cc->ses_typidx,
882 				    ssc->ses_nobjects * sizeof (struct typidx));
883 				cc->ses_typidx = NULL;
884 			}
885 			SES_FREE(cc, sizeof (struct sscfg));
886 			ssc->ses_private = NULL;
887 		}
888 		ssc->ses_nobjects = 0;
889 		return (0);
890 	}
891 	if (ssc->ses_private == NULL) {
892 		ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
893 	}
894 	if (ssc->ses_private == NULL) {
895 		return (ENOMEM);
896 	}
897 	ssc->ses_nobjects = 0;
898 	ssc->ses_encstat = 0;
899 	return (ses_getconfig(ssc));
900 }
901 
902 static int
903 ses_init_enc(ses_softc_t *ssc)
904 {
905 	return (0);
906 }
907 
908 static int
909 ses_get_encstat(ses_softc_t *ssc, int slpflag)
910 {
911 	SesComStat ComStat;
912 	int status;
913 
914 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
915 		return (status);
916 	}
917 	ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
918 	return (0);
919 }
920 
921 static int
922 ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
923 {
924 	SesComStat ComStat;
925 	int status;
926 
927 	ComStat.comstatus = encstat & 0xf;
928 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
929 		return (status);
930 	}
931 	ssc->ses_encstat = encstat & 0xf;	/* note no SVALID set */
932 	return (0);
933 }
934 
935 static int
936 ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
937 {
938 	int i = (int)obp->obj_id;
939 
940 	if (ssc->ses_objmap[i].svalid == 0) {
941 		SesComStat ComStat;
942 		int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
943 		if (err)
944 			return (err);
945 		ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
946 		ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
947 		ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
948 		ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
949 		ssc->ses_objmap[i].svalid = 1;
950 	}
951 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
952 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
953 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
954 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
955 	return (0);
956 }
957 
958 static int
959 ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
960 {
961 	SesComStat ComStat;
962 	int err;
963 	/*
964 	 * If this is clear, we don't do diddly.
965 	 */
966 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
967 		return (0);
968 	}
969 	ComStat.comstatus = obp->cstat[0];
970 	ComStat.comstat[0] = obp->cstat[1];
971 	ComStat.comstat[1] = obp->cstat[2];
972 	ComStat.comstat[2] = obp->cstat[3];
973 	err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
974 	ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
975 	return (err);
976 }
977 
978 static int
979 ses_getconfig(ses_softc_t *ssc)
980 {
981 	struct sscfg *cc;
982 	SesCfgHdr cf;
983 	SesEncHdr hd;
984 	SesEncDesc *cdp;
985 	SesThdr thdr;
986 	int err, amt, i, nobj, ntype, maxima;
987 	char storage[CFLEN], *sdata;
988 	static char cdb[6] = {
989 	    RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
990 	};
991 
992 	cc = ssc->ses_private;
993 	if (cc == NULL) {
994 		return (ENXIO);
995 	}
996 
997 	sdata = SES_MALLOC(SCSZ);
998 	if (sdata == NULL)
999 		return (ENOMEM);
1000 
1001 	amt = SCSZ;
1002 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1003 	if (err) {
1004 		SES_FREE(sdata, SCSZ);
1005 		return (err);
1006 	}
1007 	amt = SCSZ - amt;
1008 
1009 	if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
1010 		SES_LOG(ssc, "Unable to parse SES Config Header\n");
1011 		SES_FREE(sdata, SCSZ);
1012 		return (EIO);
1013 	}
1014 	if (amt < SES_ENCHDR_MINLEN) {
1015 		SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
1016 		SES_FREE(sdata, SCSZ);
1017 		return (EIO);
1018 	}
1019 
1020 	SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
1021 
1022 	/*
1023 	 * Now waltz through all the subenclosures toting up the
1024 	 * number of types available in each. For this, we only
1025 	 * really need the enclosure header. However, we get the
1026 	 * enclosure descriptor for debug purposes, as well
1027 	 * as self-consistency checking purposes.
1028 	 */
1029 
1030 	maxima = cf.Nsubenc + 1;
1031 	cdp = (SesEncDesc *) storage;
1032 	for (ntype = i = 0; i < maxima; i++) {
1033 		MEMZERO((caddr_t)cdp, sizeof (*cdp));
1034 		if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
1035 			SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
1036 			SES_FREE(sdata, SCSZ);
1037 			return (EIO);
1038 		}
1039 		SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
1040 		    "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
1041 
1042 		if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
1043 			SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
1044 			SES_FREE(sdata, SCSZ);
1045 			return (EIO);
1046 		}
1047 		SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
1048 		    cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
1049 		    cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
1050 		    cdp->encWWN[6], cdp->encWWN[7]);
1051 		ntype += hd.Ntypes;
1052 	}
1053 
1054 	/*
1055 	 * Now waltz through all the types that are available, getting
1056 	 * the type header so we can start adding up the number of
1057 	 * objects available.
1058 	 */
1059 	for (nobj = i = 0; i < ntype; i++) {
1060 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1061 			SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
1062 			SES_FREE(sdata, SCSZ);
1063 			return (EIO);
1064 		}
1065 		SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
1066 		    "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
1067 		    thdr.enc_subenc, thdr.enc_tlen);
1068 		nobj += thdr.enc_maxelt;
1069 	}
1070 
1071 
1072 	/*
1073 	 * Now allocate the object array and type map.
1074 	 */
1075 
1076 	ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
1077 	cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
1078 	cc->ses_eltmap = SES_MALLOC(ntype);
1079 
1080 	if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
1081 	    cc->ses_eltmap == NULL) {
1082 		if (ssc->ses_objmap) {
1083 			SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
1084 			ssc->ses_objmap = NULL;
1085 		}
1086 		if (cc->ses_typidx) {
1087 			SES_FREE(cc->ses_typidx,
1088 			    (nobj * sizeof (struct typidx)));
1089 			cc->ses_typidx = NULL;
1090 		}
1091 		if (cc->ses_eltmap) {
1092 			SES_FREE(cc->ses_eltmap, ntype);
1093 			cc->ses_eltmap = NULL;
1094 		}
1095 		SES_FREE(sdata, SCSZ);
1096 		return (ENOMEM);
1097 	}
1098 	MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
1099 	MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
1100 	MEMZERO(cc->ses_eltmap, ntype);
1101 	cc->ses_ntypes = (uint8_t) ntype;
1102 	ssc->ses_nobjects = nobj;
1103 
1104 	/*
1105 	 * Now waltz through the # of types again to fill in the types
1106 	 * (and subenclosure ids) of the allocated objects.
1107 	 */
1108 	nobj = 0;
1109 	for (i = 0; i < ntype; i++) {
1110 		int j;
1111 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1112 			continue;
1113 		}
1114 		cc->ses_eltmap[i] = thdr.enc_maxelt;
1115 		for (j = 0; j < thdr.enc_maxelt; j++) {
1116 			cc->ses_typidx[nobj].ses_tidx = i;
1117 			cc->ses_typidx[nobj].ses_oidx = j;
1118 			ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
1119 			ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
1120 		}
1121 	}
1122 	SES_FREE(sdata, SCSZ);
1123 	return (0);
1124 }
1125 
1126 static int
1127 ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp, int in)
1128 {
1129 	struct sscfg *cc;
1130 	int err, amt, bufsiz, tidx, oidx;
1131 	char cdb[6], *sdata;
1132 
1133 	cc = ssc->ses_private;
1134 	if (cc == NULL) {
1135 		return (ENXIO);
1136 	}
1137 
1138 	/*
1139 	 * If we're just getting overall enclosure status,
1140 	 * we only need 2 bytes of data storage.
1141 	 *
1142 	 * If we're getting anything else, we know how much
1143 	 * storage we need by noting that starting at offset
1144 	 * 8 in returned data, all object status bytes are 4
1145 	 * bytes long, and are stored in chunks of types(M)
1146 	 * and nth+1 instances of type M.
1147 	 */
1148 	if (objid == -1) {
1149 		bufsiz = 2;
1150 	} else {
1151 		bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
1152 	}
1153 	sdata = SES_MALLOC(bufsiz);
1154 	if (sdata == NULL)
1155 		return (ENOMEM);
1156 
1157 	cdb[0] = RECEIVE_DIAGNOSTIC;
1158 	cdb[1] = 1;
1159 	cdb[2] = SesStatusPage;
1160 	cdb[3] = bufsiz >> 8;
1161 	cdb[4] = bufsiz & 0xff;
1162 	cdb[5] = 0;
1163 	amt = bufsiz;
1164 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1165 	if (err) {
1166 		SES_FREE(sdata, bufsiz);
1167 		return (err);
1168 	}
1169 	amt = bufsiz - amt;
1170 
1171 	if (objid == -1) {
1172 		tidx = -1;
1173 		oidx = -1;
1174 	} else {
1175 		tidx = cc->ses_typidx[objid].ses_tidx;
1176 		oidx = cc->ses_typidx[objid].ses_oidx;
1177 	}
1178 	if (in) {
1179 		if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1180 			err = ENODEV;
1181 		}
1182 	} else {
1183 		if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1184 			err = ENODEV;
1185 		} else {
1186 			cdb[0] = SEND_DIAGNOSTIC;
1187 			cdb[1] = 0x10;
1188 			cdb[2] = 0;
1189 			cdb[3] = bufsiz >> 8;
1190 			cdb[4] = bufsiz & 0xff;
1191 			cdb[5] = 0;
1192 			amt = -bufsiz;
1193 			err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1194 		}
1195 	}
1196 	SES_FREE(sdata, bufsiz);
1197 	return (0);
1198 }
1199 
1200 
1201 /*
1202  * Routines to parse returned SES data structures.
1203  * Architecture and compiler independent.
1204  */
1205 
1206 static int
1207 ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
1208 {
1209 	if (buflen < SES_CFGHDR_MINLEN) {
1210 		return (-1);
1211 	}
1212 	gget8(buffer, 1, cfp->Nsubenc);
1213 	gget32(buffer, 4, cfp->GenCode);
1214 	return (0);
1215 }
1216 
1217 static int
1218 ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
1219 {
1220 	int s, off = 8;
1221 	for (s = 0; s < SubEncId; s++) {
1222 		if (off + 3 > amt)
1223 			return (-1);
1224 		off += buffer[off+3] + 4;
1225 	}
1226 	if (off + 3 > amt) {
1227 		return (-1);
1228 	}
1229 	gget8(buffer, off+1, chp->Subencid);
1230 	gget8(buffer, off+2, chp->Ntypes);
1231 	gget8(buffer, off+3, chp->VEnclen);
1232 	return (0);
1233 }
1234 
1235 static int
1236 ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
1237 {
1238 	int s, e, enclen, off = 8;
1239 	for (s = 0; s < SubEncId; s++) {
1240 		if (off + 3 > amt)
1241 			return (-1);
1242 		off += buffer[off+3] + 4;
1243 	}
1244 	if (off + 3 > amt) {
1245 		return (-1);
1246 	}
1247 	gget8(buffer, off+3, enclen);
1248 	off += 4;
1249 	if (off  >= amt)
1250 		return (-1);
1251 
1252 	e = off + enclen;
1253 	if (e > amt) {
1254 		e = amt;
1255 	}
1256 	MEMCPY(cdp, &buffer[off], e - off);
1257 	return (0);
1258 }
1259 
1260 static int
1261 ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
1262 {
1263 	int s, off = 8;
1264 
1265 	if (amt < SES_CFGHDR_MINLEN) {
1266 		return (-1);
1267 	}
1268 	for (s = 0; s < buffer[1]; s++) {
1269 		if (off + 3 > amt)
1270 			return (-1);
1271 		off += buffer[off+3] + 4;
1272 	}
1273 	if (off + 3 > amt) {
1274 		return (-1);
1275 	}
1276 	off += buffer[off+3] + 4 + (nth * 4);
1277 	if (amt < (off + 4))
1278 		return (-1);
1279 
1280 	gget8(buffer, off++, thp->enc_type);
1281 	gget8(buffer, off++, thp->enc_maxelt);
1282 	gget8(buffer, off++, thp->enc_subenc);
1283 	gget8(buffer, off, thp->enc_tlen);
1284 	return (0);
1285 }
1286 
1287 /*
1288  * This function needs a little explanation.
1289  *
1290  * The arguments are:
1291  *
1292  *
1293  *	char *b, int amt
1294  *
1295  *		These describes the raw input SES status data and length.
1296  *
1297  *	uint8_t *ep
1298  *
1299  *		This is a map of the number of types for each element type
1300  *		in the enclosure.
1301  *
1302  *	int elt
1303  *
1304  *		This is the element type being sought. If elt is -1,
1305  *		then overall enclosure status is being sought.
1306  *
1307  *	int elm
1308  *
1309  *		This is the ordinal Mth element of type elt being sought.
1310  *
1311  *	SesComStat *sp
1312  *
1313  *		This is the output area to store the status for
1314  *		the Mth element of type Elt.
1315  */
1316 
1317 static int
1318 ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1319 {
1320 	int idx, i;
1321 
1322 	/*
1323 	 * If it's overall enclosure status being sought, get that.
1324 	 * We need at least 2 bytes of status data to get that.
1325 	 */
1326 	if (elt == -1) {
1327 		if (amt < 2)
1328 			return (-1);
1329 		gget8(b, 1, sp->comstatus);
1330 		sp->comstat[0] = 0;
1331 		sp->comstat[1] = 0;
1332 		sp->comstat[2] = 0;
1333 		return (0);
1334 	}
1335 
1336 	/*
1337 	 * Check to make sure that the Mth element is legal for type Elt.
1338 	 */
1339 
1340 	if (elm >= ep[elt])
1341 		return (-1);
1342 
1343 	/*
1344 	 * Starting at offset 8, start skipping over the storage
1345 	 * for the element types we're not interested in.
1346 	 */
1347 	for (idx = 8, i = 0; i < elt; i++) {
1348 		idx += ((ep[i] + 1) * 4);
1349 	}
1350 
1351 	/*
1352 	 * Skip over Overall status for this element type.
1353 	 */
1354 	idx += 4;
1355 
1356 	/*
1357 	 * And skip to the index for the Mth element that we're going for.
1358 	 */
1359 	idx += (4 * elm);
1360 
1361 	/*
1362 	 * Make sure we haven't overflowed the buffer.
1363 	 */
1364 	if (idx+4 > amt)
1365 		return (-1);
1366 
1367 	/*
1368 	 * Retrieve the status.
1369 	 */
1370 	gget8(b, idx++, sp->comstatus);
1371 	gget8(b, idx++, sp->comstat[0]);
1372 	gget8(b, idx++, sp->comstat[1]);
1373 	gget8(b, idx++, sp->comstat[2]);
1374 #if	0
1375 	PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
1376 #endif
1377 	return (0);
1378 }
1379 
1380 /*
1381  * This is the mirror function to ses_decode, but we set the 'select'
1382  * bit for the object which we're interested in. All other objects,
1383  * after a status fetch, should have that bit off. Hmm. It'd be easy
1384  * enough to ensure this, so we will.
1385  */
1386 
1387 static int
1388 ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1389 {
1390 	int idx, i;
1391 
1392 	/*
1393 	 * If it's overall enclosure status being sought, get that.
1394 	 * We need at least 2 bytes of status data to get that.
1395 	 */
1396 	if (elt == -1) {
1397 		if (amt < 2)
1398 			return (-1);
1399 		i = 0;
1400 		sset8(b, i, 0);
1401 		sset8(b, i, sp->comstatus & 0xf);
1402 #if	0
1403 		PRINTF("set EncStat %x\n", sp->comstatus);
1404 #endif
1405 		return (0);
1406 	}
1407 
1408 	/*
1409 	 * Check to make sure that the Mth element is legal for type Elt.
1410 	 */
1411 
1412 	if (elm >= ep[elt])
1413 		return (-1);
1414 
1415 	/*
1416 	 * Starting at offset 8, start skipping over the storage
1417 	 * for the element types we're not interested in.
1418 	 */
1419 	for (idx = 8, i = 0; i < elt; i++) {
1420 		idx += ((ep[i] + 1) * 4);
1421 	}
1422 
1423 	/*
1424 	 * Skip over Overall status for this element type.
1425 	 */
1426 	idx += 4;
1427 
1428 	/*
1429 	 * And skip to the index for the Mth element that we're going for.
1430 	 */
1431 	idx += (4 * elm);
1432 
1433 	/*
1434 	 * Make sure we haven't overflowed the buffer.
1435 	 */
1436 	if (idx+4 > amt)
1437 		return (-1);
1438 
1439 	/*
1440 	 * Set the status.
1441 	 */
1442 	sset8(b, idx, sp->comstatus);
1443 	sset8(b, idx, sp->comstat[0]);
1444 	sset8(b, idx, sp->comstat[1]);
1445 	sset8(b, idx, sp->comstat[2]);
1446 	idx -= 4;
1447 
1448 #if	0
1449 	PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
1450 	    elt, elm, idx, sp->comstatus, sp->comstat[0],
1451 	    sp->comstat[1], sp->comstat[2]);
1452 #endif
1453 
1454 	/*
1455 	 * Now make sure all other 'Select' bits are off.
1456 	 */
1457 	for (i = 8; i < amt; i += 4) {
1458 		if (i != idx)
1459 			b[i] &= ~0x80;
1460 	}
1461 	/*
1462 	 * And make sure the INVOP bit is clear.
1463 	 */
1464 	b[2] &= ~0x10;
1465 
1466 	return (0);
1467 }
1468 
1469 /*
1470  * SAF-TE Type Device Emulation
1471  */
1472 
1473 static int safte_getconfig(ses_softc_t *);
1474 static int safte_rdstat(ses_softc_t *, int);;
1475 static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
1476 static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
1477 static void wrslot_stat(ses_softc_t *, int);
1478 static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
1479 
1480 #define	ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
1481 	SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
1482 /*
1483  * SAF-TE specific defines- Mandatory ones only...
1484  */
1485 
1486 /*
1487  * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
1488  */
1489 #define	SAFTE_RD_RDCFG	0x00	/* read enclosure configuration */
1490 #define	SAFTE_RD_RDESTS	0x01	/* read enclosure status */
1491 #define	SAFTE_RD_RDDSTS	0x04	/* read drive slot status */
1492 
1493 /*
1494  * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
1495  */
1496 #define	SAFTE_WT_DSTAT	0x10	/* write device slot status */
1497 #define	SAFTE_WT_SLTOP	0x12	/* perform slot operation */
1498 #define	SAFTE_WT_FANSPD	0x13	/* set fan speed */
1499 #define	SAFTE_WT_ACTPWS	0x14	/* turn on/off power supply */
1500 #define	SAFTE_WT_GLOBAL	0x15	/* send global command */
1501 
1502 
1503 #define	SAFT_SCRATCH	64
1504 #define	NPSEUDO_THERM	16
1505 #define	NPSEUDO_ALARM	1
1506 struct scfg {
1507 	/*
1508 	 * Cached Configuration
1509 	 */
1510 	uint8_t	Nfans;		/* Number of Fans */
1511 	uint8_t	Npwr;		/* Number of Power Supplies */
1512 	uint8_t	Nslots;		/* Number of Device Slots */
1513 	uint8_t	DoorLock;	/* Door Lock Installed */
1514 	uint8_t	Ntherm;		/* Number of Temperature Sensors */
1515 	uint8_t	Nspkrs;		/* Number of Speakers */
1516 	uint8_t Nalarm;		/* Number of Alarms (at least one) */
1517 	/*
1518 	 * Cached Flag Bytes for Global Status
1519 	 */
1520 	uint8_t	flag1;
1521 	uint8_t	flag2;
1522 	/*
1523 	 * What object index ID is where various slots start.
1524 	 */
1525 	uint8_t	pwroff;
1526 	uint8_t	slotoff;
1527 #define	SAFT_ALARM_OFFSET(cc)	(cc)->slotoff - 1
1528 };
1529 
1530 #define	SAFT_FLG1_ALARM		0x1
1531 #define	SAFT_FLG1_GLOBFAIL	0x2
1532 #define	SAFT_FLG1_GLOBWARN	0x4
1533 #define	SAFT_FLG1_ENCPWROFF	0x8
1534 #define	SAFT_FLG1_ENCFANFAIL	0x10
1535 #define	SAFT_FLG1_ENCPWRFAIL	0x20
1536 #define	SAFT_FLG1_ENCDRVFAIL	0x40
1537 #define	SAFT_FLG1_ENCDRVWARN	0x80
1538 
1539 #define	SAFT_FLG2_LOCKDOOR	0x4
1540 #define	SAFT_PRIVATE		sizeof (struct scfg)
1541 
1542 static char *safte_2little = "Too Little Data Returned (%d) at line %d\n";
1543 #define	SAFT_BAIL(r, x, k, l)	\
1544 	if (r >= x) { \
1545 		SES_LOG(ssc, safte_2little, x, __LINE__);\
1546 		SES_FREE(k, l); \
1547 		return (EIO); \
1548 	}
1549 
1550 
1551 int
1552 safte_softc_init(ses_softc_t *ssc, int doinit)
1553 {
1554 	int err, i, r;
1555 	struct scfg *cc;
1556 
1557 	if (doinit == 0) {
1558 		if (ssc->ses_nobjects) {
1559 			if (ssc->ses_objmap) {
1560 				SES_FREE(ssc->ses_objmap,
1561 				    ssc->ses_nobjects * sizeof (encobj));
1562 				ssc->ses_objmap = NULL;
1563 			}
1564 			ssc->ses_nobjects = 0;
1565 		}
1566 		if (ssc->ses_private) {
1567 			SES_FREE(ssc->ses_private, SAFT_PRIVATE);
1568 			ssc->ses_private = NULL;
1569 		}
1570 		return (0);
1571 	}
1572 
1573 	if (ssc->ses_private == NULL) {
1574 		ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
1575 		if (ssc->ses_private == NULL) {
1576 			return (ENOMEM);
1577 		}
1578 		MEMZERO(ssc->ses_private, SAFT_PRIVATE);
1579 	}
1580 
1581 	ssc->ses_nobjects = 0;
1582 	ssc->ses_encstat = 0;
1583 
1584 	if ((err = safte_getconfig(ssc)) != 0) {
1585 		return (err);
1586 	}
1587 
1588 	/*
1589 	 * The number of objects here, as well as that reported by the
1590 	 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
1591 	 * that get reported during READ_BUFFER/READ_ENC_STATUS.
1592 	 */
1593 	cc = ssc->ses_private;
1594 	ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
1595 	    cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
1596 	ssc->ses_objmap = (encobj *)
1597 	    SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
1598 	if (ssc->ses_objmap == NULL) {
1599 		return (ENOMEM);
1600 	}
1601 	MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
1602 
1603 	r = 0;
1604 	/*
1605 	 * Note that this is all arranged for the convenience
1606 	 * in later fetches of status.
1607 	 */
1608 	for (i = 0; i < cc->Nfans; i++)
1609 		ssc->ses_objmap[r++].enctype = SESTYP_FAN;
1610 	cc->pwroff = (uint8_t) r;
1611 	for (i = 0; i < cc->Npwr; i++)
1612 		ssc->ses_objmap[r++].enctype = SESTYP_POWER;
1613 	for (i = 0; i < cc->DoorLock; i++)
1614 		ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
1615 	for (i = 0; i < cc->Nspkrs; i++)
1616 		ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1617 	for (i = 0; i < cc->Ntherm; i++)
1618 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1619 	for (i = 0; i < NPSEUDO_THERM; i++)
1620 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1621 	ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1622 	cc->slotoff = (uint8_t) r;
1623 	for (i = 0; i < cc->Nslots; i++)
1624 		ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
1625 	return (0);
1626 }
1627 
1628 int
1629 safte_init_enc(ses_softc_t *ssc)
1630 {
1631 	int err;
1632 	static char cdb0[6] = { SEND_DIAGNOSTIC };
1633 
1634 	err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
1635 	if (err) {
1636 		return (err);
1637 	}
1638 	DELAY(5000);
1639 	err = wrbuf16(ssc, SAFTE_WT_GLOBAL, 0, 0, 0, 1);
1640 	return (err);
1641 }
1642 
1643 int
1644 safte_get_encstat(ses_softc_t *ssc, int slpflg)
1645 {
1646 	return (safte_rdstat(ssc, slpflg));
1647 }
1648 
1649 int
1650 safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
1651 {
1652 	struct scfg *cc = ssc->ses_private;
1653 	if (cc == NULL)
1654 		return (0);
1655 	/*
1656 	 * Since SAF-TE devices aren't necessarily sticky in terms
1657 	 * of state, make our soft copy of enclosure status 'sticky'-
1658 	 * that is, things set in enclosure status stay set (as implied
1659 	 * by conditions set in reading object status) until cleared.
1660 	 */
1661 	ssc->ses_encstat &= ~ALL_ENC_STAT;
1662 	ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
1663 	ssc->ses_encstat |= ENCI_SVALID;
1664 	cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
1665 	if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
1666 		cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
1667 	} else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
1668 		cc->flag1 |= SAFT_FLG1_GLOBWARN;
1669 	}
1670 	return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
1671 }
1672 
1673 int
1674 safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
1675 {
1676 	int i = (int)obp->obj_id;
1677 
1678 	if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
1679 	    (ssc->ses_objmap[i].svalid) == 0) {
1680 		int err = safte_rdstat(ssc, slpflg);
1681 		if (err)
1682 			return (err);
1683 	}
1684 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1685 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1686 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1687 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1688 	return (0);
1689 }
1690 
1691 
1692 int
1693 safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
1694 {
1695 	int idx, err;
1696 	encobj *ep;
1697 	struct scfg *cc;
1698 
1699 
1700 	SES_DLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
1701 	    (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
1702 	    obp->cstat[3]);
1703 
1704 	/*
1705 	 * If this is clear, we don't do diddly.
1706 	 */
1707 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1708 		return (0);
1709 	}
1710 
1711 	err = 0;
1712 	/*
1713 	 * Check to see if the common bits are set and do them first.
1714 	 */
1715 	if (obp->cstat[0] & ~SESCTL_CSEL) {
1716 		err = set_objstat_sel(ssc, obp, slp);
1717 		if (err)
1718 			return (err);
1719 	}
1720 
1721 	cc = ssc->ses_private;
1722 	if (cc == NULL)
1723 		return (0);
1724 
1725 	idx = (int)obp->obj_id;
1726 	ep = &ssc->ses_objmap[idx];
1727 
1728 	switch (ep->enctype) {
1729 	case SESTYP_DEVICE:
1730 	{
1731 		uint8_t slotop = 0;
1732 		/*
1733 		 * XXX: I should probably cache the previous state
1734 		 * XXX: of SESCTL_DEVOFF so that when it goes from
1735 		 * XXX: true to false I can then set PREPARE FOR OPERATION
1736 		 * XXX: flag in PERFORM SLOT OPERATION write buffer command.
1737 		 */
1738 		if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
1739 			slotop |= 0x2;
1740 		}
1741 		if (obp->cstat[2] & SESCTL_RQSID) {
1742 			slotop |= 0x4;
1743 		}
1744 		err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
1745 		    slotop, slp);
1746 		if (err)
1747 			return (err);
1748 		if (obp->cstat[3] & SESCTL_RQSFLT) {
1749 			ep->priv |= 0x2;
1750 		} else {
1751 			ep->priv &= ~0x2;
1752 		}
1753 		if (ep->priv & 0xc6) {
1754 			ep->priv &= ~0x1;
1755 		} else {
1756 			ep->priv |= 0x1;	/* no errors */
1757 		}
1758 		wrslot_stat(ssc, slp);
1759 		break;
1760 	}
1761 	case SESTYP_POWER:
1762 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1763 			cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
1764 		} else {
1765 			cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
1766 		}
1767 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1768 		    cc->flag2, 0, slp);
1769 		if (err)
1770 			return (err);
1771 		if (obp->cstat[3] & SESCTL_RQSTON) {
1772 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1773 				idx - cc->pwroff, 0, 0, slp);
1774 		} else {
1775 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1776 				idx - cc->pwroff, 0, 1, slp);
1777 		}
1778 		break;
1779 	case SESTYP_FAN:
1780 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1781 			cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
1782 		} else {
1783 			cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
1784 		}
1785 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1786 		    cc->flag2, 0, slp);
1787 		if (err)
1788 			return (err);
1789 		if (obp->cstat[3] & SESCTL_RQSTON) {
1790 			uint8_t fsp;
1791 			if ((obp->cstat[3] & 0x7) == 7) {
1792 				fsp = 4;
1793 			} else if ((obp->cstat[3] & 0x7) == 6) {
1794 				fsp = 3;
1795 			} else if ((obp->cstat[3] & 0x7) == 4) {
1796 				fsp = 2;
1797 			} else {
1798 				fsp = 1;
1799 			}
1800 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
1801 		} else {
1802 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
1803 		}
1804 		break;
1805 	case SESTYP_DOORLOCK:
1806 		if (obp->cstat[3] & 0x1) {
1807 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
1808 		} else {
1809 			cc->flag2 |= SAFT_FLG2_LOCKDOOR;
1810 		}
1811 		(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1812 		    cc->flag2, 0, slp);
1813 		break;
1814 	case SESTYP_ALARM:
1815 		/*
1816 		 * On all nonzero but the 'muted' bit, we turn on the alarm,
1817 		 */
1818 		obp->cstat[3] &= ~0xa;
1819 		if (obp->cstat[3] & 0x40) {
1820 			cc->flag2 &= ~SAFT_FLG1_ALARM;
1821 		} else if (obp->cstat[3] != 0) {
1822 			cc->flag2 |= SAFT_FLG1_ALARM;
1823 		} else {
1824 			cc->flag2 &= ~SAFT_FLG1_ALARM;
1825 		}
1826 		ep->priv = obp->cstat[3];
1827 		(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1828 			cc->flag2, 0, slp);
1829 		break;
1830 	default:
1831 		break;
1832 	}
1833 	ep->svalid = 0;
1834 	return (0);
1835 }
1836 
1837 static int
1838 safte_getconfig(ses_softc_t *ssc)
1839 {
1840 	struct scfg *cfg;
1841 	int err, amt;
1842 	char *sdata;
1843 	static char cdb[10] =
1844 	    { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
1845 
1846 	cfg = ssc->ses_private;
1847 	if (cfg == NULL)
1848 		return (ENXIO);
1849 
1850 	sdata = SES_MALLOC(SAFT_SCRATCH);
1851 	if (sdata == NULL)
1852 		return (ENOMEM);
1853 
1854 	amt = SAFT_SCRATCH;
1855 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1856 	if (err) {
1857 		SES_FREE(sdata, SAFT_SCRATCH);
1858 		return (err);
1859 	}
1860 	amt = SAFT_SCRATCH - amt;
1861 	if (amt < 6) {
1862 		SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
1863 		SES_FREE(sdata, SAFT_SCRATCH);
1864 		return (EIO);
1865 	}
1866 	SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
1867 	    sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
1868 	cfg->Nfans = sdata[0];
1869 	cfg->Npwr = sdata[1];
1870 	cfg->Nslots = sdata[2];
1871 	cfg->DoorLock = sdata[3];
1872 	cfg->Ntherm = sdata[4];
1873 	cfg->Nspkrs = sdata[5];
1874 	cfg->Nalarm = NPSEUDO_ALARM;
1875 	SES_FREE(sdata, SAFT_SCRATCH);
1876 	return (0);
1877 }
1878 
1879 static int
1880 safte_rdstat(ses_softc_t *ssc, int slpflg)
1881 {
1882 	int err, oid, r, i, hiwater, nitems, amt;
1883 	uint16_t tempflags;
1884 	size_t buflen;
1885 	uint8_t status, oencstat;
1886 	char *sdata, cdb[10];
1887 	struct scfg *cc = ssc->ses_private;
1888 
1889 
1890 	/*
1891 	 * The number of objects overstates things a bit,
1892 	 * both for the bogus 'thermometer' entries and
1893 	 * the drive status (which isn't read at the same
1894 	 * time as the enclosure status), but that's okay.
1895 	 */
1896 	buflen = 4 * cc->Nslots;
1897 	if (ssc->ses_nobjects > buflen)
1898 		buflen = ssc->ses_nobjects;
1899 	sdata = SES_MALLOC(buflen);
1900 	if (sdata == NULL)
1901 		return (ENOMEM);
1902 
1903 	cdb[0] = READ_BUFFER;
1904 	cdb[1] = 1;
1905 	cdb[2] = SAFTE_RD_RDESTS;
1906 	cdb[3] = 0;
1907 	cdb[4] = 0;
1908 	cdb[5] = 0;
1909 	cdb[6] = 0;
1910 	cdb[7] = (buflen >> 8) & 0xff;
1911 	cdb[8] = buflen & 0xff;
1912 	cdb[9] = 0;
1913 	amt = buflen;
1914 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1915 	if (err) {
1916 		SES_FREE(sdata, buflen);
1917 		return (err);
1918 	}
1919 	hiwater = buflen - amt;
1920 
1921 
1922 	/*
1923 	 * invalidate all status bits.
1924 	 */
1925 	for (i = 0; i < ssc->ses_nobjects; i++)
1926 		ssc->ses_objmap[i].svalid = 0;
1927 	oencstat = ssc->ses_encstat & ALL_ENC_STAT;
1928 	ssc->ses_encstat = 0;
1929 
1930 
1931 	/*
1932 	 * Now parse returned buffer.
1933 	 * If we didn't get enough data back,
1934 	 * that's considered a fatal error.
1935 	 */
1936 	oid = r = 0;
1937 
1938 	for (nitems = i = 0; i < cc->Nfans; i++) {
1939 		SAFT_BAIL(r, hiwater, sdata, buflen);
1940 		/*
1941 		 * 0 = Fan Operational
1942 		 * 1 = Fan is malfunctioning
1943 		 * 2 = Fan is not present
1944 		 * 0x80 = Unknown or Not Reportable Status
1945 		 */
1946 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
1947 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
1948 		switch ((int)(uint8_t)sdata[r]) {
1949 		case 0:
1950 			nitems++;
1951 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1952 			/*
1953 			 * We could get fancier and cache
1954 			 * fan speeds that we have set, but
1955 			 * that isn't done now.
1956 			 */
1957 			ssc->ses_objmap[oid].encstat[3] = 7;
1958 			break;
1959 
1960 		case 1:
1961 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1962 			/*
1963 			 * FAIL and FAN STOPPED synthesized
1964 			 */
1965 			ssc->ses_objmap[oid].encstat[3] = 0x40;
1966 			/*
1967 			 * Enclosure marked with CRITICAL error
1968 			 * if only one fan or no thermometers,
1969 			 * else the NONCRITICAL error is set.
1970 			 */
1971 			if (cc->Nfans == 1 || cc->Ntherm == 0)
1972 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1973 			else
1974 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1975 			break;
1976 		case 2:
1977 			ssc->ses_objmap[oid].encstat[0] =
1978 			    SES_OBJSTAT_NOTINSTALLED;
1979 			ssc->ses_objmap[oid].encstat[3] = 0;
1980 			/*
1981 			 * Enclosure marked with CRITICAL error
1982 			 * if only one fan or no thermometers,
1983 			 * else the NONCRITICAL error is set.
1984 			 */
1985 			if (cc->Nfans == 1)
1986 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1987 			else
1988 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1989 			break;
1990 		case 0x80:
1991 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1992 			ssc->ses_objmap[oid].encstat[3] = 0;
1993 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1994 			break;
1995 		default:
1996 			ssc->ses_objmap[oid].encstat[0] =
1997 			    SES_OBJSTAT_UNSUPPORTED;
1998 			SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
1999 			    sdata[r] & 0xff);
2000 			break;
2001 		}
2002 		ssc->ses_objmap[oid++].svalid = 1;
2003 		r++;
2004 	}
2005 
2006 	/*
2007 	 * No matter how you cut it, no cooling elements when there
2008 	 * should be some there is critical.
2009 	 */
2010 	if (cc->Nfans && nitems == 0) {
2011 		ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2012 	}
2013 
2014 
2015 	for (i = 0; i < cc->Npwr; i++) {
2016 		SAFT_BAIL(r, hiwater, sdata, buflen);
2017 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2018 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
2019 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
2020 		ssc->ses_objmap[oid].encstat[3] = 0x20;	/* requested on */
2021 		switch ((uint8_t)sdata[r]) {
2022 		case 0x00:	/* pws operational and on */
2023 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2024 			break;
2025 		case 0x01:	/* pws operational and off */
2026 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2027 			ssc->ses_objmap[oid].encstat[3] = 0x10;
2028 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2029 			break;
2030 		case 0x10:	/* pws is malfunctioning and commanded on */
2031 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2032 			ssc->ses_objmap[oid].encstat[3] = 0x61;
2033 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2034 			break;
2035 
2036 		case 0x11:	/* pws is malfunctioning and commanded off */
2037 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2038 			ssc->ses_objmap[oid].encstat[3] = 0x51;
2039 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2040 			break;
2041 		case 0x20:	/* pws is not present */
2042 			ssc->ses_objmap[oid].encstat[0] =
2043 			    SES_OBJSTAT_NOTINSTALLED;
2044 			ssc->ses_objmap[oid].encstat[3] = 0;
2045 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2046 			break;
2047 		case 0x21:	/* pws is present */
2048 			/*
2049 			 * This is for enclosures that cannot tell whether the
2050 			 * device is on or malfunctioning, but know that it is
2051 			 * present. Just fall through.
2052 			 */
2053 			/* FALLTHROUGH */
2054 		case 0x80:	/* Unknown or Not Reportable Status */
2055 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2056 			ssc->ses_objmap[oid].encstat[3] = 0;
2057 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2058 			break;
2059 		default:
2060 			SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
2061 			    i, sdata[r] & 0xff);
2062 			break;
2063 		}
2064 		ssc->ses_objmap[oid++].svalid = 1;
2065 		r++;
2066 	}
2067 
2068 	/*
2069 	 * Skip over Slot SCSI IDs
2070 	 */
2071 	r += cc->Nslots;
2072 
2073 	/*
2074 	 * We always have doorlock status, no matter what,
2075 	 * but we only save the status if we have one.
2076 	 */
2077 	SAFT_BAIL(r, hiwater, sdata, buflen);
2078 	if (cc->DoorLock) {
2079 		/*
2080 		 * 0 = Door Locked
2081 		 * 1 = Door Unlocked, or no Lock Installed
2082 		 * 0x80 = Unknown or Not Reportable Status
2083 		 */
2084 		ssc->ses_objmap[oid].encstat[1] = 0;
2085 		ssc->ses_objmap[oid].encstat[2] = 0;
2086 		switch ((uint8_t)sdata[r]) {
2087 		case 0:
2088 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2089 			ssc->ses_objmap[oid].encstat[3] = 0;
2090 			break;
2091 		case 1:
2092 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2093 			ssc->ses_objmap[oid].encstat[3] = 1;
2094 			break;
2095 		case 0x80:
2096 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2097 			ssc->ses_objmap[oid].encstat[3] = 0;
2098 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2099 			break;
2100 		default:
2101 			ssc->ses_objmap[oid].encstat[0] =
2102 			    SES_OBJSTAT_UNSUPPORTED;
2103 			SES_LOG(ssc, "unknown lock status 0x%x\n",
2104 			    sdata[r] & 0xff);
2105 			break;
2106 		}
2107 		ssc->ses_objmap[oid++].svalid = 1;
2108 	}
2109 	r++;
2110 
2111 	/*
2112 	 * We always have speaker status, no matter what,
2113 	 * but we only save the status if we have one.
2114 	 */
2115 	SAFT_BAIL(r, hiwater, sdata, buflen);
2116 	if (cc->Nspkrs) {
2117 		ssc->ses_objmap[oid].encstat[1] = 0;
2118 		ssc->ses_objmap[oid].encstat[2] = 0;
2119 		if (sdata[r] == 1) {
2120 			/*
2121 			 * We need to cache tone urgency indicators.
2122 			 * Someday.
2123 			 */
2124 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2125 			ssc->ses_objmap[oid].encstat[3] = 0x8;
2126 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2127 		} else if (sdata[r] == 0) {
2128 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2129 			ssc->ses_objmap[oid].encstat[3] = 0;
2130 		} else {
2131 			ssc->ses_objmap[oid].encstat[0] =
2132 			    SES_OBJSTAT_UNSUPPORTED;
2133 			ssc->ses_objmap[oid].encstat[3] = 0;
2134 			SES_LOG(ssc, "unknown spkr status 0x%x\n",
2135 			    sdata[r] & 0xff);
2136 		}
2137 		ssc->ses_objmap[oid++].svalid = 1;
2138 	}
2139 	r++;
2140 
2141 	for (i = 0; i < cc->Ntherm; i++) {
2142 		SAFT_BAIL(r, hiwater, sdata, buflen);
2143 		/*
2144 		 * Status is a range from -10 to 245 deg Celsius,
2145 		 * which we need to normalize to -20 to -245 according
2146 		 * to the latest SCSI spec, which makes little
2147 		 * sense since this would overflow an 8bit value.
2148 		 * Well, still, the base normalization is -20,
2149 		 * not -10, so we have to adjust.
2150 		 *
2151 		 * So what's over and under temperature?
2152 		 * Hmm- we'll state that 'normal' operating
2153 		 * is 10 to 40 deg Celsius.
2154 		 */
2155 		ssc->ses_objmap[oid].encstat[1] = 0;
2156 		ssc->ses_objmap[oid].encstat[2] =
2157 		    ((unsigned int) sdata[r]) - 10;
2158 		if (sdata[r] < 20) {
2159 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2160 			/*
2161 			 * Set 'under temperature' failure.
2162 			 */
2163 			ssc->ses_objmap[oid].encstat[3] = 2;
2164 			ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2165 		} else if (sdata[r] > 30) {
2166 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2167 			/*
2168 			 * Set 'over temperature' failure.
2169 			 */
2170 			ssc->ses_objmap[oid].encstat[3] = 8;
2171 			ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2172 		} else {
2173 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2174 		}
2175 		ssc->ses_objmap[oid++].svalid = 1;
2176 		r++;
2177 	}
2178 
2179 	/*
2180 	 * Now, for "pseudo" thermometers, we have two bytes
2181 	 * of information in enclosure status- 16 bits. Actually,
2182 	 * the MSB is a single TEMP ALERT flag indicating whether
2183 	 * any other bits are set, but, thanks to fuzzy thinking,
2184 	 * in the SAF-TE spec, this can also be set even if no
2185 	 * other bits are set, thus making this really another
2186 	 * binary temperature sensor.
2187 	 */
2188 
2189 	SAFT_BAIL(r, hiwater, sdata, buflen);
2190 	tempflags = sdata[r++];
2191 	SAFT_BAIL(r, hiwater, sdata, buflen);
2192 	tempflags |= (tempflags << 8) | sdata[r++];
2193 
2194 	for (i = 0; i < NPSEUDO_THERM; i++) {
2195 		ssc->ses_objmap[oid].encstat[1] = 0;
2196 		if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
2197 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2198 			ssc->ses_objmap[4].encstat[2] = 0xff;
2199 			/*
2200 			 * Set 'over temperature' failure.
2201 			 */
2202 			ssc->ses_objmap[oid].encstat[3] = 8;
2203 			ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2204 		} else {
2205 			/*
2206 			 * We used to say 'not available' and synthesize a
2207 			 * nominal 30 deg (C)- that was wrong. Actually,
2208 			 * Just say 'OK', and use the reserved value of
2209 			 * zero.
2210 			 */
2211 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2212 			ssc->ses_objmap[oid].encstat[2] = 0;
2213 			ssc->ses_objmap[oid].encstat[3] = 0;
2214 		}
2215 		ssc->ses_objmap[oid++].svalid = 1;
2216 	}
2217 
2218 	/*
2219 	 * Get alarm status.
2220 	 */
2221 	ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2222 	ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
2223 	ssc->ses_objmap[oid++].svalid = 1;
2224 
2225 	/*
2226 	 * Now get drive slot status
2227 	 */
2228 	cdb[2] = SAFTE_RD_RDDSTS;
2229 	amt = buflen;
2230 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2231 	if (err) {
2232 		SES_FREE(sdata, buflen);
2233 		return (err);
2234 	}
2235 	hiwater = buflen - amt;
2236 	for (r = i = 0; i < cc->Nslots; i++, r += 4) {
2237 		SAFT_BAIL(r+3, hiwater, sdata, buflen);
2238 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
2239 		ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
2240 		ssc->ses_objmap[oid].encstat[2] = 0;
2241 		ssc->ses_objmap[oid].encstat[3] = 0;
2242 		status = sdata[r+3];
2243 		if ((status & 0x1) == 0) {	/* no device */
2244 			ssc->ses_objmap[oid].encstat[0] =
2245 			    SES_OBJSTAT_NOTINSTALLED;
2246 		} else {
2247 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2248 		}
2249 		if (status & 0x2) {
2250 			ssc->ses_objmap[oid].encstat[2] = 0x8;
2251 		}
2252 		if ((status & 0x4) == 0) {
2253 			ssc->ses_objmap[oid].encstat[3] = 0x10;
2254 		}
2255 		ssc->ses_objmap[oid++].svalid = 1;
2256 	}
2257 	/* see comment below about sticky enclosure status */
2258 	ssc->ses_encstat |= ENCI_SVALID | oencstat;
2259 	SES_FREE(sdata, buflen);
2260 	return (0);
2261 }
2262 
2263 static int
2264 set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
2265 {
2266 	int idx;
2267 	encobj *ep;
2268 	struct scfg *cc = ssc->ses_private;
2269 
2270 	if (cc == NULL)
2271 		return (0);
2272 
2273 	idx = (int)obp->obj_id;
2274 	ep = &ssc->ses_objmap[idx];
2275 
2276 	switch (ep->enctype) {
2277 	case SESTYP_DEVICE:
2278 		if (obp->cstat[0] & SESCTL_PRDFAIL) {
2279 			ep->priv |= 0x40;
2280 		}
2281 		/* SESCTL_RSTSWAP has no correspondence in SAF-TE */
2282 		if (obp->cstat[0] & SESCTL_DISABLE) {
2283 			ep->priv |= 0x80;
2284 			/*
2285 			 * Hmm. Try to set the 'No Drive' flag.
2286 			 * Maybe that will count as a 'disable'.
2287 			 */
2288 		}
2289 		if (ep->priv & 0xc6) {
2290 			ep->priv &= ~0x1;
2291 		} else {
2292 			ep->priv |= 0x1;	/* no errors */
2293 		}
2294 		wrslot_stat(ssc, slp);
2295 		break;
2296 	case SESTYP_POWER:
2297 		/*
2298 		 * Okay- the only one that makes sense here is to
2299 		 * do the 'disable' for a power supply.
2300 		 */
2301 		if (obp->cstat[0] & SESCTL_DISABLE) {
2302 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
2303 				idx - cc->pwroff, 0, 0, slp);
2304 		}
2305 		break;
2306 	case SESTYP_FAN:
2307 		/*
2308 		 * Okay- the only one that makes sense here is to
2309 		 * set fan speed to zero on disable.
2310 		 */
2311 		if (obp->cstat[0] & SESCTL_DISABLE) {
2312 			/* remember- fans are the first items, so idx works */
2313 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
2314 		}
2315 		break;
2316 	case SESTYP_DOORLOCK:
2317 		/*
2318 		 * Well, we can 'disable' the lock.
2319 		 */
2320 		if (obp->cstat[0] & SESCTL_DISABLE) {
2321 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
2322 			(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2323 				cc->flag2, 0, slp);
2324 		}
2325 		break;
2326 	case SESTYP_ALARM:
2327 		/*
2328 		 * Well, we can 'disable' the alarm.
2329 		 */
2330 		if (obp->cstat[0] & SESCTL_DISABLE) {
2331 			cc->flag2 &= ~SAFT_FLG1_ALARM;
2332 			ep->priv |= 0x40;	/* Muted */
2333 			(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2334 				cc->flag2, 0, slp);
2335 		}
2336 		break;
2337 	default:
2338 		break;
2339 	}
2340 	ep->svalid = 0;
2341 	return (0);
2342 }
2343 
2344 /*
2345  * This function handles all of the 16 byte WRITE BUFFER commands.
2346  */
2347 static int
2348 wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
2349     uint8_t b3, int slp)
2350 {
2351 	int err, amt;
2352 	char *sdata;
2353 	struct scfg *cc = ssc->ses_private;
2354 	static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
2355 
2356 	if (cc == NULL)
2357 		return (0);
2358 
2359 	sdata = SES_MALLOC(16);
2360 	if (sdata == NULL)
2361 		return (ENOMEM);
2362 
2363 	SES_DLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
2364 
2365 	sdata[0] = op;
2366 	sdata[1] = b1;
2367 	sdata[2] = b2;
2368 	sdata[3] = b3;
2369 	MEMZERO(&sdata[4], 12);
2370 	amt = -16;
2371 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2372 	SES_FREE(sdata, 16);
2373 	return (err);
2374 }
2375 
2376 /*
2377  * This function updates the status byte for the device slot described.
2378  *
2379  * Since this is an optional SAF-TE command, there's no point in
2380  * returning an error.
2381  */
2382 static void
2383 wrslot_stat(ses_softc_t *ssc, int slp)
2384 {
2385 	int i, amt;
2386 	encobj *ep;
2387 	char cdb[10], *sdata;
2388 	struct scfg *cc = ssc->ses_private;
2389 
2390 	if (cc == NULL)
2391 		return;
2392 
2393 	SES_DLOG(ssc, "saf_wrslot\n");
2394 	cdb[0] = WRITE_BUFFER;
2395 	cdb[1] = 1;
2396 	cdb[2] = 0;
2397 	cdb[3] = 0;
2398 	cdb[4] = 0;
2399 	cdb[5] = 0;
2400 	cdb[6] = 0;
2401 	cdb[7] = 0;
2402 	cdb[8] = cc->Nslots * 3 + 1;
2403 	cdb[9] = 0;
2404 
2405 	sdata = SES_MALLOC(cc->Nslots * 3 + 1);
2406 	if (sdata == NULL)
2407 		return;
2408 	MEMZERO(sdata, cc->Nslots * 3 + 1);
2409 
2410 	sdata[0] = SAFTE_WT_DSTAT;
2411 	for (i = 0; i < cc->Nslots; i++) {
2412 		ep = &ssc->ses_objmap[cc->slotoff + i];
2413 		SES_DLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
2414 		sdata[1 + (3 * i)] = ep->priv & 0xff;
2415 	}
2416 	amt = -(cc->Nslots * 3 + 1);
2417 	(void) ses_runcmd(ssc, cdb, 10, sdata, &amt);
2418 	SES_FREE(sdata, cc->Nslots * 3 + 1);
2419 }
2420 
2421 /*
2422  * This function issues the "PERFORM SLOT OPERATION" command.
2423  */
2424 static int
2425 perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
2426 {
2427 	int err, amt;
2428 	char *sdata;
2429 	struct scfg *cc = ssc->ses_private;
2430 	static char cdb[10] =
2431 	    { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
2432 
2433 	if (cc == NULL)
2434 		return (0);
2435 
2436 	sdata = SES_MALLOC(SAFT_SCRATCH);
2437 	if (sdata == NULL)
2438 		return (ENOMEM);
2439 	MEMZERO(sdata, SAFT_SCRATCH);
2440 
2441 	sdata[0] = SAFTE_WT_SLTOP;
2442 	sdata[1] = slot;
2443 	sdata[2] = opflag;
2444 	SES_DLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
2445 	amt = -SAFT_SCRATCH;
2446 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2447 	SES_FREE(sdata, SAFT_SCRATCH);
2448 	return (err);
2449 }
2450