xref: /openbsd/sys/ufs/ffs/ffs_alloc.c (revision fd84ef7e)
1 /*	$OpenBSD: ffs_alloc.c,v 1.38 2001/12/19 08:58:07 art Exp $	*/
2 /*	$NetBSD: ffs_alloc.c,v 1.11 1996/05/11 18:27:09 mycroft Exp $	*/
3 
4 /*
5  * Copyright (c) 1982, 1986, 1989, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)ffs_alloc.c	8.11 (Berkeley) 10/27/94
37  */
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/buf.h>
42 #include <sys/proc.h>
43 #include <sys/vnode.h>
44 #include <sys/mount.h>
45 #include <sys/kernel.h>
46 #include <sys/syslog.h>
47 
48 #include <uvm/uvm_extern.h>
49 
50 #include <dev/rndvar.h>
51 
52 #include <ufs/ufs/quota.h>
53 #include <ufs/ufs/inode.h>
54 #include <ufs/ufs/ufs_extern.h>
55 
56 #include <ufs/ffs/fs.h>
57 #include <ufs/ffs/ffs_extern.h>
58 
59 extern u_long nextgennumber;
60 
61 static daddr_t	ffs_alloccg __P((struct inode *, int, daddr_t, int));
62 static daddr_t	ffs_alloccgblk __P((struct inode *, struct buf *, daddr_t));
63 static daddr_t	ffs_clusteralloc __P((struct inode *, int, daddr_t, int));
64 static ino_t	ffs_dirpref __P((struct inode *));
65 static daddr_t	ffs_fragextend __P((struct inode *, int, long, int, int));
66 static void	ffs_fserr __P((struct fs *, u_int, char *));
67 static u_long	ffs_hashalloc __P((struct inode *, int, long, int,
68 				   daddr_t (*)(struct inode *, int, daddr_t,
69 					       int)));
70 static daddr_t	ffs_nodealloccg __P((struct inode *, int, daddr_t, int));
71 static daddr_t	ffs_mapsearch __P((struct fs *, struct cg *, daddr_t, int));
72 
73 #ifdef DIAGNOSTIC
74 static int      ffs_checkblk __P((struct inode *, daddr_t, long));
75 #endif
76 
77 /*
78  * Allocate a block in the file system.
79  *
80  * The size of the requested block is given, which must be some
81  * multiple of fs_fsize and <= fs_bsize.
82  * A preference may be optionally specified. If a preference is given
83  * the following hierarchy is used to allocate a block:
84  *   1) allocate the requested block.
85  *   2) allocate a rotationally optimal block in the same cylinder.
86  *   3) allocate a block in the same cylinder group.
87  *   4) quadradically rehash into other cylinder groups, until an
88  *      available block is located.
89  * If no block preference is given the following heirarchy is used
90  * to allocate a block:
91  *   1) allocate a block in the cylinder group that contains the
92  *      inode for the file.
93  *   2) quadradically rehash into other cylinder groups, until an
94  *      available block is located.
95  */
96 int
97 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
98 	register struct inode *ip;
99 	daddr_t lbn, bpref;
100 	int size;
101 	struct ucred *cred;
102 	daddr_t *bnp;
103 {
104 	register struct fs *fs;
105 	daddr_t bno;
106 	int cg;
107 	int error;
108 
109 	*bnp = 0;
110 	fs = ip->i_fs;
111 #ifdef DIAGNOSTIC
112 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
113 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
114 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
115 		panic("ffs_alloc: bad size");
116 	}
117 	if (cred == NOCRED)
118 		panic("ffs_alloc: missing credential");
119 #endif /* DIAGNOSTIC */
120 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
121 		goto nospace;
122 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
123 		goto nospace;
124 
125 	if ((error = ufs_quota_alloc_blocks(ip, btodb(size), cred)) != 0)
126 		return (error);
127 
128 	if (bpref >= fs->fs_size)
129 		bpref = 0;
130 	if (bpref == 0)
131 		cg = ino_to_cg(fs, ip->i_number);
132 	else
133 		cg = dtog(fs, bpref);
134 	bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
135 	    			     ffs_alloccg);
136 	if (bno > 0) {
137 		ip->i_ffs_blocks += btodb(size);
138 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
139 		*bnp = bno;
140 		return (0);
141 	}
142 
143 	/*
144 	 * Restore user's disk quota because allocation failed.
145 	 */
146 	(void) ufs_quota_free_blocks(ip, btodb(size), cred);
147 
148 nospace:
149 	ffs_fserr(fs, cred->cr_uid, "file system full");
150 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
151 	return (ENOSPC);
152 }
153 
154 /*
155  * Reallocate a fragment to a bigger size
156  *
157  * The number and size of the old block is given, and a preference
158  * and new size is also specified. The allocator attempts to extend
159  * the original block. Failing that, the regular block allocator is
160  * invoked to get an appropriate block.
161  */
162 int
163 ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp, blknop)
164 	register struct inode *ip;
165 	daddr_t lbprev;
166 	daddr_t bpref;
167 	int osize, nsize;
168 	struct ucred *cred;
169 	struct buf **bpp;
170 	ufs_daddr_t *blknop;
171 {
172 	register struct fs *fs;
173 	struct buf *bp = NULL;
174 	ufs_daddr_t quota_updated = 0;
175 	int cg, request, error;
176 	daddr_t bprev, bno;
177 
178 	if (bpp != NULL)
179 		*bpp = NULL;
180 	fs = ip->i_fs;
181 #ifdef DIAGNOSTIC
182 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
183 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
184 		printf(
185 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
186 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
187 		panic("ffs_realloccg: bad size");
188 	}
189 	if (cred == NOCRED)
190 		panic("ffs_realloccg: missing credential");
191 #endif /* DIAGNOSTIC */
192 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
193 		goto nospace;
194 	if ((bprev = ip->i_ffs_db[lbprev]) == 0) {
195 		printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
196 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
197 		panic("ffs_realloccg: bad bprev");
198 	}
199 	/*
200 	 * Allocate the extra space in the buffer.
201 	 */
202 	if (bpp != NULL &&
203 	    (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0)
204 		goto error;
205 
206 	if ((error = ufs_quota_alloc_blocks(ip, btodb(nsize - osize), cred))
207 	    != 0)
208 		goto error;
209 
210 	quota_updated = btodb(nsize - osize);
211 
212 	/*
213 	 * Check for extension in the existing location.
214 	 */
215 	cg = dtog(fs, bprev);
216 	if ((bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) != 0) {
217 		ip->i_ffs_blocks += btodb(nsize - osize);
218 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
219 		if (bpp != NULL) {
220 			if (bp->b_blkno != fsbtodb(fs, bno))
221 				panic("ffs_realloccg: bad blockno");
222 			allocbuf(bp, nsize);
223 			bp->b_flags |= B_DONE;
224 			bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
225 			*bpp = bp;
226 		}
227 		if (blknop != NULL) {
228 			*blknop = bno;
229 		}
230 		return (0);
231 	}
232 	/*
233 	 * Allocate a new disk location.
234 	 */
235 	if (bpref >= fs->fs_size)
236 		bpref = 0;
237 	switch ((int)fs->fs_optim) {
238 	case FS_OPTSPACE:
239 		/*
240 		 * Allocate an exact sized fragment. Although this makes
241 		 * best use of space, we will waste time relocating it if
242 		 * the file continues to grow. If the fragmentation is
243 		 * less than half of the minimum free reserve, we choose
244 		 * to begin optimizing for time.
245 		 */
246 		request = nsize;
247 		if (fs->fs_minfree < 5 ||
248 		    fs->fs_cstotal.cs_nffree >
249 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
250 			break;
251 		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
252 			fs->fs_fsmnt);
253 		fs->fs_optim = FS_OPTTIME;
254 		break;
255 	case FS_OPTTIME:
256 		/*
257 		 * At this point we have discovered a file that is trying to
258 		 * grow a small fragment to a larger fragment. To save time,
259 		 * we allocate a full sized block, then free the unused portion.
260 		 * If the file continues to grow, the `ffs_fragextend' call
261 		 * above will be able to grow it in place without further
262 		 * copying. If aberrant programs cause disk fragmentation to
263 		 * grow within 2% of the free reserve, we choose to begin
264 		 * optimizing for space.
265 		 */
266 		request = fs->fs_bsize;
267 		if (fs->fs_cstotal.cs_nffree <
268 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
269 			break;
270 		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
271 			fs->fs_fsmnt);
272 		fs->fs_optim = FS_OPTSPACE;
273 		break;
274 	default:
275 		printf("dev = 0x%x, optim = %d, fs = %s\n",
276 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
277 		panic("ffs_realloccg: bad optim");
278 		/* NOTREACHED */
279 	}
280 	bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
281 	    			     ffs_alloccg);
282 	if (bno <= 0)
283 		goto nospace;
284 
285 	(void) uvm_vnp_uncache(ITOV(ip));
286 	if (!DOINGSOFTDEP(ITOV(ip)))
287 		ffs_blkfree(ip, bprev, (long)osize);
288 	if (nsize < request)
289 		ffs_blkfree(ip, bno + numfrags(fs, nsize),
290 		    (long)(request - nsize));
291 	ip->i_ffs_blocks += btodb(nsize - osize);
292 	ip->i_flag |= IN_CHANGE | IN_UPDATE;
293 	if (bpp != NULL) {
294 		bp->b_blkno = fsbtodb(fs, bno);
295 		allocbuf(bp, nsize);
296 		bp->b_flags |= B_DONE;
297 		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
298 		*bpp = bp;
299 	}
300 	if (blknop != NULL) {
301 		*blknop = bno;
302 	}
303 	return (0);
304 
305 nospace:
306 	/*
307 	 * no space available
308 	 */
309 	ffs_fserr(fs, cred->cr_uid, "file system full");
310 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
311 	error = ENOSPC;
312 
313 error:
314 	if (bp != NULL) {
315 		brelse(bp);
316 		bp = NULL;
317 	}
318 
319  	/*
320 	 * Restore user's disk quota because allocation failed.
321 	 */
322 	if (quota_updated != 0)
323 		(void)ufs_quota_free_blocks(ip, quota_updated, cred);
324 
325 	return error;
326 }
327 
328 /*
329  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
330  *
331  * The vnode and an array of buffer pointers for a range of sequential
332  * logical blocks to be made contiguous is given. The allocator attempts
333  * to find a range of sequential blocks starting as close as possible to
334  * an fs_rotdelay offset from the end of the allocation for the logical
335  * block immediately preceeding the current range. If successful, the
336  * physical block numbers in the buffer pointers and in the inode are
337  * changed to reflect the new allocation. If unsuccessful, the allocation
338  * is left unchanged. The success in doing the reallocation is returned.
339  * Note that the error return is not reflected back to the user. Rather
340  * the previous block allocation will be used.
341  */
342 
343 int doasyncfree = 1;
344 int doreallocblks = 1;
345 int prtrealloc = 0;
346 
347 int
348 ffs_reallocblks(v)
349 	void *v;
350 {
351 	struct vop_reallocblks_args /* {
352 		struct vnode *a_vp;
353 		struct cluster_save *a_buflist;
354 	} */ *ap = v;
355 	struct fs *fs;
356 	struct inode *ip;
357 	struct vnode *vp;
358 	struct buf *sbp, *ebp;
359 	daddr_t *bap, *sbap, *ebap = NULL;
360 	struct cluster_save *buflist;
361 	daddr_t start_lbn, end_lbn, soff, newblk, blkno;
362 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
363 	int i, len, start_lvl, end_lvl, pref, ssize;
364 
365 	if (doreallocblks == 0)
366 		return (ENOSPC);
367 
368 	vp = ap->a_vp;
369 	ip = VTOI(vp);
370 	fs = ip->i_fs;
371 	if (fs->fs_contigsumsize <= 0)
372 		return (ENOSPC);
373 	buflist = ap->a_buflist;
374 	len = buflist->bs_nchildren;
375 	start_lbn = buflist->bs_children[0]->b_lblkno;
376 	end_lbn = start_lbn + len - 1;
377 
378 #ifdef DIAGNOSTIC
379 	for (i = 0; i < len; i++)
380 		if (!ffs_checkblk(ip,
381 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
382 			panic("ffs_reallocblks: unallocated block 1");
383 
384 	for (i = 1; i < len; i++)
385 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
386 			panic("ffs_reallocblks: non-logical cluster");
387 
388 	blkno = buflist->bs_children[0]->b_blkno;
389 	ssize = fsbtodb(fs, fs->fs_frag);
390 	for (i = 1; i < len - 1; i++)
391 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
392 			panic("ffs_reallocblks: non-physical cluster %d", i);
393 #endif
394 	/*
395 	 * If the latest allocation is in a new cylinder group, assume that
396 	 * the filesystem has decided to move and do not force it back to
397 	 * the previous cylinder group.
398 	 */
399 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
400 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
401 		return (ENOSPC);
402 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
403 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
404 		return (ENOSPC);
405 	/*
406 	 * Get the starting offset and block map for the first block.
407 	 */
408 	if (start_lvl == 0) {
409 		sbap = &ip->i_ffs_db[0];
410 		soff = start_lbn;
411 	} else {
412 		idp = &start_ap[start_lvl - 1];
413 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
414 			brelse(sbp);
415 			return (ENOSPC);
416 		}
417 		sbap = (daddr_t *)sbp->b_data;
418 		soff = idp->in_off;
419 	}
420 	/*
421 	 * Find the preferred location for the cluster.
422 	 */
423 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
424 	/*
425 	 * If the block range spans two block maps, get the second map.
426 	 */
427 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
428 		ssize = len;
429 	} else {
430 #ifdef DIAGNOSTIC
431 		if (start_lvl > 1 &&
432 		    start_ap[start_lvl-1].in_lbn == idp->in_lbn)
433 			panic("ffs_reallocblk: start == end");
434 #endif
435 		ssize = len - (idp->in_off + 1);
436 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
437 			goto fail;
438 		ebap = (daddr_t *)ebp->b_data;
439 	}
440 	/*
441 	 * Search the block map looking for an allocation of the desired size.
442 	 */
443 	if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
444 	    len, ffs_clusteralloc)) == 0)
445 		goto fail;
446 	/*
447 	 * We have found a new contiguous block.
448 	 *
449 	 * First we have to replace the old block pointers with the new
450 	 * block pointers in the inode and indirect blocks associated
451 	 * with the file.
452 	 */
453 #ifdef DEBUG
454 	if (prtrealloc)
455 		printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
456 		    start_lbn, end_lbn);
457 #endif
458 	blkno = newblk;
459 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
460 		if (i == ssize) {
461 			bap = ebap;
462 			soff = -i;
463 		}
464 #ifdef DIAGNOSTIC
465 		if (!ffs_checkblk(ip,
466 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
467 			panic("ffs_reallocblks: unallocated block 2");
468 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
469 			panic("ffs_reallocblks: alloc mismatch");
470 #endif
471 #ifdef DEBUG
472 		if (prtrealloc)
473 			printf(" %d,", *bap);
474 #endif
475 		if (DOINGSOFTDEP(vp)) {
476 			if (sbap == &ip->i_ffs_db[0] && i < ssize)
477 				softdep_setup_allocdirect(ip, start_lbn + i,
478 				    blkno, *bap, fs->fs_bsize, fs->fs_bsize,
479 				    buflist->bs_children[i]);
480 			else
481 				softdep_setup_allocindir_page(ip, start_lbn + i,
482 				    i < ssize ? sbp : ebp, soff + i, blkno,
483 				    *bap, buflist->bs_children[i]);
484 		}
485 
486 		*bap++ = blkno;
487 	}
488 	/*
489 	 * Next we must write out the modified inode and indirect blocks.
490 	 * For strict correctness, the writes should be synchronous since
491 	 * the old block values may have been written to disk. In practise
492 	 * they are almost never written, but if we are concerned about
493 	 * strict correctness, the `doasyncfree' flag should be set to zero.
494 	 *
495 	 * The test on `doasyncfree' should be changed to test a flag
496 	 * that shows whether the associated buffers and inodes have
497 	 * been written. The flag should be set when the cluster is
498 	 * started and cleared whenever the buffer or inode is flushed.
499 	 * We can then check below to see if it is set, and do the
500 	 * synchronous write only when it has been cleared.
501 	 */
502 	if (sbap != &ip->i_ffs_db[0]) {
503 		if (doasyncfree)
504 			bdwrite(sbp);
505 		else
506 			bwrite(sbp);
507 	} else {
508 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
509 		if (!doasyncfree) {
510 			UFS_UPDATE(ip, MNT_WAIT);
511 		}
512 	}
513 	if (ssize < len) {
514 		if (doasyncfree)
515 			bdwrite(ebp);
516 		else
517 			bwrite(ebp);
518 	}
519 	/*
520 	 * Last, free the old blocks and assign the new blocks to the buffers.
521 	 */
522 #ifdef DEBUG
523 	if (prtrealloc)
524 		printf("\n\tnew:");
525 #endif
526 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
527 		if (!DOINGSOFTDEP(vp))
528 			ffs_blkfree(ip,
529 			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
530 			    fs->fs_bsize);
531 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
532 #ifdef DIAGNOSTIC
533 		if (!ffs_checkblk(ip,
534 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
535 			panic("ffs_reallocblks: unallocated block 3");
536 		if (prtrealloc)
537 			printf(" %d,", blkno);
538 #endif
539 	}
540 #ifdef DEBUG
541 	if (prtrealloc) {
542 		prtrealloc--;
543 		printf("\n");
544 	}
545 #endif
546 	return (0);
547 
548 fail:
549 	if (ssize < len)
550 		brelse(ebp);
551 	if (sbap != &ip->i_ffs_db[0])
552 		brelse(sbp);
553 	return (ENOSPC);
554 }
555 
556 /*
557  * Allocate an inode in the file system.
558  *
559  * If allocating a directory, use ffs_dirpref to select the inode.
560  * If allocating in a directory, the following hierarchy is followed:
561  *   1) allocate the preferred inode.
562  *   2) allocate an inode in the same cylinder group.
563  *   3) quadradically rehash into other cylinder groups, until an
564  *      available inode is located.
565  * If no inode preference is given the following heirarchy is used
566  * to allocate an inode:
567  *   1) allocate an inode in cylinder group 0.
568  *   2) quadradically rehash into other cylinder groups, until an
569  *      available inode is located.
570  */
571 int
572 ffs_inode_alloc(struct inode *pip, int mode, struct ucred *cred,
573     struct vnode **vpp)
574 {
575 	struct vnode *pvp = ITOV(pip);
576 	struct fs *fs;
577 	struct inode *ip;
578 	ino_t ino, ipref;
579 	int cg, error;
580 
581 	*vpp = NULL;
582 	fs = pip->i_fs;
583 	if (fs->fs_cstotal.cs_nifree == 0)
584 		goto noinodes;
585 
586 	if ((mode & IFMT) == IFDIR)
587 		ipref = ffs_dirpref(pip);
588 	else
589 		ipref = pip->i_number;
590 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
591 		ipref = 0;
592 	cg = ino_to_cg(fs, ipref);
593 
594 	/*
595 	 * Track number of dirs created one after another
596 	 * in a same cg without intervening by files.
597 	 */
598 	if ((mode & IFMT) == IFDIR) {
599 		if (fs->fs_contigdirs[cg] < 255)
600 			fs->fs_contigdirs[cg]++;
601 	} else {
602 		if (fs->fs_contigdirs[cg] > 0)
603 			fs->fs_contigdirs[cg]--;
604 	}
605 	ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
606 	if (ino == 0)
607 		goto noinodes;
608 	error = VFS_VGET(pvp->v_mount, ino, vpp);
609 	if (error) {
610 		ffs_inode_free(pip, ino, mode);
611 		return (error);
612 	}
613 	ip = VTOI(*vpp);
614 	if (ip->i_ffs_mode) {
615 		printf("mode = 0%o, inum = %d, fs = %s\n",
616 		    ip->i_ffs_mode, ip->i_number, fs->fs_fsmnt);
617 		panic("ffs_valloc: dup alloc");
618 	}
619 	if (ip->i_ffs_blocks) {				/* XXX */
620 		printf("free inode %s/%d had %d blocks\n",
621 		    fs->fs_fsmnt, ino, ip->i_ffs_blocks);
622 		ip->i_ffs_blocks = 0;
623 	}
624 	ip->i_ffs_flags = 0;
625 	/*
626 	 * Set up a new generation number for this inode.
627 	 * XXX - just increment for now, this is wrong! (millert)
628 	 *       Need a way to preserve randomization.
629 	 */
630 	if (ip->i_ffs_gen == 0 || ++(ip->i_ffs_gen) == 0)
631 		ip->i_ffs_gen = arc4random();
632 	if (ip->i_ffs_gen == 0 || ip->i_ffs_gen == -1)
633 		ip->i_ffs_gen = 1;			/* shouldn't happen */
634 	return (0);
635 noinodes:
636 	ffs_fserr(fs, cred->cr_uid, "out of inodes");
637 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
638 	return (ENOSPC);
639 }
640 
641 /*
642  * Find a cylinder group to place a directory.
643  *
644  * The policy implemented by this algorithm is to allocate a
645  * directory inode in the same cylinder group as its parent
646  * directory, but also to reserve space for its files inodes
647  * and data. Restrict the number of directories which may be
648  * allocated one after another in the same cylinder group
649  * without intervening allocation of files.
650  *
651  * If we allocate a first level directory then force allocation
652  * in another cylinder group.
653  */
654 static ino_t
655 ffs_dirpref(pip)
656 	struct inode *pip;
657 {
658 	register struct fs *fs;
659 	int	cg, prefcg, dirsize, cgsize;
660 	int	avgifree, avgbfree, avgndir, curdirsize;
661 	int	minifree, minbfree, maxndir;
662 	int	mincg, minndir;
663 	int	maxcontigdirs;
664 
665 	fs = pip->i_fs;
666 
667 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
668 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
669 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
670 #if 1
671 
672 	/*
673 	 * Force allocation in another cg if creating a first level dir.
674 	 */
675 	if (ITOV(pip)->v_flag & VROOT) {
676 		prefcg = arc4random() % fs->fs_ncg;
677 		mincg = prefcg;
678 		minndir = fs->fs_ipg;
679 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
680 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
681 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
682 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
683 				mincg = cg;
684 				minndir = fs->fs_cs(fs, cg).cs_ndir;
685 			}
686 		for (cg = 0; cg < prefcg; cg++)
687 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
688 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
689 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
690 				mincg = cg;
691 				minndir = fs->fs_cs(fs, cg).cs_ndir;
692 			}
693 		cg = mincg;
694 		goto end;
695 	} else
696 		prefcg = ino_to_cg(fs, pip->i_number);
697 #else
698 	prefcg = ino_to_cg(fs, pip->i_number);
699 #endif
700 
701 	/*
702 	 * Count various limits which used for
703 	 * optimal allocation of a directory inode.
704 	 */
705 #if 1
706 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
707 	minifree = avgifree - fs->fs_ipg / 4;
708 	if (minifree < 0)
709 		minifree = 0;
710 	minbfree = avgbfree - fs->fs_fpg / fs->fs_frag / 4;
711 	if (minbfree < 0)
712 		minbfree = 0;
713 #else
714 	maxndir = avgndir + (fs->fs_ipg - avgndir) / 16;
715 	minifree = avgifree * 3 / 4;
716 	minbfree = avgbfree * 3 / 4;
717 #endif
718 	cgsize = fs->fs_fsize * fs->fs_fpg;
719 	dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
720 	curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
721 	if (dirsize < curdirsize)
722 		dirsize = curdirsize;
723 	maxcontigdirs = min(cgsize / dirsize, 255);
724 	if (fs->fs_avgfpdir > 0)
725 		maxcontigdirs = min(maxcontigdirs,
726 				    fs->fs_ipg / fs->fs_avgfpdir);
727 	if (maxcontigdirs == 0)
728 		maxcontigdirs = 1;
729 
730 	/*
731 	 * Limit number of dirs in one cg and reserve space for
732 	 * regular files, but only if we have no deficit in
733 	 * inodes or space.
734 	 */
735 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
736 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
737 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
738 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
739 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
740 				goto end;
741 		}
742 	for (cg = 0; cg < prefcg; cg++)
743 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
744 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
745 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
746 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
747 				goto end;
748 		}
749 	/*
750 	 * This is a backstop when we have deficit in space.
751 	 */
752 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
753 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
754 			goto end;
755 	for (cg = 0; cg < prefcg; cg++)
756 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
757 			goto end;
758 end:
759 	return ((ino_t)(fs->fs_ipg * cg));
760 }
761 
762 /*
763  * Select the desired position for the next block in a file.  The file is
764  * logically divided into sections. The first section is composed of the
765  * direct blocks. Each additional section contains fs_maxbpg blocks.
766  *
767  * If no blocks have been allocated in the first section, the policy is to
768  * request a block in the same cylinder group as the inode that describes
769  * the file. If no blocks have been allocated in any other section, the
770  * policy is to place the section in a cylinder group with a greater than
771  * average number of free blocks.  An appropriate cylinder group is found
772  * by using a rotor that sweeps the cylinder groups. When a new group of
773  * blocks is needed, the sweep begins in the cylinder group following the
774  * cylinder group from which the previous allocation was made. The sweep
775  * continues until a cylinder group with greater than the average number
776  * of free blocks is found. If the allocation is for the first block in an
777  * indirect block, the information on the previous allocation is unavailable;
778  * here a best guess is made based upon the logical block number being
779  * allocated.
780  *
781  * If a section is already partially allocated, the policy is to
782  * contiguously allocate fs_maxcontig blocks.  The end of one of these
783  * contiguous blocks and the beginning of the next is physically separated
784  * so that the disk head will be in transit between them for at least
785  * fs_rotdelay milliseconds.  This is to allow time for the processor to
786  * schedule another I/O transfer.
787  */
788 daddr_t
789 ffs_blkpref(ip, lbn, indx, bap)
790 	struct inode *ip;
791 	daddr_t lbn;
792 	int indx;
793 	daddr_t *bap;
794 {
795 	register struct fs *fs;
796 	register int cg;
797 	int avgbfree, startcg;
798 	daddr_t nextblk;
799 
800 	fs = ip->i_fs;
801 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
802 		if (lbn < NDADDR + NINDIR(fs)) {
803 			cg = ino_to_cg(fs, ip->i_number);
804 			return (fs->fs_fpg * cg + fs->fs_frag);
805 		}
806 		/*
807 		 * Find a cylinder with greater than average number of
808 		 * unused data blocks.
809 		 */
810 		if (indx == 0 || bap[indx - 1] == 0)
811 			startcg =
812 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
813 		else
814 			startcg = dtog(fs, bap[indx - 1]) + 1;
815 		startcg %= fs->fs_ncg;
816 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
817 		for (cg = startcg; cg < fs->fs_ncg; cg++)
818 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
819 				fs->fs_cgrotor = cg;
820 				return (fs->fs_fpg * cg + fs->fs_frag);
821 			}
822 		for (cg = 0; cg <= startcg; cg++)
823 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
824 				fs->fs_cgrotor = cg;
825 				return (fs->fs_fpg * cg + fs->fs_frag);
826 			}
827 		return (0);
828 	}
829 	/*
830 	 * One or more previous blocks have been laid out. If less
831 	 * than fs_maxcontig previous blocks are contiguous, the
832 	 * next block is requested contiguously, otherwise it is
833 	 * requested rotationally delayed by fs_rotdelay milliseconds.
834 	 */
835 	nextblk = bap[indx - 1] + fs->fs_frag;
836 	if (indx < fs->fs_maxcontig || bap[indx - fs->fs_maxcontig] +
837 	    blkstofrags(fs, fs->fs_maxcontig) != nextblk)
838 		return (nextblk);
839 	if (fs->fs_rotdelay != 0)
840 		/*
841 		 * Here we convert ms of delay to frags as:
842 		 * (frags) = (ms) * (rev/sec) * (sect/rev) /
843 		 *	((sect/frag) * (ms/sec))
844 		 * then round up to the next block.
845 		 */
846 		nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
847 		    (NSPF(fs) * 1000), fs->fs_frag);
848 	return (nextblk);
849 }
850 
851 /*
852  * Implement the cylinder overflow algorithm.
853  *
854  * The policy implemented by this algorithm is:
855  *   1) allocate the block in its requested cylinder group.
856  *   2) quadradically rehash on the cylinder group number.
857  *   3) brute force search for a free block.
858  */
859 /*VARARGS5*/
860 static u_long
861 ffs_hashalloc(ip, cg, pref, size, allocator)
862 	struct inode *ip;
863 	int cg;
864 	long pref;
865 	int size;	/* size for data blocks, mode for inodes */
866 	daddr_t (*allocator) __P((struct inode *, int, daddr_t, int));
867 {
868 	register struct fs *fs;
869 	long result;
870 	int i, icg = cg;
871 
872 	fs = ip->i_fs;
873 	/*
874 	 * 1: preferred cylinder group
875 	 */
876 	result = (*allocator)(ip, cg, pref, size);
877 	if (result)
878 		return (result);
879 	/*
880 	 * 2: quadratic rehash
881 	 */
882 	for (i = 1; i < fs->fs_ncg; i *= 2) {
883 		cg += i;
884 		if (cg >= fs->fs_ncg)
885 			cg -= fs->fs_ncg;
886 		result = (*allocator)(ip, cg, 0, size);
887 		if (result)
888 			return (result);
889 	}
890 	/*
891 	 * 3: brute force search
892 	 * Note that we start at i == 2, since 0 was checked initially,
893 	 * and 1 is always checked in the quadratic rehash.
894 	 */
895 	cg = (icg + 2) % fs->fs_ncg;
896 	for (i = 2; i < fs->fs_ncg; i++) {
897 		result = (*allocator)(ip, cg, 0, size);
898 		if (result)
899 			return (result);
900 		cg++;
901 		if (cg == fs->fs_ncg)
902 			cg = 0;
903 	}
904 	return (0);
905 }
906 
907 /*
908  * Determine whether a fragment can be extended.
909  *
910  * Check to see if the necessary fragments are available, and
911  * if they are, allocate them.
912  */
913 static daddr_t
914 ffs_fragextend(ip, cg, bprev, osize, nsize)
915 	struct inode *ip;
916 	int cg;
917 	long bprev;
918 	int osize, nsize;
919 {
920 	register struct fs *fs;
921 	register struct cg *cgp;
922 	struct buf *bp;
923 	long bno;
924 	int frags, bbase;
925 	int i, error;
926 
927 	fs = ip->i_fs;
928 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
929 		return (0);
930 	frags = numfrags(fs, nsize);
931 	bbase = fragnum(fs, bprev);
932 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
933 		/* cannot extend across a block boundary */
934 		return (0);
935 	}
936 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
937 		(int)fs->fs_cgsize, NOCRED, &bp);
938 	if (error) {
939 		brelse(bp);
940 		return (0);
941 	}
942 	cgp = (struct cg *)bp->b_data;
943 	if (!cg_chkmagic(cgp)) {
944 		brelse(bp);
945 		return (0);
946 	}
947 	cgp->cg_time = time.tv_sec;
948 	bno = dtogd(fs, bprev);
949 	for (i = numfrags(fs, osize); i < frags; i++)
950 		if (isclr(cg_blksfree(cgp), bno + i)) {
951 			brelse(bp);
952 			return (0);
953 		}
954 	/*
955 	 * the current fragment can be extended
956 	 * deduct the count on fragment being extended into
957 	 * increase the count on the remaining fragment (if any)
958 	 * allocate the extended piece
959 	 */
960 	for (i = frags; i < fs->fs_frag - bbase; i++)
961 		if (isclr(cg_blksfree(cgp), bno + i))
962 			break;
963 	cgp->cg_frsum[i - numfrags(fs, osize)]--;
964 	if (i != frags)
965 		cgp->cg_frsum[i - frags]++;
966 	for (i = numfrags(fs, osize); i < frags; i++) {
967 		clrbit(cg_blksfree(cgp), bno + i);
968 		cgp->cg_cs.cs_nffree--;
969 		fs->fs_cstotal.cs_nffree--;
970 		fs->fs_cs(fs, cg).cs_nffree--;
971 	}
972 	fs->fs_fmod = 1;
973 	if (DOINGSOFTDEP(ITOV(ip)))
974 		softdep_setup_blkmapdep(bp, fs, bprev);
975 
976 	bdwrite(bp);
977 	return (bprev);
978 }
979 
980 /*
981  * Determine whether a block can be allocated.
982  *
983  * Check to see if a block of the appropriate size is available,
984  * and if it is, allocate it.
985  */
986 static daddr_t
987 ffs_alloccg(ip, cg, bpref, size)
988 	struct inode *ip;
989 	int cg;
990 	daddr_t bpref;
991 	int size;
992 {
993 	register struct fs *fs;
994 	register struct cg *cgp;
995 	struct buf *bp;
996 	daddr_t bno, blkno;
997 	int error, i, frags, allocsiz;
998 
999 	fs = ip->i_fs;
1000 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1001 		return (0);
1002 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1003 		(int)fs->fs_cgsize, NOCRED, &bp);
1004 	if (error) {
1005 		brelse(bp);
1006 		return (0);
1007 	}
1008 	cgp = (struct cg *)bp->b_data;
1009 	if (!cg_chkmagic(cgp) ||
1010 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
1011 		brelse(bp);
1012 		return (0);
1013 	}
1014 	cgp->cg_time = time.tv_sec;
1015 	if (size == fs->fs_bsize) {
1016 		bno = ffs_alloccgblk(ip, bp, bpref);
1017 		bdwrite(bp);
1018 		return (bno);
1019 	}
1020 	/*
1021 	 * check to see if any fragments are already available
1022 	 * allocsiz is the size which will be allocated, hacking
1023 	 * it down to a smaller size if necessary
1024 	 */
1025 	frags = numfrags(fs, size);
1026 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1027 		if (cgp->cg_frsum[allocsiz] != 0)
1028 			break;
1029 	if (allocsiz == fs->fs_frag) {
1030 		/*
1031 		 * no fragments were available, so a block will be
1032 		 * allocated, and hacked up
1033 		 */
1034 		if (cgp->cg_cs.cs_nbfree == 0) {
1035 			brelse(bp);
1036 			return (0);
1037 		}
1038 		bno = ffs_alloccgblk(ip, bp, bpref);
1039 		bpref = dtogd(fs, bno);
1040 		for (i = frags; i < fs->fs_frag; i++)
1041 			setbit(cg_blksfree(cgp), bpref + i);
1042 		i = fs->fs_frag - frags;
1043 		cgp->cg_cs.cs_nffree += i;
1044 		fs->fs_cstotal.cs_nffree += i;
1045 		fs->fs_cs(fs, cg).cs_nffree += i;
1046 		fs->fs_fmod = 1;
1047 		cgp->cg_frsum[i]++;
1048 		bdwrite(bp);
1049 		return (bno);
1050 	}
1051 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1052 	if (bno < 0) {
1053 		brelse(bp);
1054 		return (0);
1055 	}
1056 
1057 	for (i = 0; i < frags; i++)
1058 		clrbit(cg_blksfree(cgp), bno + i);
1059 	cgp->cg_cs.cs_nffree -= frags;
1060 	fs->fs_cstotal.cs_nffree -= frags;
1061 	fs->fs_cs(fs, cg).cs_nffree -= frags;
1062 	fs->fs_fmod = 1;
1063 	cgp->cg_frsum[allocsiz]--;
1064 	if (frags != allocsiz)
1065 		cgp->cg_frsum[allocsiz - frags]++;
1066 
1067 	blkno = cg * fs->fs_fpg + bno;
1068 	if (DOINGSOFTDEP(ITOV(ip)))
1069 		softdep_setup_blkmapdep(bp, fs, blkno);
1070 	bdwrite(bp);
1071 	return ((u_long)blkno);
1072 }
1073 
1074 /*
1075  * Allocate a block in a cylinder group.
1076  *
1077  * This algorithm implements the following policy:
1078  *   1) allocate the requested block.
1079  *   2) allocate a rotationally optimal block in the same cylinder.
1080  *   3) allocate the next available block on the block rotor for the
1081  *      specified cylinder group.
1082  * Note that this routine only allocates fs_bsize blocks; these
1083  * blocks may be fragmented by the routine that allocates them.
1084  */
1085 static daddr_t
1086 ffs_alloccgblk(ip, bp, bpref)
1087 	struct inode *ip;
1088 	struct buf *bp;
1089 	daddr_t bpref;
1090 {
1091 	struct fs *fs;
1092 	struct cg *cgp;
1093 	daddr_t bno, blkno;
1094 	int cylno, pos, delta;
1095 	short *cylbp;
1096 	register int i;
1097 
1098 	fs = ip->i_fs;
1099 	cgp = (struct cg *)bp->b_data;
1100 	if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
1101 		bpref = cgp->cg_rotor;
1102 		goto norot;
1103 	}
1104 	bpref = blknum(fs, bpref);
1105 	bpref = dtogd(fs, bpref);
1106 	/*
1107 	 * if the requested block is available, use it
1108 	 */
1109 	if (ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bpref))) {
1110 		bno = bpref;
1111 		goto gotit;
1112 	}
1113 	if (fs->fs_cpc == 0 || fs->fs_nrpos <= 1) {
1114 		/*
1115 		 * Block layout information is not available.
1116 		 * Leaving bpref unchanged means we take the
1117 		 * next available free block following the one
1118 		 * we just allocated. Hopefully this will at
1119 		 * least hit a track cache on drives of unknown
1120 		 * geometry (e.g. SCSI).
1121 		 */
1122 		goto norot;
1123 	}
1124 	/*
1125 	 * check for a block available on the same cylinder
1126 	 */
1127 	cylno = cbtocylno(fs, bpref);
1128 	if (cg_blktot(cgp)[cylno] == 0)
1129 		goto norot;
1130 	/*
1131 	 * check the summary information to see if a block is
1132 	 * available in the requested cylinder starting at the
1133 	 * requested rotational position and proceeding around.
1134 	 */
1135 	cylbp = cg_blks(fs, cgp, cylno);
1136 	pos = cbtorpos(fs, bpref);
1137 	for (i = pos; i < fs->fs_nrpos; i++)
1138 		if (cylbp[i] > 0)
1139 			break;
1140 	if (i == fs->fs_nrpos)
1141 		for (i = 0; i < pos; i++)
1142 			if (cylbp[i] > 0)
1143 				break;
1144 	if (cylbp[i] > 0) {
1145 		/*
1146 		 * found a rotational position, now find the actual
1147 		 * block. A panic if none is actually there.
1148 		 */
1149 		pos = cylno % fs->fs_cpc;
1150 		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
1151 		if (fs_postbl(fs, pos)[i] == -1) {
1152 			printf("pos = %d, i = %d, fs = %s\n",
1153 			    pos, i, fs->fs_fsmnt);
1154 			panic("ffs_alloccgblk: cyl groups corrupted");
1155 		}
1156 		for (i = fs_postbl(fs, pos)[i];; ) {
1157 			if (ffs_isblock(fs, cg_blksfree(cgp), bno + i)) {
1158 				bno = blkstofrags(fs, (bno + i));
1159 				goto gotit;
1160 			}
1161 			delta = fs_rotbl(fs)[i];
1162 			if (delta <= 0 ||
1163 			    delta + i > fragstoblks(fs, fs->fs_fpg))
1164 				break;
1165 			i += delta;
1166 		}
1167 		printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
1168 		panic("ffs_alloccgblk: can't find blk in cyl");
1169 	}
1170 norot:
1171 	/*
1172 	 * no blocks in the requested cylinder, so take next
1173 	 * available one in this cylinder group.
1174 	 */
1175 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1176 	if (bno < 0)
1177 		return (0);
1178 	cgp->cg_rotor = bno;
1179 gotit:
1180 	blkno = fragstoblks(fs, bno);
1181 	ffs_clrblock(fs, cg_blksfree(cgp), (long)blkno);
1182 	ffs_clusteracct(fs, cgp, blkno, -1);
1183 	cgp->cg_cs.cs_nbfree--;
1184 	fs->fs_cstotal.cs_nbfree--;
1185 	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
1186 	cylno = cbtocylno(fs, bno);
1187 	cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
1188 	cg_blktot(cgp)[cylno]--;
1189 	fs->fs_fmod = 1;
1190 	blkno = cgp->cg_cgx * fs->fs_fpg + bno;
1191 	if (DOINGSOFTDEP(ITOV(ip)))
1192 		softdep_setup_blkmapdep(bp, fs, blkno);
1193 	return (blkno);
1194 }
1195 
1196 /*
1197  * Determine whether a cluster can be allocated.
1198  *
1199  * We do not currently check for optimal rotational layout if there
1200  * are multiple choices in the same cylinder group. Instead we just
1201  * take the first one that we find following bpref.
1202  */
1203 static daddr_t
1204 ffs_clusteralloc(ip, cg, bpref, len)
1205 	struct inode *ip;
1206 	int cg;
1207 	daddr_t bpref;
1208 	int len;
1209 {
1210 	register struct fs *fs;
1211 	register struct cg *cgp;
1212 	struct buf *bp;
1213 	int i, got, run, bno, bit, map;
1214 	u_char *mapp;
1215 	int32_t *lp;
1216 
1217 	fs = ip->i_fs;
1218 	if (fs->fs_maxcluster[cg] < len)
1219 		return (0);
1220 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1221 	    NOCRED, &bp))
1222 		goto fail;
1223 	cgp = (struct cg *)bp->b_data;
1224 	if (!cg_chkmagic(cgp))
1225 		goto fail;
1226 	/*
1227 	 * Check to see if a cluster of the needed size (or bigger) is
1228 	 * available in this cylinder group.
1229 	 */
1230 	lp = &cg_clustersum(cgp)[len];
1231 	for (i = len; i <= fs->fs_contigsumsize; i++)
1232 		if (*lp++ > 0)
1233 			break;
1234 	if (i > fs->fs_contigsumsize) {
1235 		/*
1236 		 * This is the first time looking for a cluster in this
1237 		 * cylinder group. Update the cluster summary information
1238 		 * to reflect the true maximum sized cluster so that
1239 		 * future cluster allocation requests can avoid reading
1240 		 * the cylinder group map only to find no clusters.
1241 		 */
1242 		lp = &cg_clustersum(cgp)[len - 1];
1243 		for (i = len - 1; i > 0; i--)
1244 			if (*lp-- > 0)
1245 				break;
1246 		fs->fs_maxcluster[cg] = i;
1247 		goto fail;
1248 	}
1249 	/*
1250 	 * Search the cluster map to find a big enough cluster.
1251 	 * We take the first one that we find, even if it is larger
1252 	 * than we need as we prefer to get one close to the previous
1253 	 * block allocation. We do not search before the current
1254 	 * preference point as we do not want to allocate a block
1255 	 * that is allocated before the previous one (as we will
1256 	 * then have to wait for another pass of the elevator
1257 	 * algorithm before it will be read). We prefer to fail and
1258 	 * be recalled to try an allocation in the next cylinder group.
1259 	 */
1260 	if (dtog(fs, bpref) != cg)
1261 		bpref = 0;
1262 	else
1263 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1264 	mapp = &cg_clustersfree(cgp)[bpref / NBBY];
1265 	map = *mapp++;
1266 	bit = 1 << (bpref % NBBY);
1267 	for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) {
1268 		if ((map & bit) == 0) {
1269 			run = 0;
1270 		} else {
1271 			run++;
1272 			if (run == len)
1273 				break;
1274 		}
1275 		if ((got & (NBBY - 1)) != (NBBY - 1)) {
1276 			bit <<= 1;
1277 		} else {
1278 			map = *mapp++;
1279 			bit = 1;
1280 		}
1281 	}
1282 	if (got >= cgp->cg_nclusterblks)
1283 		goto fail;
1284 	/*
1285 	 * Allocate the cluster that we have found.
1286 	 */
1287 #ifdef DIAGNOSTIC
1288 	for (i = 1; i <= len; i++)
1289 		if (!ffs_isblock(fs, cg_blksfree(cgp), got - run + i))
1290 			panic("ffs_clusteralloc: map mismatch");
1291 #endif
1292 	bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1293 #ifdef DIAGNOSTIC
1294 	if (dtog(fs, bno) != cg)
1295 		panic("ffs_clusteralloc: allocated out of group");
1296 #endif
1297 
1298 	len = blkstofrags(fs, len);
1299 	for (i = 0; i < len; i += fs->fs_frag)
1300 		if (ffs_alloccgblk(ip, bp, bno + i) != bno + i)
1301 			panic("ffs_clusteralloc: lost block");
1302 	bdwrite(bp);
1303 	return (bno);
1304 
1305 fail:
1306 	brelse(bp);
1307 	return (0);
1308 }
1309 
1310 /*
1311  * Determine whether an inode can be allocated.
1312  *
1313  * Check to see if an inode is available, and if it is,
1314  * allocate it using the following policy:
1315  *   1) allocate the requested inode.
1316  *   2) allocate the next available inode after the requested
1317  *      inode in the specified cylinder group.
1318  */
1319 static daddr_t
1320 ffs_nodealloccg(ip, cg, ipref, mode)
1321 	struct inode *ip;
1322 	int cg;
1323 	daddr_t ipref;
1324 	int mode;
1325 {
1326 	register struct fs *fs;
1327 	register struct cg *cgp;
1328 	struct buf *bp;
1329 	int error, start, len, loc, map, i;
1330 
1331 	fs = ip->i_fs;
1332 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
1333 		return (0);
1334 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1335 		(int)fs->fs_cgsize, NOCRED, &bp);
1336 	if (error) {
1337 		brelse(bp);
1338 		return (0);
1339 	}
1340 	cgp = (struct cg *)bp->b_data;
1341 	if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
1342 		brelse(bp);
1343 		return (0);
1344 	}
1345 	cgp->cg_time = time.tv_sec;
1346 	if (ipref) {
1347 		ipref %= fs->fs_ipg;
1348 		if (isclr(cg_inosused(cgp), ipref))
1349 			goto gotit;
1350 	}
1351 	start = cgp->cg_irotor / NBBY;
1352 	len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
1353 	loc = skpc(0xff, len, &cg_inosused(cgp)[start]);
1354 	if (loc == 0) {
1355 		len = start + 1;
1356 		start = 0;
1357 		loc = skpc(0xff, len, &cg_inosused(cgp)[0]);
1358 		if (loc == 0) {
1359 			printf("cg = %d, irotor = %d, fs = %s\n",
1360 			    cg, cgp->cg_irotor, fs->fs_fsmnt);
1361 			panic("ffs_nodealloccg: map corrupted");
1362 			/* NOTREACHED */
1363 		}
1364 	}
1365 	i = start + len - loc;
1366 	map = cg_inosused(cgp)[i];
1367 	ipref = i * NBBY;
1368 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1369 		if ((map & i) == 0) {
1370 			cgp->cg_irotor = ipref;
1371 			goto gotit;
1372 		}
1373 	}
1374 	printf("fs = %s\n", fs->fs_fsmnt);
1375 	panic("ffs_nodealloccg: block not in map");
1376 	/* NOTREACHED */
1377 gotit:
1378 	if (DOINGSOFTDEP(ITOV(ip)))
1379 		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
1380 
1381 	setbit(cg_inosused(cgp), ipref);
1382 	cgp->cg_cs.cs_nifree--;
1383 	fs->fs_cstotal.cs_nifree--;
1384 	fs->fs_cs(fs, cg).cs_nifree--;
1385 	fs->fs_fmod = 1;
1386 	if ((mode & IFMT) == IFDIR) {
1387 		cgp->cg_cs.cs_ndir++;
1388 		fs->fs_cstotal.cs_ndir++;
1389 		fs->fs_cs(fs, cg).cs_ndir++;
1390 	}
1391 	bdwrite(bp);
1392 	return (cg * fs->fs_ipg + ipref);
1393 }
1394 
1395 /*
1396  * Free a block or fragment.
1397  *
1398  * The specified block or fragment is placed back in the
1399  * free map. If a fragment is deallocated, a possible
1400  * block reassembly is checked.
1401  */
1402 void
1403 ffs_blkfree(ip, bno, size)
1404 	register struct inode *ip;
1405 	daddr_t bno;
1406 	long size;
1407 {
1408 	register struct fs *fs;
1409 	register struct cg *cgp;
1410 	struct buf *bp;
1411 	daddr_t blkno;
1412 	int i, error, cg, blk, frags, bbase;
1413 
1414 	fs = ip->i_fs;
1415 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1416 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1417 		printf("dev = 0x%x, bsize = %d, size = %ld, fs = %s\n",
1418 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
1419 		panic("ffs_blkfree: bad size");
1420 	}
1421 	cg = dtog(fs, bno);
1422 	if ((u_int)bno >= fs->fs_size) {
1423 		printf("bad block %d, ino %d\n", bno, ip->i_number);
1424 		ffs_fserr(fs, ip->i_ffs_uid, "bad block");
1425 		return;
1426 	}
1427 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1428 		(int)fs->fs_cgsize, NOCRED, &bp);
1429 	if (error) {
1430 		brelse(bp);
1431 		return;
1432 	}
1433 	cgp = (struct cg *)bp->b_data;
1434 	if (!cg_chkmagic(cgp)) {
1435 		brelse(bp);
1436 		return;
1437 	}
1438 	cgp->cg_time = time.tv_sec;
1439 	bno = dtogd(fs, bno);
1440 	if (size == fs->fs_bsize) {
1441 		blkno = fragstoblks(fs, bno);
1442 		if (!ffs_isfreeblock(fs, cg_blksfree(cgp), blkno)) {
1443 			printf("dev = 0x%x, block = %d, fs = %s\n",
1444 			    ip->i_dev, bno, fs->fs_fsmnt);
1445 			panic("ffs_blkfree: freeing free block");
1446 		}
1447 		ffs_setblock(fs, cg_blksfree(cgp), blkno);
1448 		ffs_clusteracct(fs, cgp, blkno, 1);
1449 		cgp->cg_cs.cs_nbfree++;
1450 		fs->fs_cstotal.cs_nbfree++;
1451 		fs->fs_cs(fs, cg).cs_nbfree++;
1452 		i = cbtocylno(fs, bno);
1453 		cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++;
1454 		cg_blktot(cgp)[i]++;
1455 	} else {
1456 		bbase = bno - fragnum(fs, bno);
1457 		/*
1458 		 * decrement the counts associated with the old frags
1459 		 */
1460 		blk = blkmap(fs, cg_blksfree(cgp), bbase);
1461 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
1462 		/*
1463 		 * deallocate the fragment
1464 		 */
1465 		frags = numfrags(fs, size);
1466 		for (i = 0; i < frags; i++) {
1467 			if (isset(cg_blksfree(cgp), bno + i)) {
1468 				printf("dev = 0x%x, block = %d, fs = %s\n",
1469 				    ip->i_dev, bno + i, fs->fs_fsmnt);
1470 				panic("ffs_blkfree: freeing free frag");
1471 			}
1472 			setbit(cg_blksfree(cgp), bno + i);
1473 		}
1474 		cgp->cg_cs.cs_nffree += i;
1475 		fs->fs_cstotal.cs_nffree += i;
1476 		fs->fs_cs(fs, cg).cs_nffree += i;
1477 		/*
1478 		 * add back in counts associated with the new frags
1479 		 */
1480 		blk = blkmap(fs, cg_blksfree(cgp), bbase);
1481 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
1482 		/*
1483 		 * if a complete block has been reassembled, account for it
1484 		 */
1485 		blkno = fragstoblks(fs, bbase);
1486 		if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
1487 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
1488 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1489 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1490 			ffs_clusteracct(fs, cgp, blkno, 1);
1491 			cgp->cg_cs.cs_nbfree++;
1492 			fs->fs_cstotal.cs_nbfree++;
1493 			fs->fs_cs(fs, cg).cs_nbfree++;
1494 			i = cbtocylno(fs, bbase);
1495 			cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
1496 			cg_blktot(cgp)[i]++;
1497 		}
1498 	}
1499 	fs->fs_fmod = 1;
1500 	bdwrite(bp);
1501 }
1502 
1503 int
1504 ffs_inode_free(struct inode *pip, ino_t ino, int mode)
1505 {
1506 	struct vnode *pvp = ITOV(pip);
1507 
1508 	if (DOINGSOFTDEP(pvp)) {
1509 		softdep_freefile(pvp, ino, mode);
1510 		return (0);
1511 	}
1512 
1513 	return (ffs_freefile(pip, ino, mode));
1514 }
1515 
1516 /*
1517  * Do the actual free operation.
1518  * The specified inode is placed back in the free map.
1519  */
1520 int
1521 ffs_freefile(struct inode *pip, ino_t ino, int mode)
1522 {
1523 	struct fs *fs;
1524 	struct cg *cgp;
1525 	struct buf *bp;
1526 	int error, cg;
1527 
1528 	fs = pip->i_fs;
1529 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1530 		panic("ffs_freefile: range: dev = 0x%x, ino = %d, fs = %s",
1531 		    pip->i_dev, ino, fs->fs_fsmnt);
1532 	cg = ino_to_cg(fs, ino);
1533 	error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1534 		(int)fs->fs_cgsize, NOCRED, &bp);
1535 	if (error) {
1536 		brelse(bp);
1537 		return (error);
1538 	}
1539 	cgp = (struct cg *)bp->b_data;
1540 	if (!cg_chkmagic(cgp)) {
1541 		brelse(bp);
1542 		return (0);
1543 	}
1544 	cgp->cg_time = time.tv_sec;
1545 	ino %= fs->fs_ipg;
1546 	if (isclr(cg_inosused(cgp), ino)) {
1547 		printf("dev = 0x%x, ino = %d, fs = %s\n",
1548 		    pip->i_dev, ino, fs->fs_fsmnt);
1549 		if (fs->fs_ronly == 0)
1550 			panic("ffs_freefile: freeing free inode");
1551 	}
1552 	clrbit(cg_inosused(cgp), ino);
1553 	if (ino < cgp->cg_irotor)
1554 		cgp->cg_irotor = ino;
1555 	cgp->cg_cs.cs_nifree++;
1556 	fs->fs_cstotal.cs_nifree++;
1557 	fs->fs_cs(fs, cg).cs_nifree++;
1558 	if ((mode & IFMT) == IFDIR) {
1559 		cgp->cg_cs.cs_ndir--;
1560 		fs->fs_cstotal.cs_ndir--;
1561 		fs->fs_cs(fs, cg).cs_ndir--;
1562 	}
1563 	fs->fs_fmod = 1;
1564 	bdwrite(bp);
1565 	return (0);
1566 }
1567 
1568 #ifdef DIAGNOSTIC
1569 /*
1570  * Verify allocation of a block or fragment. Returns true if block or
1571  * fragment is allocated, false if it is free.
1572  */
1573 static int
1574 ffs_checkblk(ip, bno, size)
1575 	struct inode *ip;
1576 	daddr_t bno;
1577 	long size;
1578 {
1579 	struct fs *fs;
1580 	struct cg *cgp;
1581 	struct buf *bp;
1582 	int i, error, frags, free;
1583 
1584 	fs = ip->i_fs;
1585 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1586 		printf("bsize = %d, size = %ld, fs = %s\n",
1587 		    fs->fs_bsize, size, fs->fs_fsmnt);
1588 		panic("ffs_checkblk: bad size");
1589 	}
1590 	if ((u_int)bno >= fs->fs_size)
1591 		panic("ffs_checkblk: bad block %d", bno);
1592 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
1593 		(int)fs->fs_cgsize, NOCRED, &bp);
1594 	if (error) {
1595 		/* XXX - probably should panic here */
1596 		brelse(bp);
1597 		return (-1);
1598 	}
1599 	cgp = (struct cg *)bp->b_data;
1600 	if (!cg_chkmagic(cgp)) {
1601 		/* XXX - probably should panic here */
1602 		brelse(bp);
1603 		return (-1);
1604 	}
1605 	bno = dtogd(fs, bno);
1606 	if (size == fs->fs_bsize) {
1607 		free = ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bno));
1608 	} else {
1609 		frags = numfrags(fs, size);
1610 		for (free = 0, i = 0; i < frags; i++)
1611 			if (isset(cg_blksfree(cgp), bno + i))
1612 				free++;
1613 		if (free != 0 && free != frags)
1614 			panic("ffs_checkblk: partially free fragment");
1615 	}
1616 	brelse(bp);
1617 	return (!free);
1618 }
1619 #endif /* DIAGNOSTIC */
1620 
1621 
1622 /*
1623  * Find a block of the specified size in the specified cylinder group.
1624  *
1625  * It is a panic if a request is made to find a block if none are
1626  * available.
1627  */
1628 static daddr_t
1629 ffs_mapsearch(fs, cgp, bpref, allocsiz)
1630 	register struct fs *fs;
1631 	register struct cg *cgp;
1632 	daddr_t bpref;
1633 	int allocsiz;
1634 {
1635 	daddr_t bno;
1636 	int start, len, loc, i;
1637 	int blk, field, subfield, pos;
1638 
1639 	/*
1640 	 * find the fragment by searching through the free block
1641 	 * map for an appropriate bit pattern
1642 	 */
1643 	if (bpref)
1644 		start = dtogd(fs, bpref) / NBBY;
1645 	else
1646 		start = cgp->cg_frotor / NBBY;
1647 	len = howmany(fs->fs_fpg, NBBY) - start;
1648 	loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[start],
1649 		(u_char *)fragtbl[fs->fs_frag],
1650 		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1651 	if (loc == 0) {
1652 		len = start + 1;
1653 		start = 0;
1654 		loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[0],
1655 			(u_char *)fragtbl[fs->fs_frag],
1656 			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1657 		if (loc == 0) {
1658 			printf("start = %d, len = %d, fs = %s\n",
1659 			    start, len, fs->fs_fsmnt);
1660 			panic("ffs_alloccg: map corrupted");
1661 			/* NOTREACHED */
1662 		}
1663 	}
1664 	bno = (start + len - loc) * NBBY;
1665 	cgp->cg_frotor = bno;
1666 	/*
1667 	 * found the byte in the map
1668 	 * sift through the bits to find the selected frag
1669 	 */
1670 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1671 		blk = blkmap(fs, cg_blksfree(cgp), bno);
1672 		blk <<= 1;
1673 		field = around[allocsiz];
1674 		subfield = inside[allocsiz];
1675 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1676 			if ((blk & field) == subfield)
1677 				return (bno + pos);
1678 			field <<= 1;
1679 			subfield <<= 1;
1680 		}
1681 	}
1682 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1683 	panic("ffs_alloccg: block not in map");
1684 	return (-1);
1685 }
1686 
1687 /*
1688  * Update the cluster map because of an allocation or free.
1689  *
1690  * Cnt == 1 means free; cnt == -1 means allocating.
1691  */
1692 void
1693 ffs_clusteracct(fs, cgp, blkno, cnt)
1694 	struct fs *fs;
1695 	struct cg *cgp;
1696 	daddr_t blkno;
1697 	int cnt;
1698 {
1699 	int32_t *sump;
1700 	int32_t *lp;
1701 	u_char *freemapp, *mapp;
1702 	int i, start, end, forw, back, map, bit;
1703 
1704 	if (fs->fs_contigsumsize <= 0)
1705 		return;
1706 	freemapp = cg_clustersfree(cgp);
1707 	sump = cg_clustersum(cgp);
1708 	/*
1709 	 * Allocate or clear the actual block.
1710 	 */
1711 	if (cnt > 0)
1712 		setbit(freemapp, blkno);
1713 	else
1714 		clrbit(freemapp, blkno);
1715 	/*
1716 	 * Find the size of the cluster going forward.
1717 	 */
1718 	start = blkno + 1;
1719 	end = start + fs->fs_contigsumsize;
1720 	if (end >= cgp->cg_nclusterblks)
1721 		end = cgp->cg_nclusterblks;
1722 	mapp = &freemapp[start / NBBY];
1723 	map = *mapp++;
1724 	bit = 1 << (start % NBBY);
1725 	for (i = start; i < end; i++) {
1726 		if ((map & bit) == 0)
1727 			break;
1728 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
1729 			bit <<= 1;
1730 		} else {
1731 			map = *mapp++;
1732 			bit = 1;
1733 		}
1734 	}
1735 	forw = i - start;
1736 	/*
1737 	 * Find the size of the cluster going backward.
1738 	 */
1739 	start = blkno - 1;
1740 	end = start - fs->fs_contigsumsize;
1741 	if (end < 0)
1742 		end = -1;
1743 	mapp = &freemapp[start / NBBY];
1744 	map = *mapp--;
1745 	bit = 1 << (start % NBBY);
1746 	for (i = start; i > end; i--) {
1747 		if ((map & bit) == 0)
1748 			break;
1749 		if ((i & (NBBY - 1)) != 0) {
1750 			bit >>= 1;
1751 		} else {
1752 			map = *mapp--;
1753 			bit = 1 << (NBBY - 1);
1754 		}
1755 	}
1756 	back = start - i;
1757 	/*
1758 	 * Account for old cluster and the possibly new forward and
1759 	 * back clusters.
1760 	 */
1761 	i = back + forw + 1;
1762 	if (i > fs->fs_contigsumsize)
1763 		i = fs->fs_contigsumsize;
1764 	sump[i] += cnt;
1765 	if (back > 0)
1766 		sump[back] -= cnt;
1767 	if (forw > 0)
1768 		sump[forw] -= cnt;
1769 	/*
1770 	 * Update cluster summary information.
1771 	 */
1772 	lp = &sump[fs->fs_contigsumsize];
1773 	for (i = fs->fs_contigsumsize; i > 0; i--)
1774 		if (*lp-- > 0)
1775 			break;
1776 	fs->fs_maxcluster[cgp->cg_cgx] = i;
1777 }
1778 
1779 /*
1780  * Fserr prints the name of a file system with an error diagnostic.
1781  *
1782  * The form of the error message is:
1783  *	fs: error message
1784  */
1785 static void
1786 ffs_fserr(fs, uid, cp)
1787 	struct fs *fs;
1788 	u_int uid;
1789 	char *cp;
1790 {
1791 
1792 	log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp);
1793 }
1794