xref: /openbsd/sys/uvm/uvm_km.c (revision 91f110e0)
1 /*	$OpenBSD: uvm_km.c,v 1.111 2013/05/30 18:02:04 tedu Exp $	*/
2 /*	$NetBSD: uvm_km.c,v 1.42 2001/01/14 02:10:01 thorpej Exp $	*/
3 
4 /*
5  * Copyright (c) 1997 Charles D. Cranor and Washington University.
6  * Copyright (c) 1991, 1993, The Regents of the University of California.
7  *
8  * All rights reserved.
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by Charles D. Cranor,
24  *      Washington University, the University of California, Berkeley and
25  *      its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
43  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
44  *
45  *
46  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47  * All rights reserved.
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69 
70 /*
71  * uvm_km.c: handle kernel memory allocation and management
72  */
73 
74 /*
75  * overview of kernel memory management:
76  *
77  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
78  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
79  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
80  *
81  * the kernel_map has several "submaps."   submaps can only appear in
82  * the kernel_map (user processes can't use them).   submaps "take over"
83  * the management of a sub-range of the kernel's address space.  submaps
84  * are typically allocated at boot time and are never released.   kernel
85  * virtual address space that is mapped by a submap is locked by the
86  * submap's lock -- not the kernel_map's lock.
87  *
88  * thus, the useful feature of submaps is that they allow us to break
89  * up the locking and protection of the kernel address space into smaller
90  * chunks.
91  *
92  * The VM system has several standard kernel submaps:
93  *   kmem_map: Contains only wired kernel memory for malloc(9).
94  *	       Note: All access to this map must be protected by splvm as
95  *	       calls to malloc(9) are allowed in interrupt handlers.
96  *   exec_map: Memory to hold arguments to system calls are allocated from
97  *	       this map.
98  *	       XXX: This is primeraly used to artificially limit the number
99  *	       of concurrent processes doing an exec.
100  *   phys_map: Buffers for vmapbuf (physio) are allocated from this map.
101  *
102  * the kernel allocates its private memory out of special uvm_objects whose
103  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
104  * are "special" and never die).   all kernel objects should be thought of
105  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
106  * object is equal to the size of kernel virtual address space (i.e. the
107  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
108  *
109  * most kernel private memory lives in kernel_object.   the only exception
110  * to this is for memory that belongs to submaps that must be protected
111  * by splvm(). each of these submaps manages their own pages.
112  *
113  * note that just because a kernel object spans the entire kernel virtual
114  * address space doesn't mean that it has to be mapped into the entire space.
115  * large chunks of a kernel object's space go unused either because
116  * that area of kernel VM is unmapped, or there is some other type of
117  * object mapped into that range (e.g. a vnode).    for submap's kernel
118  * objects, the only part of the object that can ever be populated is the
119  * offsets that are managed by the submap.
120  *
121  * note that the "offset" in a kernel object is always the kernel virtual
122  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
123  * example:
124  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
125  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
126  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
127  *   then that means that the page at offset 0x235000 in kernel_object is
128  *   mapped at 0xf8235000.
129  *
130  * kernel objects have one other special property: when the kernel virtual
131  * memory mapping them is unmapped, the backing memory in the object is
132  * freed right away.   this is done with the uvm_km_pgremove() function.
133  * this has to be done because there is no backing store for kernel pages
134  * and no need to save them after they are no longer referenced.
135  */
136 
137 #include <sys/param.h>
138 #include <sys/systm.h>
139 #include <sys/proc.h>
140 #include <sys/kthread.h>
141 #include <uvm/uvm.h>
142 
143 /*
144  * global data structures
145  */
146 
147 struct vm_map *kernel_map = NULL;
148 
149 /* Unconstraint range. */
150 struct uvm_constraint_range	no_constraint = { 0x0, (paddr_t)-1 };
151 
152 /*
153  * local data structues
154  */
155 
156 static struct vm_map		kernel_map_store;
157 
158 /*
159  * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
160  * KVM already allocated for text, data, bss, and static data structures).
161  *
162  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
163  *    we assume that [min -> start] has already been allocated and that
164  *    "end" is the end.
165  */
166 
167 void
168 uvm_km_init(vaddr_t start, vaddr_t end)
169 {
170 	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
171 
172 	/*
173 	 * next, init kernel memory objects.
174 	 */
175 
176 	/* kernel_object: for pageable anonymous kernel memory */
177 	uao_init();
178 	uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
179 				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
180 
181 	/*
182 	 * init the map and reserve already allocated kernel space
183 	 * before installing.
184 	 */
185 
186 	uvm_map_setup(&kernel_map_store, base, end,
187 #ifdef KVA_GUARDPAGES
188 	    VM_MAP_PAGEABLE | VM_MAP_GUARDPAGES
189 #else
190 	    VM_MAP_PAGEABLE
191 #endif
192 	    );
193 	kernel_map_store.pmap = pmap_kernel();
194 	if (base != start && uvm_map(&kernel_map_store, &base, start - base,
195 	    NULL, UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
196 	    UVM_INH_NONE, UVM_ADV_RANDOM,UVM_FLAG_FIXED)) != 0)
197 		panic("uvm_km_init: could not reserve space for kernel");
198 
199 	/*
200 	 * install!
201 	 */
202 
203 	kernel_map = &kernel_map_store;
204 }
205 
206 /*
207  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
208  * is allocated all references to that area of VM must go through it.  this
209  * allows the locking of VAs in kernel_map to be broken up into regions.
210  *
211  * => if `fixed' is true, *min specifies where the region described
212  *      by the submap must start
213  * => if submap is non NULL we use that as the submap, otherwise we
214  *	alloc a new map
215  */
216 struct vm_map *
217 uvm_km_suballoc(struct vm_map *map, vaddr_t *min, vaddr_t *max, vsize_t size,
218     int flags, boolean_t fixed, struct vm_map *submap)
219 {
220 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
221 
222 	size = round_page(size);	/* round up to pagesize */
223 
224 	/*
225 	 * first allocate a blank spot in the parent map
226 	 */
227 
228 	if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET, 0,
229 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
230 	    UVM_ADV_RANDOM, mapflags)) != 0) {
231 	       panic("uvm_km_suballoc: unable to allocate space in parent map");
232 	}
233 
234 	/*
235 	 * set VM bounds (min is filled in by uvm_map)
236 	 */
237 
238 	*max = *min + size;
239 
240 	/*
241 	 * add references to pmap and create or init the submap
242 	 */
243 
244 	pmap_reference(vm_map_pmap(map));
245 	if (submap == NULL) {
246 		submap = uvm_map_create(vm_map_pmap(map), *min, *max, flags);
247 		if (submap == NULL)
248 			panic("uvm_km_suballoc: unable to create submap");
249 	} else {
250 		uvm_map_setup(submap, *min, *max, flags);
251 		submap->pmap = vm_map_pmap(map);
252 	}
253 
254 	/*
255 	 * now let uvm_map_submap plug in it...
256 	 */
257 
258 	if (uvm_map_submap(map, *min, *max, submap) != 0)
259 		panic("uvm_km_suballoc: submap allocation failed");
260 
261 	return(submap);
262 }
263 
264 /*
265  * uvm_km_pgremove: remove pages from a kernel uvm_object.
266  *
267  * => when you unmap a part of anonymous kernel memory you want to toss
268  *    the pages right away.    (this gets called from uvm_unmap_...).
269  */
270 void
271 uvm_km_pgremove(struct uvm_object *uobj, vaddr_t start, vaddr_t end)
272 {
273 	struct vm_page *pp;
274 	voff_t curoff;
275 	int slot;
276 
277 	KASSERT(uobj->pgops == &aobj_pager);
278 
279 	for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
280 		pp = uvm_pagelookup(uobj, curoff);
281 		if (pp && pp->pg_flags & PG_BUSY) {
282 			atomic_setbits_int(&pp->pg_flags, PG_WANTED);
283 			UVM_WAIT(pp, 0, "km_pgrm", 0);
284 			curoff -= PAGE_SIZE; /* loop back to us */
285 			continue;
286 		}
287 
288 		/* free the swap slot, then the page */
289 		slot = uao_dropswap(uobj, curoff >> PAGE_SHIFT);
290 
291 		if (pp != NULL) {
292 			uvm_lock_pageq();
293 			uvm_pagefree(pp);
294 			uvm_unlock_pageq();
295 		} else if (slot != 0) {
296 			uvmexp.swpgonly--;
297 		}
298 	}
299 }
300 
301 
302 /*
303  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
304  *    objects
305  *
306  * => when you unmap a part of anonymous kernel memory you want to toss
307  *    the pages right away.    (this gets called from uvm_unmap_...).
308  * => none of the pages will ever be busy, and none of them will ever
309  *    be on the active or inactive queues (because these objects are
310  *    never allowed to "page").
311  */
312 
313 void
314 uvm_km_pgremove_intrsafe(vaddr_t start, vaddr_t end)
315 {
316 	struct vm_page *pg;
317 	vaddr_t va;
318 	paddr_t pa;
319 
320 	for (va = start; va < end; va += PAGE_SIZE) {
321 		if (!pmap_extract(pmap_kernel(), va, &pa))
322 			continue;
323 		pg = PHYS_TO_VM_PAGE(pa);
324 		if (pg == NULL)
325 			panic("uvm_km_pgremove_intrsafe: no page");
326 		uvm_pagefree(pg);
327 	}
328 }
329 
330 /*
331  * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
332  *
333  * => we map wired memory into the specified map using the obj passed in
334  * => NOTE: we can return NULL even if we can wait if there is not enough
335  *	free VM space in the map... caller should be prepared to handle
336  *	this case.
337  * => we return KVA of memory allocated
338  * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
339  *	lock the map
340  * => low, high, alignment, boundary, nsegs are the corresponding parameters
341  *	to uvm_pglistalloc
342  * => flags: ZERO - correspond to uvm_pglistalloc flags
343  */
344 
345 vaddr_t
346 uvm_km_kmemalloc_pla(struct vm_map *map, struct uvm_object *obj, vsize_t size,
347     vsize_t valign, int flags, paddr_t low, paddr_t high, paddr_t alignment,
348     paddr_t boundary, int nsegs)
349 {
350 	vaddr_t kva, loopva;
351 	voff_t offset;
352 	struct vm_page *pg;
353 	struct pglist pgl;
354 	int pla_flags;
355 
356 	KASSERT(vm_map_pmap(map) == pmap_kernel());
357 	/* UVM_KMF_VALLOC => !UVM_KMF_ZERO */
358 	KASSERT(!(flags & UVM_KMF_VALLOC) ||
359 	    !(flags & UVM_KMF_ZERO));
360 
361 	/*
362 	 * setup for call
363 	 */
364 
365 	size = round_page(size);
366 	kva = vm_map_min(map);	/* hint */
367 	if (nsegs == 0)
368 		nsegs = atop(size);
369 
370 	/*
371 	 * allocate some virtual space
372 	 */
373 
374 	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
375 	      valign, UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, UVM_INH_NONE,
376 			  UVM_ADV_RANDOM, (flags & UVM_KMF_TRYLOCK))) != 0)) {
377 		return(0);
378 	}
379 
380 	/*
381 	 * if all we wanted was VA, return now
382 	 */
383 
384 	if (flags & UVM_KMF_VALLOC) {
385 		return(kva);
386 	}
387 
388 	/*
389 	 * recover object offset from virtual address
390 	 */
391 
392 	if (obj != NULL)
393 		offset = kva - vm_map_min(kernel_map);
394 	else
395 		offset = 0;
396 
397 	/*
398 	 * now allocate and map in the memory... note that we are the only ones
399 	 * whom should ever get a handle on this area of VM.
400 	 */
401 	TAILQ_INIT(&pgl);
402 	pla_flags = 0;
403 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
404 	if ((flags & UVM_KMF_NOWAIT) ||
405 	    ((flags & UVM_KMF_CANFAIL) &&
406 	    uvmexp.swpages - uvmexp.swpgonly <= atop(size)))
407 		pla_flags |= UVM_PLA_NOWAIT;
408 	else
409 		pla_flags |= UVM_PLA_WAITOK;
410 	if (flags & UVM_KMF_ZERO)
411 		pla_flags |= UVM_PLA_ZERO;
412 	if (uvm_pglistalloc(size, low, high, alignment, boundary, &pgl, nsegs,
413 	    pla_flags) != 0) {
414 		/* Failed. */
415 		uvm_unmap(map, kva, kva + size);
416 		return (0);
417 	}
418 
419 	loopva = kva;
420 	while (loopva != kva + size) {
421 		pg = TAILQ_FIRST(&pgl);
422 		TAILQ_REMOVE(&pgl, pg, pageq);
423 		uvm_pagealloc_pg(pg, obj, offset, NULL);
424 		atomic_clearbits_int(&pg->pg_flags, PG_BUSY);
425 		UVM_PAGE_OWN(pg, NULL);
426 
427 		/*
428 		 * map it in: note that we call pmap_enter with the map and
429 		 * object unlocked in case we are kmem_map.
430 		 */
431 
432 		if (obj == NULL) {
433 			pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
434 			    UVM_PROT_RW);
435 		} else {
436 			pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
437 			    UVM_PROT_RW,
438 			    PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
439 		}
440 		loopva += PAGE_SIZE;
441 		offset += PAGE_SIZE;
442 	}
443 	KASSERT(TAILQ_EMPTY(&pgl));
444 	pmap_update(pmap_kernel());
445 
446 	return(kva);
447 }
448 
449 /*
450  * uvm_km_free: free an area of kernel memory
451  */
452 
453 void
454 uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size)
455 {
456 	uvm_unmap(map, trunc_page(addr), round_page(addr+size));
457 }
458 
459 /*
460  * uvm_km_free_wakeup: free an area of kernel memory and wake up
461  * anyone waiting for vm space.
462  *
463  * => XXX: "wanted" bit + unlock&wait on other end?
464  */
465 
466 void
467 uvm_km_free_wakeup(struct vm_map *map, vaddr_t addr, vsize_t size)
468 {
469 	struct uvm_map_deadq dead_entries;
470 
471 	vm_map_lock(map);
472 	TAILQ_INIT(&dead_entries);
473 	uvm_unmap_remove(map, trunc_page(addr), round_page(addr+size),
474 	     &dead_entries, FALSE, TRUE);
475 	wakeup(map);
476 	vm_map_unlock(map);
477 
478 	uvm_unmap_detach(&dead_entries, 0);
479 }
480 
481 /*
482  * uvm_km_alloc1: allocate wired down memory in the kernel map.
483  *
484  * => we can sleep if needed
485  */
486 
487 vaddr_t
488 uvm_km_alloc1(struct vm_map *map, vsize_t size, vsize_t align, boolean_t zeroit)
489 {
490 	vaddr_t kva, loopva;
491 	voff_t offset;
492 	struct vm_page *pg;
493 
494 	KASSERT(vm_map_pmap(map) == pmap_kernel());
495 
496 	size = round_page(size);
497 	kva = vm_map_min(map);		/* hint */
498 
499 	/*
500 	 * allocate some virtual space
501 	 */
502 
503 	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
504 	    UVM_UNKNOWN_OFFSET, align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
505 	    UVM_INH_NONE, UVM_ADV_RANDOM, 0)) != 0)) {
506 		return(0);
507 	}
508 
509 	/*
510 	 * recover object offset from virtual address
511 	 */
512 
513 	offset = kva - vm_map_min(kernel_map);
514 
515 	/*
516 	 * now allocate the memory.  we must be careful about released pages.
517 	 */
518 
519 	loopva = kva;
520 	while (size) {
521 		/* allocate ram */
522 		pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
523 		if (pg) {
524 			atomic_clearbits_int(&pg->pg_flags, PG_BUSY);
525 			UVM_PAGE_OWN(pg, NULL);
526 		}
527 		if (__predict_false(pg == NULL)) {
528 			if (curproc == uvm.pagedaemon_proc) {
529 				/*
530 				 * It is unfeasible for the page daemon to
531 				 * sleep for memory, so free what we have
532 				 * allocated and fail.
533 				 */
534 				uvm_unmap(map, kva, loopva - kva);
535 				return (0);
536 			} else {
537 				uvm_wait("km_alloc1w");	/* wait for memory */
538 				continue;
539 			}
540 		}
541 
542 		/*
543 		 * map it in; note we're never called with an intrsafe
544 		 * object, so we always use regular old pmap_enter().
545 		 */
546 		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
547 		    UVM_PROT_ALL, PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
548 
549 		loopva += PAGE_SIZE;
550 		offset += PAGE_SIZE;
551 		size -= PAGE_SIZE;
552 	}
553 	pmap_update(map->pmap);
554 
555 	/*
556 	 * zero on request (note that "size" is now zero due to the above loop
557 	 * so we need to subtract kva from loopva to reconstruct the size).
558 	 */
559 
560 	if (zeroit)
561 		memset((caddr_t)kva, 0, loopva - kva);
562 
563 	return(kva);
564 }
565 
566 /*
567  * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
568  *
569  * => memory is not allocated until fault time
570  */
571 
572 vaddr_t
573 uvm_km_valloc(struct vm_map *map, vsize_t size)
574 {
575 	return(uvm_km_valloc_align(map, size, 0, 0));
576 }
577 
578 vaddr_t
579 uvm_km_valloc_try(struct vm_map *map, vsize_t size)
580 {
581 	return(uvm_km_valloc_align(map, size, 0, UVM_FLAG_TRYLOCK));
582 }
583 
584 vaddr_t
585 uvm_km_valloc_align(struct vm_map *map, vsize_t size, vsize_t align, int flags)
586 {
587 	vaddr_t kva;
588 
589 	KASSERT(vm_map_pmap(map) == pmap_kernel());
590 
591 	size = round_page(size);
592 	kva = vm_map_min(map);		/* hint */
593 
594 	/*
595 	 * allocate some virtual space.  will be demand filled by kernel_object.
596 	 */
597 
598 	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
599 	    UVM_UNKNOWN_OFFSET, align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
600 	    UVM_INH_NONE, UVM_ADV_RANDOM, flags)) != 0)) {
601 		return(0);
602 	}
603 
604 	return(kva);
605 }
606 
607 /*
608  * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
609  *
610  * => memory is not allocated until fault time
611  * => if no room in map, wait for space to free, unless requested size
612  *    is larger than map (in which case we return 0)
613  */
614 
615 vaddr_t
616 uvm_km_valloc_prefer_wait(struct vm_map *map, vsize_t size, voff_t prefer)
617 {
618 	vaddr_t kva;
619 
620 	KASSERT(vm_map_pmap(map) == pmap_kernel());
621 
622 	size = round_page(size);
623 	if (size > vm_map_max(map) - vm_map_min(map))
624 		return(0);
625 
626 	while (1) {
627 		kva = vm_map_min(map);		/* hint */
628 
629 		/*
630 		 * allocate some virtual space.   will be demand filled
631 		 * by kernel_object.
632 		 */
633 
634 		if (__predict_true(uvm_map(map, &kva, size, uvm.kernel_object,
635 		    prefer, 0, UVM_MAPFLAG(UVM_PROT_ALL,
636 		    UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, 0)) == 0)) {
637 			return(kva);
638 		}
639 
640 		/*
641 		 * failed.  sleep for a while (on map)
642 		 */
643 
644 		tsleep(map, PVM, "vallocwait", 0);
645 	}
646 	/*NOTREACHED*/
647 }
648 
649 vaddr_t
650 uvm_km_valloc_wait(struct vm_map *map, vsize_t size)
651 {
652 	return uvm_km_valloc_prefer_wait(map, size, UVM_UNKNOWN_OFFSET);
653 }
654 
655 #if defined(__HAVE_PMAP_DIRECT)
656 /*
657  * uvm_km_page allocator, __HAVE_PMAP_DIRECT arch
658  * On architectures with machine memory direct mapped into a portion
659  * of KVM, we have very little work to do.  Just get a physical page,
660  * and find and return its VA.
661  */
662 void
663 uvm_km_page_init(void)
664 {
665 	/* nothing */
666 }
667 
668 #else
669 /*
670  * uvm_km_page allocator, non __HAVE_PMAP_DIRECT archs
671  * This is a special allocator that uses a reserve of free pages
672  * to fulfill requests.  It is fast and interrupt safe, but can only
673  * return page sized regions.  Its primary use is as a backend for pool.
674  *
675  * The memory returned is allocated from the larger kernel_map, sparing
676  * pressure on the small interrupt-safe kmem_map.  It is wired, but
677  * not zero filled.
678  */
679 
680 struct uvm_km_pages uvm_km_pages;
681 
682 void uvm_km_createthread(void *);
683 void uvm_km_thread(void *);
684 struct uvm_km_free_page *uvm_km_doputpage(struct uvm_km_free_page *);
685 
686 /*
687  * Allocate the initial reserve, and create the thread which will
688  * keep the reserve full.  For bootstrapping, we allocate more than
689  * the lowat amount, because it may be a while before the thread is
690  * running.
691  */
692 void
693 uvm_km_page_init(void)
694 {
695 	int	lowat_min;
696 	int	i;
697 	int	len, bulk;
698 	vaddr_t	addr;
699 
700 	mtx_init(&uvm_km_pages.mtx, IPL_VM);
701 	if (!uvm_km_pages.lowat) {
702 		/* based on physmem, calculate a good value here */
703 		uvm_km_pages.lowat = physmem / 256;
704 		lowat_min = physmem < atop(16 * 1024 * 1024) ? 32 : 128;
705 		if (uvm_km_pages.lowat < lowat_min)
706 			uvm_km_pages.lowat = lowat_min;
707 	}
708 	if (uvm_km_pages.lowat > UVM_KM_PAGES_LOWAT_MAX)
709 		uvm_km_pages.lowat = UVM_KM_PAGES_LOWAT_MAX;
710 	uvm_km_pages.hiwat = 4 * uvm_km_pages.lowat;
711 	if (uvm_km_pages.hiwat > UVM_KM_PAGES_HIWAT_MAX)
712 		uvm_km_pages.hiwat = UVM_KM_PAGES_HIWAT_MAX;
713 
714 	/* Allocate all pages in as few allocations as possible. */
715 	len = 0;
716 	bulk = uvm_km_pages.hiwat;
717 	while (len < uvm_km_pages.hiwat && bulk > 0) {
718 		bulk = MIN(bulk, uvm_km_pages.hiwat - len);
719 		addr = vm_map_min(kernel_map);
720 		if (uvm_map(kernel_map, &addr, (vsize_t)bulk << PAGE_SHIFT,
721 		    NULL, UVM_UNKNOWN_OFFSET, 0,
722 		    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, UVM_INH_NONE,
723 		    UVM_ADV_RANDOM, UVM_KMF_TRYLOCK)) != 0) {
724 			bulk /= 2;
725 			continue;
726 		}
727 
728 		for (i = len; i < len + bulk; i++, addr += PAGE_SIZE)
729 			uvm_km_pages.page[i] = addr;
730 		len += bulk;
731 	}
732 
733 	uvm_km_pages.free = len;
734 	for (i = len; i < UVM_KM_PAGES_HIWAT_MAX; i++)
735 		uvm_km_pages.page[i] = 0;
736 
737 	/* tone down if really high */
738 	if (uvm_km_pages.lowat > 512)
739 		uvm_km_pages.lowat = 512;
740 
741 	kthread_create_deferred(uvm_km_createthread, NULL);
742 }
743 
744 void
745 uvm_km_createthread(void *arg)
746 {
747 	kthread_create(uvm_km_thread, NULL, &uvm_km_pages.km_proc, "kmthread");
748 }
749 
750 /*
751  * Endless loop.  We grab pages in increments of 16 pages, then
752  * quickly swap them into the list.  At some point we can consider
753  * returning memory to the system if we have too many free pages,
754  * but that's not implemented yet.
755  */
756 void
757 uvm_km_thread(void *arg)
758 {
759 	vaddr_t pg[16];
760 	int i;
761 	int allocmore = 0;
762 	struct uvm_km_free_page *fp = NULL;
763 
764 	for (;;) {
765 		mtx_enter(&uvm_km_pages.mtx);
766 		if (uvm_km_pages.free >= uvm_km_pages.lowat &&
767 		    uvm_km_pages.freelist == NULL) {
768 			msleep(&uvm_km_pages.km_proc, &uvm_km_pages.mtx,
769 			    PVM, "kmalloc", 0);
770 		}
771 		allocmore = uvm_km_pages.free < uvm_km_pages.lowat;
772 		fp = uvm_km_pages.freelist;
773 		uvm_km_pages.freelist = NULL;
774 		uvm_km_pages.freelistlen = 0;
775 		mtx_leave(&uvm_km_pages.mtx);
776 
777 		if (allocmore) {
778 			bzero(pg, sizeof(pg));
779 			for (i = 0; i < nitems(pg); i++) {
780 				pg[i] = vm_map_min(kernel_map);
781 				if (uvm_map(kernel_map, &pg[i], PAGE_SIZE,
782 				    NULL, UVM_UNKNOWN_OFFSET, 0,
783 				    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
784 				    UVM_INH_NONE, UVM_ADV_RANDOM,
785 				    UVM_KMF_TRYLOCK)) != 0) {
786 					pg[i] = 0;
787 					break;
788 				}
789 			}
790 
791 			mtx_enter(&uvm_km_pages.mtx);
792 			for (i = 0; i < nitems(pg); i++) {
793 				if (uvm_km_pages.free ==
794 				    nitems(uvm_km_pages.page))
795 					break;
796 				else if (pg[i] != 0)
797 					uvm_km_pages.page[uvm_km_pages.free++]
798 					    = pg[i];
799 			}
800 			wakeup(&uvm_km_pages.free);
801 			mtx_leave(&uvm_km_pages.mtx);
802 
803 			/* Cleanup left-over pages (if any). */
804 			for (; i < nitems(pg); i++) {
805 				if (pg[i] != 0) {
806 					uvm_unmap(kernel_map,
807 					    pg[i], pg[i] + PAGE_SIZE);
808 				}
809 			}
810 		}
811 		while (fp) {
812 			fp = uvm_km_doputpage(fp);
813 		}
814 	}
815 }
816 
817 struct uvm_km_free_page *
818 uvm_km_doputpage(struct uvm_km_free_page *fp)
819 {
820 	vaddr_t va = (vaddr_t)fp;
821 	struct vm_page *pg;
822 	int	freeva = 1;
823 	struct uvm_km_free_page *nextfp = fp->next;
824 
825 	pg = uvm_atopg(va);
826 
827 	pmap_kremove(va, PAGE_SIZE);
828 	pmap_update(kernel_map->pmap);
829 
830 	mtx_enter(&uvm_km_pages.mtx);
831 	if (uvm_km_pages.free < uvm_km_pages.hiwat) {
832 		uvm_km_pages.page[uvm_km_pages.free++] = va;
833 		freeva = 0;
834 	}
835 	mtx_leave(&uvm_km_pages.mtx);
836 
837 	if (freeva)
838 		uvm_unmap(kernel_map, va, va + PAGE_SIZE);
839 
840 	uvm_pagefree(pg);
841 	return (nextfp);
842 }
843 #endif	/* !__HAVE_PMAP_DIRECT */
844 
845 void *
846 km_alloc(size_t sz, const struct kmem_va_mode *kv,
847     const struct kmem_pa_mode *kp, const struct kmem_dyn_mode *kd)
848 {
849 	struct vm_map *map;
850 	struct vm_page *pg;
851 	struct pglist pgl;
852 	int mapflags = 0;
853 	vm_prot_t prot;
854 	int pla_flags;
855 	int pla_maxseg;
856 #ifdef __HAVE_PMAP_DIRECT
857 	paddr_t pa;
858 #endif
859 	vaddr_t va, sva;
860 
861 	KASSERT(sz == round_page(sz));
862 
863 	TAILQ_INIT(&pgl);
864 
865 	if (kp->kp_nomem || kp->kp_pageable)
866 		goto alloc_va;
867 
868 	pla_flags = kd->kd_waitok ? UVM_PLA_WAITOK : UVM_PLA_NOWAIT;
869 	pla_flags |= UVM_PLA_TRYCONTIG;
870 	if (kp->kp_zero)
871 		pla_flags |= UVM_PLA_ZERO;
872 
873 	pla_maxseg = kp->kp_maxseg;
874 	if (pla_maxseg == 0)
875 		pla_maxseg = sz / PAGE_SIZE;
876 
877 	if (uvm_pglistalloc(sz, kp->kp_constraint->ucr_low,
878 	    kp->kp_constraint->ucr_high, kp->kp_align, kp->kp_boundary,
879 	    &pgl, pla_maxseg, pla_flags)) {
880 		return (NULL);
881 	}
882 
883 #ifdef __HAVE_PMAP_DIRECT
884 	if (kv->kv_align || kv->kv_executable)
885 		goto alloc_va;
886 #if 1
887 	/*
888 	 * For now, only do DIRECT mappings for single page
889 	 * allocations, until we figure out a good way to deal
890 	 * with contig allocations in km_free.
891 	 */
892 	if (!kv->kv_singlepage)
893 		goto alloc_va;
894 #endif
895 	/*
896 	 * Dubious optimization. If we got a contig segment, just map it
897 	 * through the direct map.
898 	 */
899 	TAILQ_FOREACH(pg, &pgl, pageq) {
900 		if (pg != TAILQ_FIRST(&pgl) &&
901 		    VM_PAGE_TO_PHYS(pg) != pa + PAGE_SIZE)
902 			break;
903 		pa = VM_PAGE_TO_PHYS(pg);
904 	}
905 	if (pg == NULL) {
906 		TAILQ_FOREACH(pg, &pgl, pageq) {
907 			vaddr_t v;
908 			v = pmap_map_direct(pg);
909 			if (pg == TAILQ_FIRST(&pgl))
910 				va = v;
911 		}
912 		return ((void *)va);
913 	}
914 #endif
915 alloc_va:
916 	if (kv->kv_executable) {
917 		prot = VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
918 	} else {
919 		prot = VM_PROT_READ | VM_PROT_WRITE;
920 	}
921 
922 	if (kp->kp_pageable) {
923 		KASSERT(kp->kp_object);
924 		KASSERT(!kv->kv_singlepage);
925 	} else {
926 		KASSERT(kp->kp_object == NULL);
927 	}
928 
929 	if (kv->kv_singlepage) {
930 		KASSERT(sz == PAGE_SIZE);
931 #ifdef __HAVE_PMAP_DIRECT
932 		panic("km_alloc: DIRECT single page");
933 #else
934 		mtx_enter(&uvm_km_pages.mtx);
935 		while (uvm_km_pages.free == 0) {
936 			if (kd->kd_waitok == 0) {
937 				mtx_leave(&uvm_km_pages.mtx);
938 				uvm_pglistfree(&pgl);
939 				return NULL;
940 			}
941 			msleep(&uvm_km_pages.free, &uvm_km_pages.mtx, PVM,
942 			    "getpage", 0);
943 		}
944 		va = uvm_km_pages.page[--uvm_km_pages.free];
945 		if (uvm_km_pages.free < uvm_km_pages.lowat &&
946 		    curproc != uvm_km_pages.km_proc) {
947 			if (kd->kd_slowdown)
948 				*kd->kd_slowdown = 1;
949 			wakeup(&uvm_km_pages.km_proc);
950 		}
951 		mtx_leave(&uvm_km_pages.mtx);
952 #endif
953 	} else {
954 		struct uvm_object *uobj = NULL;
955 
956 		if (kd->kd_trylock)
957 			mapflags |= UVM_KMF_TRYLOCK;
958 
959 		if (kp->kp_object)
960 			uobj = *kp->kp_object;
961 try_map:
962 		map = *kv->kv_map;
963 		va = vm_map_min(map);
964 		if (uvm_map(map, &va, sz, uobj, kd->kd_prefer,
965 		    kv->kv_align, UVM_MAPFLAG(prot, prot, UVM_INH_NONE,
966 		    UVM_ADV_RANDOM, mapflags))) {
967 			if (kv->kv_wait && kd->kd_waitok) {
968 				tsleep(map, PVM, "km_allocva", 0);
969 				goto try_map;
970 			}
971 			uvm_pglistfree(&pgl);
972 			return (NULL);
973 		}
974 	}
975 	sva = va;
976 	TAILQ_FOREACH(pg, &pgl, pageq) {
977 		if (kp->kp_pageable)
978 			pmap_enter(pmap_kernel(), va, VM_PAGE_TO_PHYS(pg),
979 			    prot, prot | PMAP_WIRED);
980 		else
981 			pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg), prot);
982 		va += PAGE_SIZE;
983 	}
984 	pmap_update(pmap_kernel());
985 	return ((void *)sva);
986 }
987 
988 void
989 km_free(void *v, size_t sz, const struct kmem_va_mode *kv,
990     const struct kmem_pa_mode *kp)
991 {
992 	vaddr_t sva, eva, va;
993 	struct vm_page *pg;
994 	struct pglist pgl;
995 
996 	sva = va = (vaddr_t)v;
997 	eva = va + sz;
998 
999 	if (kp->kp_nomem) {
1000 		goto free_va;
1001 	}
1002 
1003 	if (kv->kv_singlepage) {
1004 #ifdef __HAVE_PMAP_DIRECT
1005 		pg = pmap_unmap_direct(va);
1006 		uvm_pagefree(pg);
1007 #else
1008 		struct uvm_km_free_page *fp = v;
1009 		mtx_enter(&uvm_km_pages.mtx);
1010 		fp->next = uvm_km_pages.freelist;
1011 		uvm_km_pages.freelist = fp;
1012 		if (uvm_km_pages.freelistlen++ > 16)
1013 			wakeup(&uvm_km_pages.km_proc);
1014 		mtx_leave(&uvm_km_pages.mtx);
1015 #endif
1016 		return;
1017 	}
1018 
1019 	if (kp->kp_pageable) {
1020 		pmap_remove(pmap_kernel(), sva, eva);
1021 		pmap_update(pmap_kernel());
1022 	} else {
1023 		TAILQ_INIT(&pgl);
1024 		for (va = sva; va < eva; va += PAGE_SIZE) {
1025 			paddr_t pa;
1026 
1027 			if (!pmap_extract(pmap_kernel(), va, &pa))
1028 				continue;
1029 
1030 			pg = PHYS_TO_VM_PAGE(pa);
1031 			if (pg == NULL) {
1032 				panic("km_free: unmanaged page 0x%lx\n", pa);
1033 			}
1034 			TAILQ_INSERT_TAIL(&pgl, pg, pageq);
1035 		}
1036 		pmap_kremove(sva, sz);
1037 		pmap_update(pmap_kernel());
1038 		uvm_pglistfree(&pgl);
1039 	}
1040 free_va:
1041 	uvm_unmap(*kv->kv_map, sva, eva);
1042 	if (kv->kv_wait)
1043 		wakeup(*kv->kv_map);
1044 }
1045 
1046 const struct kmem_va_mode kv_any = {
1047 	.kv_map = &kernel_map,
1048 };
1049 
1050 const struct kmem_va_mode kv_intrsafe = {
1051 	.kv_map = &kmem_map,
1052 };
1053 
1054 const struct kmem_va_mode kv_page = {
1055 	.kv_singlepage = 1
1056 };
1057 
1058 const struct kmem_pa_mode kp_dirty = {
1059 	.kp_constraint = &no_constraint
1060 };
1061 
1062 const struct kmem_pa_mode kp_dma = {
1063 	.kp_constraint = &dma_constraint
1064 };
1065 
1066 const struct kmem_pa_mode kp_dma_contig = {
1067 	.kp_constraint = &dma_constraint,
1068 	.kp_maxseg = 1
1069 };
1070 
1071 const struct kmem_pa_mode kp_dma_zero = {
1072 	.kp_constraint = &dma_constraint,
1073 	.kp_zero = 1
1074 };
1075 
1076 const struct kmem_pa_mode kp_zero = {
1077 	.kp_constraint = &no_constraint,
1078 	.kp_zero = 1
1079 };
1080 
1081 const struct kmem_pa_mode kp_pageable = {
1082 	.kp_object = &uvm.kernel_object,
1083 	.kp_pageable = 1
1084 /* XXX - kp_nomem, maybe, but we'll need to fix km_free. */
1085 };
1086 
1087 const struct kmem_pa_mode kp_none = {
1088 	.kp_nomem = 1
1089 };
1090 
1091 const struct kmem_dyn_mode kd_waitok = {
1092 	.kd_waitok = 1,
1093 	.kd_prefer = UVM_UNKNOWN_OFFSET
1094 };
1095 
1096 const struct kmem_dyn_mode kd_nowait = {
1097 	.kd_prefer = UVM_UNKNOWN_OFFSET
1098 };
1099 
1100 const struct kmem_dyn_mode kd_trylock = {
1101 	.kd_trylock = 1,
1102 	.kd_prefer = UVM_UNKNOWN_OFFSET
1103 };
1104