xref: /openbsd/usr.bin/lex/dfa.c (revision fd84ef7e)
1 /*	$OpenBSD: dfa.c,v 1.5 2001/11/19 19:02:14 mpech Exp $	*/
2 
3 /* dfa - DFA construction routines */
4 
5 /*-
6  * Copyright (c) 1990 The Regents of the University of California.
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * Vern Paxson.
11  *
12  * The United States Government has rights in this work pursuant
13  * to contract no. DE-AC03-76SF00098 between the United States
14  * Department of Energy and the University of California.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that: (1) source distributions
18  * retain this entire copyright notice and comment, and (2) distributions
19  * including binaries display the following acknowledgement:  ``This product
20  * includes software developed by the University of California, Berkeley
21  * and its contributors'' in the documentation or other materials provided
22  * with the distribution and in all advertising materials mentioning
23  * features or use of this software. Neither the name of the University nor
24  * the names of its contributors may be used to endorse or promote products
25  * derived from this software without specific prior written permission.
26  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
27  * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
28  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
29  */
30 
31 /* $Header: /home/cvs/src/usr.bin/lex/dfa.c,v 1.5 2001/11/19 19:02:14 mpech Exp $ */
32 
33 #include "flexdef.h"
34 
35 
36 /* declare functions that have forward references */
37 
38 void dump_associated_rules PROTO((FILE*, int));
39 void dump_transitions PROTO((FILE*, int[]));
40 void sympartition PROTO((int[], int, int[], int[]));
41 int symfollowset PROTO((int[], int, int, int[]));
42 
43 
44 /* check_for_backing_up - check a DFA state for backing up
45  *
46  * synopsis
47  *     void check_for_backing_up( int ds, int state[numecs] );
48  *
49  * ds is the number of the state to check and state[] is its out-transitions,
50  * indexed by equivalence class.
51  */
52 
53 void check_for_backing_up( ds, state )
54 int ds;
55 int state[];
56 	{
57 	if ( (reject && ! dfaacc[ds].dfaacc_set) ||
58 	     (! reject && ! dfaacc[ds].dfaacc_state) )
59 		{ /* state is non-accepting */
60 		++num_backing_up;
61 
62 		if ( backing_up_report )
63 			{
64 			fprintf( backing_up_file,
65 				_( "State #%d is non-accepting -\n" ), ds );
66 
67 			/* identify the state */
68 			dump_associated_rules( backing_up_file, ds );
69 
70 			/* Now identify it further using the out- and
71 			 * jam-transitions.
72 			 */
73 			dump_transitions( backing_up_file, state );
74 
75 			putc( '\n', backing_up_file );
76 			}
77 		}
78 	}
79 
80 
81 /* check_trailing_context - check to see if NFA state set constitutes
82  *                          "dangerous" trailing context
83  *
84  * synopsis
85  *    void check_trailing_context( int nfa_states[num_states+1], int num_states,
86  *				int accset[nacc+1], int nacc );
87  *
88  * NOTES
89  *  Trailing context is "dangerous" if both the head and the trailing
90  *  part are of variable size \and/ there's a DFA state which contains
91  *  both an accepting state for the head part of the rule and NFA states
92  *  which occur after the beginning of the trailing context.
93  *
94  *  When such a rule is matched, it's impossible to tell if having been
95  *  in the DFA state indicates the beginning of the trailing context or
96  *  further-along scanning of the pattern.  In these cases, a warning
97  *  message is issued.
98  *
99  *    nfa_states[1 .. num_states] is the list of NFA states in the DFA.
100  *    accset[1 .. nacc] is the list of accepting numbers for the DFA state.
101  */
102 
103 void check_trailing_context( nfa_states, num_states, accset, nacc )
104 int *nfa_states, num_states;
105 int *accset;
106 int nacc;
107 	{
108 	int i, j;
109 
110 	for ( i = 1; i <= num_states; ++i )
111 		{
112 		int ns = nfa_states[i];
113 		int type = state_type[ns];
114 		int ar = assoc_rule[ns];
115 
116 		if ( type == STATE_NORMAL || rule_type[ar] != RULE_VARIABLE )
117 			{ /* do nothing */
118 			}
119 
120 		else if ( type == STATE_TRAILING_CONTEXT )
121 			{
122 			/* Potential trouble.  Scan set of accepting numbers
123 			 * for the one marking the end of the "head".  We
124 			 * assume that this looping will be fairly cheap
125 			 * since it's rare that an accepting number set
126 			 * is large.
127 			 */
128 			for ( j = 1; j <= nacc; ++j )
129 				if ( accset[j] & YY_TRAILING_HEAD_MASK )
130 					{
131 					line_warning(
132 					_( "dangerous trailing context" ),
133 						rule_linenum[ar] );
134 					return;
135 					}
136 			}
137 		}
138 	}
139 
140 
141 /* dump_associated_rules - list the rules associated with a DFA state
142  *
143  * Goes through the set of NFA states associated with the DFA and
144  * extracts the first MAX_ASSOC_RULES unique rules, sorts them,
145  * and writes a report to the given file.
146  */
147 
148 void dump_associated_rules( file, ds )
149 FILE *file;
150 int ds;
151 	{
152 	int i, j;
153 	int num_associated_rules = 0;
154 	int rule_set[MAX_ASSOC_RULES + 1];
155 	int *dset = dss[ds];
156 	int size = dfasiz[ds];
157 
158 	for ( i = 1; i <= size; ++i )
159 		{
160 		int rule_num = rule_linenum[assoc_rule[dset[i]]];
161 
162 		for ( j = 1; j <= num_associated_rules; ++j )
163 			if ( rule_num == rule_set[j] )
164 				break;
165 
166 		if ( j > num_associated_rules )
167 			{ /* new rule */
168 			if ( num_associated_rules < MAX_ASSOC_RULES )
169 				rule_set[++num_associated_rules] = rule_num;
170 			}
171 		}
172 
173 	bubble( rule_set, num_associated_rules );
174 
175 	fprintf( file, _( " associated rule line numbers:" ) );
176 
177 	for ( i = 1; i <= num_associated_rules; ++i )
178 		{
179 		if ( i % 8 == 1 )
180 			putc( '\n', file );
181 
182 		fprintf( file, "\t%d", rule_set[i] );
183 		}
184 
185 	putc( '\n', file );
186 	}
187 
188 
189 /* dump_transitions - list the transitions associated with a DFA state
190  *
191  * synopsis
192  *     dump_transitions( FILE *file, int state[numecs] );
193  *
194  * Goes through the set of out-transitions and lists them in human-readable
195  * form (i.e., not as equivalence classes); also lists jam transitions
196  * (i.e., all those which are not out-transitions, plus EOF).  The dump
197  * is done to the given file.
198  */
199 
200 void dump_transitions( file, state )
201 FILE *file;
202 int state[];
203 	{
204 	int i, ec;
205 	int out_char_set[CSIZE];
206 
207 	for ( i = 0; i < csize; ++i )
208 		{
209 		ec = ABS( ecgroup[i] );
210 		out_char_set[i] = state[ec];
211 		}
212 
213 	fprintf( file, _( " out-transitions: " ) );
214 
215 	list_character_set( file, out_char_set );
216 
217 	/* now invert the members of the set to get the jam transitions */
218 	for ( i = 0; i < csize; ++i )
219 		out_char_set[i] = ! out_char_set[i];
220 
221 	fprintf( file, _( "\n jam-transitions: EOF " ) );
222 
223 	list_character_set( file, out_char_set );
224 
225 	putc( '\n', file );
226 	}
227 
228 
229 /* epsclosure - construct the epsilon closure of a set of ndfa states
230  *
231  * synopsis
232  *    int *epsclosure( int t[num_states], int *numstates_addr,
233  *			int accset[num_rules+1], int *nacc_addr,
234  *			int *hashval_addr );
235  *
236  * NOTES
237  *  The epsilon closure is the set of all states reachable by an arbitrary
238  *  number of epsilon transitions, which themselves do not have epsilon
239  *  transitions going out, unioned with the set of states which have non-null
240  *  accepting numbers.  t is an array of size numstates of nfa state numbers.
241  *  Upon return, t holds the epsilon closure and *numstates_addr is updated.
242  *  accset holds a list of the accepting numbers, and the size of accset is
243  *  given by *nacc_addr.  t may be subjected to reallocation if it is not
244  *  large enough to hold the epsilon closure.
245  *
246  *  hashval is the hash value for the dfa corresponding to the state set.
247  */
248 
249 int *epsclosure( t, ns_addr, accset, nacc_addr, hv_addr )
250 int *t, *ns_addr, accset[], *nacc_addr, *hv_addr;
251 	{
252 	int stkpos, ns, tsp;
253 	int numstates = *ns_addr, nacc, hashval, transsym, nfaccnum;
254 	int stkend, nstate;
255 	static int did_stk_init = false, *stk;
256 
257 #define MARK_STATE(state) \
258 trans1[state] = trans1[state] - MARKER_DIFFERENCE;
259 
260 #define IS_MARKED(state) (trans1[state] < 0)
261 
262 #define UNMARK_STATE(state) \
263 trans1[state] = trans1[state] + MARKER_DIFFERENCE;
264 
265 #define CHECK_ACCEPT(state) \
266 { \
267 nfaccnum = accptnum[state]; \
268 if ( nfaccnum != NIL ) \
269 accset[++nacc] = nfaccnum; \
270 }
271 
272 #define DO_REALLOCATION \
273 { \
274 current_max_dfa_size += MAX_DFA_SIZE_INCREMENT; \
275 ++num_reallocs; \
276 t = reallocate_integer_array( t, current_max_dfa_size ); \
277 stk = reallocate_integer_array( stk, current_max_dfa_size ); \
278 } \
279 
280 #define PUT_ON_STACK(state) \
281 { \
282 if ( ++stkend >= current_max_dfa_size ) \
283 DO_REALLOCATION \
284 stk[stkend] = state; \
285 MARK_STATE(state) \
286 }
287 
288 #define ADD_STATE(state) \
289 { \
290 if ( ++numstates >= current_max_dfa_size ) \
291 DO_REALLOCATION \
292 t[numstates] = state; \
293 hashval += state; \
294 }
295 
296 #define STACK_STATE(state) \
297 { \
298 PUT_ON_STACK(state) \
299 CHECK_ACCEPT(state) \
300 if ( nfaccnum != NIL || transchar[state] != SYM_EPSILON ) \
301 ADD_STATE(state) \
302 }
303 
304 
305 	if ( ! did_stk_init )
306 		{
307 		stk = allocate_integer_array( current_max_dfa_size );
308 		did_stk_init = true;
309 		}
310 
311 	nacc = stkend = hashval = 0;
312 
313 	for ( nstate = 1; nstate <= numstates; ++nstate )
314 		{
315 		ns = t[nstate];
316 
317 		/* The state could be marked if we've already pushed it onto
318 		 * the stack.
319 		 */
320 		if ( ! IS_MARKED(ns) )
321 			{
322 			PUT_ON_STACK(ns)
323 			CHECK_ACCEPT(ns)
324 			hashval += ns;
325 			}
326 		}
327 
328 	for ( stkpos = 1; stkpos <= stkend; ++stkpos )
329 		{
330 		ns = stk[stkpos];
331 		transsym = transchar[ns];
332 
333 		if ( transsym == SYM_EPSILON )
334 			{
335 			tsp = trans1[ns] + MARKER_DIFFERENCE;
336 
337 			if ( tsp != NO_TRANSITION )
338 				{
339 				if ( ! IS_MARKED(tsp) )
340 					STACK_STATE(tsp)
341 
342 				tsp = trans2[ns];
343 
344 				if ( tsp != NO_TRANSITION && ! IS_MARKED(tsp) )
345 					STACK_STATE(tsp)
346 				}
347 			}
348 		}
349 
350 	/* Clear out "visit" markers. */
351 
352 	for ( stkpos = 1; stkpos <= stkend; ++stkpos )
353 		{
354 		if ( IS_MARKED(stk[stkpos]) )
355 			UNMARK_STATE(stk[stkpos])
356 		else
357 			flexfatal(
358 			_( "consistency check failed in epsclosure()" ) );
359 		}
360 
361 	*ns_addr = numstates;
362 	*hv_addr = hashval;
363 	*nacc_addr = nacc;
364 
365 	return t;
366 	}
367 
368 
369 /* increase_max_dfas - increase the maximum number of DFAs */
370 
371 void increase_max_dfas()
372 	{
373 	current_max_dfas += MAX_DFAS_INCREMENT;
374 
375 	++num_reallocs;
376 
377 	base = reallocate_integer_array( base, current_max_dfas );
378 	def = reallocate_integer_array( def, current_max_dfas );
379 	dfasiz = reallocate_integer_array( dfasiz, current_max_dfas );
380 	accsiz = reallocate_integer_array( accsiz, current_max_dfas );
381 	dhash = reallocate_integer_array( dhash, current_max_dfas );
382 	dss = reallocate_int_ptr_array( dss, current_max_dfas );
383 	dfaacc = reallocate_dfaacc_union( dfaacc, current_max_dfas );
384 
385 	if ( nultrans )
386 		nultrans =
387 			reallocate_integer_array( nultrans, current_max_dfas );
388 	}
389 
390 
391 /* ntod - convert an ndfa to a dfa
392  *
393  * Creates the dfa corresponding to the ndfa we've constructed.  The
394  * dfa starts out in state #1.
395  */
396 
397 void ntod()
398 	{
399 	int *accset, ds, nacc, newds;
400 	int sym, hashval, numstates, dsize;
401 	int num_full_table_rows;	/* used only for -f */
402 	int *nset, *dset;
403 	int targptr, totaltrans, i, comstate, comfreq, targ;
404 	int symlist[CSIZE + 1];
405 	int num_start_states;
406 	int todo_head, todo_next;
407 
408 	/* Note that the following are indexed by *equivalence classes*
409 	 * and not by characters.  Since equivalence classes are indexed
410 	 * beginning with 1, even if the scanner accepts NUL's, this
411 	 * means that (since every character is potentially in its own
412 	 * equivalence class) these arrays must have room for indices
413 	 * from 1 to CSIZE, so their size must be CSIZE + 1.
414 	 */
415 	int duplist[CSIZE + 1], state[CSIZE + 1];
416 	int targfreq[CSIZE + 1], targstate[CSIZE + 1];
417 
418 	accset = allocate_integer_array( num_rules + 1 );
419 	nset = allocate_integer_array( current_max_dfa_size );
420 
421 	/* The "todo" queue is represented by the head, which is the DFA
422 	 * state currently being processed, and the "next", which is the
423 	 * next DFA state number available (not in use).  We depend on the
424 	 * fact that snstods() returns DFA's \in increasing order/, and thus
425 	 * need only know the bounds of the dfas to be processed.
426 	 */
427 	todo_head = todo_next = 0;
428 
429 	for ( i = 0; i <= csize; ++i )
430 		{
431 		duplist[i] = NIL;
432 		symlist[i] = false;
433 		}
434 
435 	for ( i = 0; i <= num_rules; ++i )
436 		accset[i] = NIL;
437 
438 	if ( trace )
439 		{
440 		dumpnfa( scset[1] );
441 		fputs( _( "\n\nDFA Dump:\n\n" ), stderr );
442 		}
443 
444 	inittbl();
445 
446 	/* Check to see whether we should build a separate table for
447 	 * transitions on NUL characters.  We don't do this for full-speed
448 	 * (-F) scanners, since for them we don't have a simple state
449 	 * number lying around with which to index the table.  We also
450 	 * don't bother doing it for scanners unless (1) NUL is in its own
451 	 * equivalence class (indicated by a positive value of
452 	 * ecgroup[NUL]), (2) NUL's equivalence class is the last
453 	 * equivalence class, and (3) the number of equivalence classes is
454 	 * the same as the number of characters.  This latter case comes
455 	 * about when useecs is false or when it's true but every character
456 	 * still manages to land in its own class (unlikely, but it's
457 	 * cheap to check for).  If all these things are true then the
458 	 * character code needed to represent NUL's equivalence class for
459 	 * indexing the tables is going to take one more bit than the
460 	 * number of characters, and therefore we won't be assured of
461 	 * being able to fit it into a YY_CHAR variable.  This rules out
462 	 * storing the transitions in a compressed table, since the code
463 	 * for interpreting them uses a YY_CHAR variable (perhaps it
464 	 * should just use an integer, though; this is worth pondering ...
465 	 * ###).
466 	 *
467 	 * Finally, for full tables, we want the number of entries in the
468 	 * table to be a power of two so the array references go fast (it
469 	 * will just take a shift to compute the major index).  If
470 	 * encoding NUL's transitions in the table will spoil this, we
471 	 * give it its own table (note that this will be the case if we're
472 	 * not using equivalence classes).
473 	 */
474 
475 	/* Note that the test for ecgroup[0] == numecs below accomplishes
476 	 * both (1) and (2) above
477 	 */
478 	if ( ! fullspd && ecgroup[0] == numecs )
479 		{
480 		/* NUL is alone in its equivalence class, which is the
481 		 * last one.
482 		 */
483 		int use_NUL_table = (numecs == csize);
484 
485 		if ( fulltbl && ! use_NUL_table )
486 			{
487 			/* We still may want to use the table if numecs
488 			 * is a power of 2.
489 			 */
490 			int power_of_two;
491 
492 			for ( power_of_two = 1; power_of_two <= csize;
493 			      power_of_two *= 2 )
494 				if ( numecs == power_of_two )
495 					{
496 					use_NUL_table = true;
497 					break;
498 					}
499 			}
500 
501 		if ( use_NUL_table )
502 			nultrans = allocate_integer_array( current_max_dfas );
503 
504 		/* From now on, nultrans != nil indicates that we're
505 		 * saving null transitions for later, separate encoding.
506 		 */
507 		}
508 
509 
510 	if ( fullspd )
511 		{
512 		for ( i = 0; i <= numecs; ++i )
513 			state[i] = 0;
514 
515 		place_state( state, 0, 0 );
516 		dfaacc[0].dfaacc_state = 0;
517 		}
518 
519 	else if ( fulltbl )
520 		{
521 		if ( nultrans )
522 			/* We won't be including NUL's transitions in the
523 			 * table, so build it for entries from 0 .. numecs - 1.
524 			 */
525 			num_full_table_rows = numecs;
526 
527 		else
528 			/* Take into account the fact that we'll be including
529 			 * the NUL entries in the transition table.  Build it
530 			 * from 0 .. numecs.
531 			 */
532 			num_full_table_rows = numecs + 1;
533 
534 		/* Unless -Ca, declare it "short" because it's a real
535 		 * long-shot that that won't be large enough.
536 		 */
537 		out_str_dec( "static yyconst %s yy_nxt[][%d] =\n    {\n",
538 			/* '}' so vi doesn't get too confused */
539 			long_align ? "long" : "short", num_full_table_rows );
540 
541 		outn( "    {" );
542 
543 		/* Generate 0 entries for state #0. */
544 		for ( i = 0; i < num_full_table_rows; ++i )
545 			mk2data( 0 );
546 
547 		dataflush();
548 		outn( "    },\n" );
549 		}
550 
551 	/* Create the first states. */
552 
553 	num_start_states = lastsc * 2;
554 
555 	for ( i = 1; i <= num_start_states; ++i )
556 		{
557 		numstates = 1;
558 
559 		/* For each start condition, make one state for the case when
560 		 * we're at the beginning of the line (the '^' operator) and
561 		 * one for the case when we're not.
562 		 */
563 		if ( i % 2 == 1 )
564 			nset[numstates] = scset[(i / 2) + 1];
565 		else
566 			nset[numstates] =
567 				mkbranch( scbol[i / 2], scset[i / 2] );
568 
569 		nset = epsclosure( nset, &numstates, accset, &nacc, &hashval );
570 
571 		if ( snstods( nset, numstates, accset, nacc, hashval, &ds ) )
572 			{
573 			numas += nacc;
574 			totnst += numstates;
575 			++todo_next;
576 
577 			if ( variable_trailing_context_rules && nacc > 0 )
578 				check_trailing_context( nset, numstates,
579 							accset, nacc );
580 			}
581 		}
582 
583 	if ( ! fullspd )
584 		{
585 		if ( ! snstods( nset, 0, accset, 0, 0, &end_of_buffer_state ) )
586 			flexfatal(
587 			_( "could not create unique end-of-buffer state" ) );
588 
589 		++numas;
590 		++num_start_states;
591 		++todo_next;
592 		}
593 
594 	while ( todo_head < todo_next )
595 		{
596 		targptr = 0;
597 		totaltrans = 0;
598 
599 		for ( i = 1; i <= numecs; ++i )
600 			state[i] = 0;
601 
602 		ds = ++todo_head;
603 
604 		dset = dss[ds];
605 		dsize = dfasiz[ds];
606 
607 		if ( trace )
608 			fprintf( stderr, _( "state # %d:\n" ), ds );
609 
610 		sympartition( dset, dsize, symlist, duplist );
611 
612 		for ( sym = 1; sym <= numecs; ++sym )
613 			{
614 			if ( symlist[sym] )
615 				{
616 				symlist[sym] = 0;
617 
618 				if ( duplist[sym] == NIL )
619 					{
620 					/* Symbol has unique out-transitions. */
621 					numstates = symfollowset( dset, dsize,
622 								sym, nset );
623 					nset = epsclosure( nset, &numstates,
624 						accset, &nacc, &hashval );
625 
626 					if ( snstods( nset, numstates, accset,
627 						nacc, hashval, &newds ) )
628 						{
629 						totnst = totnst + numstates;
630 						++todo_next;
631 						numas += nacc;
632 
633 						if (
634 					variable_trailing_context_rules &&
635 							nacc > 0 )
636 							check_trailing_context(
637 								nset, numstates,
638 								accset, nacc );
639 						}
640 
641 					state[sym] = newds;
642 
643 					if ( trace )
644 						fprintf( stderr, "\t%d\t%d\n",
645 							sym, newds );
646 
647 					targfreq[++targptr] = 1;
648 					targstate[targptr] = newds;
649 					++numuniq;
650 					}
651 
652 				else
653 					{
654 					/* sym's equivalence class has the same
655 					 * transitions as duplist(sym)'s
656 					 * equivalence class.
657 					 */
658 					targ = state[duplist[sym]];
659 					state[sym] = targ;
660 
661 					if ( trace )
662 						fprintf( stderr, "\t%d\t%d\n",
663 							sym, targ );
664 
665 					/* Update frequency count for
666 					 * destination state.
667 					 */
668 
669 					i = 0;
670 					while ( targstate[++i] != targ )
671 						;
672 
673 					++targfreq[i];
674 					++numdup;
675 					}
676 
677 				++totaltrans;
678 				duplist[sym] = NIL;
679 				}
680 			}
681 
682 		if ( caseins && ! useecs )
683 			{
684 			int j;
685 
686 			for ( i = 'A', j = 'a'; i <= 'Z'; ++i, ++j )
687 				{
688 				if ( state[i] == 0 && state[j] != 0 )
689 					/* We're adding a transition. */
690 					++totaltrans;
691 
692 				else if ( state[i] != 0 && state[j] == 0 )
693 					/* We're taking away a transition. */
694 					--totaltrans;
695 
696 				state[i] = state[j];
697 				}
698 			}
699 
700 		numsnpairs += totaltrans;
701 
702 		if ( ds > num_start_states )
703 			check_for_backing_up( ds, state );
704 
705 		if ( nultrans )
706 			{
707 			nultrans[ds] = state[NUL_ec];
708 			state[NUL_ec] = 0;	/* remove transition */
709 			}
710 
711 		if ( fulltbl )
712 			{
713 			outn( "    {" );
714 
715 			/* Supply array's 0-element. */
716 			if ( ds == end_of_buffer_state )
717 				mk2data( -end_of_buffer_state );
718 			else
719 				mk2data( end_of_buffer_state );
720 
721 			for ( i = 1; i < num_full_table_rows; ++i )
722 				/* Jams are marked by negative of state
723 				 * number.
724 				 */
725 				mk2data( state[i] ? state[i] : -ds );
726 
727 			dataflush();
728 			outn( "    },\n" );
729 			}
730 
731 		else if ( fullspd )
732 			place_state( state, ds, totaltrans );
733 
734 		else if ( ds == end_of_buffer_state )
735 			/* Special case this state to make sure it does what
736 			 * it's supposed to, i.e., jam on end-of-buffer.
737 			 */
738 			stack1( ds, 0, 0, JAMSTATE );
739 
740 		else /* normal, compressed state */
741 			{
742 			/* Determine which destination state is the most
743 			 * common, and how many transitions to it there are.
744 			 */
745 
746 			comfreq = 0;
747 			comstate = 0;
748 
749 			for ( i = 1; i <= targptr; ++i )
750 				if ( targfreq[i] > comfreq )
751 					{
752 					comfreq = targfreq[i];
753 					comstate = targstate[i];
754 					}
755 
756 			bldtbl( state, ds, totaltrans, comstate, comfreq );
757 			}
758 		}
759 
760 	if ( fulltbl )
761 		dataend();
762 
763 	else if ( ! fullspd )
764 		{
765 		cmptmps();  /* create compressed template entries */
766 
767 		/* Create tables for all the states with only one
768 		 * out-transition.
769 		 */
770 		while ( onesp > 0 )
771 			{
772 			mk1tbl( onestate[onesp], onesym[onesp], onenext[onesp],
773 			onedef[onesp] );
774 			--onesp;
775 			}
776 
777 		mkdeftbl();
778 		}
779 
780 	flex_free( (void *) accset );
781 	flex_free( (void *) nset );
782 	}
783 
784 
785 /* snstods - converts a set of ndfa states into a dfa state
786  *
787  * synopsis
788  *    is_new_state = snstods( int sns[numstates], int numstates,
789  *				int accset[num_rules+1], int nacc,
790  *				int hashval, int *newds_addr );
791  *
792  * On return, the dfa state number is in newds.
793  */
794 
795 int snstods( sns, numstates, accset, nacc, hashval, newds_addr )
796 int sns[], numstates, accset[], nacc, hashval, *newds_addr;
797 	{
798 	int didsort = 0;
799 	int i, j;
800 	int newds, *oldsns;
801 
802 	for ( i = 1; i <= lastdfa; ++i )
803 		if ( hashval == dhash[i] )
804 			{
805 			if ( numstates == dfasiz[i] )
806 				{
807 				oldsns = dss[i];
808 
809 				if ( ! didsort )
810 					{
811 					/* We sort the states in sns so we
812 					 * can compare it to oldsns quickly.
813 					 * We use bubble because there probably
814 					 * aren't very many states.
815 					 */
816 					bubble( sns, numstates );
817 					didsort = 1;
818 					}
819 
820 				for ( j = 1; j <= numstates; ++j )
821 					if ( sns[j] != oldsns[j] )
822 						break;
823 
824 				if ( j > numstates )
825 					{
826 					++dfaeql;
827 					*newds_addr = i;
828 					return 0;
829 					}
830 
831 				++hshcol;
832 				}
833 
834 			else
835 				++hshsave;
836 			}
837 
838 	/* Make a new dfa. */
839 
840 	if ( ++lastdfa >= current_max_dfas )
841 		increase_max_dfas();
842 
843 	newds = lastdfa;
844 
845 	dss[newds] = allocate_integer_array( numstates + 1 );
846 
847 	/* If we haven't already sorted the states in sns, we do so now,
848 	 * so that future comparisons with it can be made quickly.
849 	 */
850 
851 	if ( ! didsort )
852 		bubble( sns, numstates );
853 
854 	for ( i = 1; i <= numstates; ++i )
855 		dss[newds][i] = sns[i];
856 
857 	dfasiz[newds] = numstates;
858 	dhash[newds] = hashval;
859 
860 	if ( nacc == 0 )
861 		{
862 		if ( reject )
863 			dfaacc[newds].dfaacc_set = (int *) 0;
864 		else
865 			dfaacc[newds].dfaacc_state = 0;
866 
867 		accsiz[newds] = 0;
868 		}
869 
870 	else if ( reject )
871 		{
872 		/* We sort the accepting set in increasing order so the
873 		 * disambiguating rule that the first rule listed is considered
874 		 * match in the event of ties will work.  We use a bubble
875 		 * sort since the list is probably quite small.
876 		 */
877 
878 		bubble( accset, nacc );
879 
880 		dfaacc[newds].dfaacc_set = allocate_integer_array( nacc + 1 );
881 
882 		/* Save the accepting set for later */
883 		for ( i = 1; i <= nacc; ++i )
884 			{
885 			dfaacc[newds].dfaacc_set[i] = accset[i];
886 
887 			if ( accset[i] <= num_rules )
888 				/* Who knows, perhaps a REJECT can yield
889 				 * this rule.
890 				 */
891 				rule_useful[accset[i]] = true;
892 			}
893 
894 		accsiz[newds] = nacc;
895 		}
896 
897 	else
898 		{
899 		/* Find lowest numbered rule so the disambiguating rule
900 		 * will work.
901 		 */
902 		j = num_rules + 1;
903 
904 		for ( i = 1; i <= nacc; ++i )
905 			if ( accset[i] < j )
906 				j = accset[i];
907 
908 		dfaacc[newds].dfaacc_state = j;
909 
910 		if ( j <= num_rules )
911 			rule_useful[j] = true;
912 		}
913 
914 	*newds_addr = newds;
915 
916 	return 1;
917 	}
918 
919 
920 /* symfollowset - follow the symbol transitions one step
921  *
922  * synopsis
923  *    numstates = symfollowset( int ds[current_max_dfa_size], int dsize,
924  *				int transsym, int nset[current_max_dfa_size] );
925  */
926 
927 int symfollowset( ds, dsize, transsym, nset )
928 int ds[], dsize, transsym, nset[];
929 	{
930 	int ns, tsp, sym, i, j, lenccl, ch, numstates, ccllist;
931 
932 	numstates = 0;
933 
934 	for ( i = 1; i <= dsize; ++i )
935 		{ /* for each nfa state ns in the state set of ds */
936 		ns = ds[i];
937 		sym = transchar[ns];
938 		tsp = trans1[ns];
939 
940 		if ( sym < 0 )
941 			{ /* it's a character class */
942 			sym = -sym;
943 			ccllist = cclmap[sym];
944 			lenccl = ccllen[sym];
945 
946 			if ( cclng[sym] )
947 				{
948 				for ( j = 0; j < lenccl; ++j )
949 					{
950 					/* Loop through negated character
951 					 * class.
952 					 */
953 					ch = ccltbl[ccllist + j];
954 
955 					if ( ch == 0 )
956 						ch = NUL_ec;
957 
958 					if ( ch > transsym )
959 						/* Transsym isn't in negated
960 						 * ccl.
961 						 */
962 						break;
963 
964 					else if ( ch == transsym )
965 						/* next 2 */ goto bottom;
966 					}
967 
968 				/* Didn't find transsym in ccl. */
969 				nset[++numstates] = tsp;
970 				}
971 
972 			else
973 				for ( j = 0; j < lenccl; ++j )
974 					{
975 					ch = ccltbl[ccllist + j];
976 
977 					if ( ch == 0 )
978 						ch = NUL_ec;
979 
980 					if ( ch > transsym )
981 						break;
982 					else if ( ch == transsym )
983 						{
984 						nset[++numstates] = tsp;
985 						break;
986 						}
987 					}
988 			}
989 
990 		else if ( sym >= 'A' && sym <= 'Z' && caseins )
991 			flexfatal(
992 			_( "consistency check failed in symfollowset" ) );
993 
994 		else if ( sym == SYM_EPSILON )
995 			{ /* do nothing */
996 			}
997 
998 		else if ( ABS( ecgroup[sym] ) == transsym )
999 			nset[++numstates] = tsp;
1000 
1001 		bottom: ;
1002 		}
1003 
1004 	return numstates;
1005 	}
1006 
1007 
1008 /* sympartition - partition characters with same out-transitions
1009  *
1010  * synopsis
1011  *    sympartition( int ds[current_max_dfa_size], int numstates,
1012  *			int symlist[numecs], int duplist[numecs] );
1013  */
1014 
1015 void sympartition( ds, numstates, symlist, duplist )
1016 int ds[], numstates;
1017 int symlist[], duplist[];
1018 	{
1019 	int tch, i, j, k, ns, dupfwd[CSIZE + 1], lenccl, cclp, ich;
1020 
1021 	/* Partitioning is done by creating equivalence classes for those
1022 	 * characters which have out-transitions from the given state.  Thus
1023 	 * we are really creating equivalence classes of equivalence classes.
1024 	 */
1025 
1026 	for ( i = 1; i <= numecs; ++i )
1027 		{ /* initialize equivalence class list */
1028 		duplist[i] = i - 1;
1029 		dupfwd[i] = i + 1;
1030 		}
1031 
1032 	duplist[1] = NIL;
1033 	dupfwd[numecs] = NIL;
1034 
1035 	for ( i = 1; i <= numstates; ++i )
1036 		{
1037 		ns = ds[i];
1038 		tch = transchar[ns];
1039 
1040 		if ( tch != SYM_EPSILON )
1041 			{
1042 			if ( tch < -lastccl || tch >= csize )
1043 				{
1044 				flexfatal(
1045 		_( "bad transition character detected in sympartition()" ) );
1046 				}
1047 
1048 			if ( tch >= 0 )
1049 				{ /* character transition */
1050 				int ec = ecgroup[tch];
1051 
1052 				mkechar( ec, dupfwd, duplist );
1053 				symlist[ec] = 1;
1054 				}
1055 
1056 			else
1057 				{ /* character class */
1058 				tch = -tch;
1059 
1060 				lenccl = ccllen[tch];
1061 				cclp = cclmap[tch];
1062 				mkeccl( ccltbl + cclp, lenccl, dupfwd,
1063 					duplist, numecs, NUL_ec );
1064 
1065 				if ( cclng[tch] )
1066 					{
1067 					j = 0;
1068 
1069 					for ( k = 0; k < lenccl; ++k )
1070 						{
1071 						ich = ccltbl[cclp + k];
1072 
1073 						if ( ich == 0 )
1074 							ich = NUL_ec;
1075 
1076 						for ( ++j; j < ich; ++j )
1077 							symlist[j] = 1;
1078 						}
1079 
1080 					for ( ++j; j <= numecs; ++j )
1081 						symlist[j] = 1;
1082 					}
1083 
1084 				else
1085 					for ( k = 0; k < lenccl; ++k )
1086 						{
1087 						ich = ccltbl[cclp + k];
1088 
1089 						if ( ich == 0 )
1090 							ich = NUL_ec;
1091 
1092 						symlist[ich] = 1;
1093 						}
1094 				}
1095 			}
1096 		}
1097 	}
1098