1 /* $OpenBSD: key.c,v 1.9 2006/01/08 21:08:27 miod Exp $ */ 2 3 /*- 4 * Copyright (c) 1991, 1993, 1994 5 * The Regents of the University of California. All rights reserved. 6 * Copyright (c) 1991, 1993, 1994, 1995, 1996 7 * Keith Bostic. All rights reserved. 8 * 9 * See the LICENSE file for redistribution information. 10 */ 11 12 #include "config.h" 13 14 #ifndef lint 15 static const char sccsid[] = "@(#)key.c 10.33 (Berkeley) 9/24/96"; 16 #endif /* not lint */ 17 18 #include <sys/param.h> 19 #include <sys/queue.h> 20 #include <sys/time.h> 21 22 #include <bitstring.h> 23 #include <ctype.h> 24 #include <errno.h> 25 #include <limits.h> 26 #include <locale.h> 27 #include <stdio.h> 28 #include <stdlib.h> 29 #include <string.h> 30 #include <unistd.h> 31 32 #include "common.h" 33 #include "../vi/vi.h" 34 35 static int v_event_append(SCR *, EVENT *); 36 static int v_event_grow(SCR *, int); 37 static int v_key_cmp(const void *, const void *); 38 static void v_keyval(SCR *, int, scr_keyval_t); 39 static void v_sync(SCR *, int); 40 41 /* 42 * !!! 43 * Historic vi always used: 44 * 45 * ^D: autoindent deletion 46 * ^H: last character deletion 47 * ^W: last word deletion 48 * ^Q: quote the next character (if not used in flow control). 49 * ^V: quote the next character 50 * 51 * regardless of the user's choices for these characters. The user's erase 52 * and kill characters worked in addition to these characters. Nvi wires 53 * down the above characters, but in addition permits the VEOF, VERASE, VKILL 54 * and VWERASE characters described by the user's termios structure. 55 * 56 * Ex was not consistent with this scheme, as it historically ran in tty 57 * cooked mode. This meant that the scroll command and autoindent erase 58 * characters were mapped to the user's EOF character, and the character 59 * and word deletion characters were the user's tty character and word 60 * deletion characters. This implementation makes it all consistent, as 61 * described above for vi. 62 * 63 * !!! 64 * This means that all screens share a special key set. 65 */ 66 KEYLIST keylist[] = { 67 {K_BACKSLASH, '\\'}, /* \ */ 68 {K_CARAT, '^'}, /* ^ */ 69 {K_CNTRLD, '\004'}, /* ^D */ 70 {K_CNTRLR, '\022'}, /* ^R */ 71 {K_CNTRLT, '\024'}, /* ^T */ 72 {K_CNTRLZ, '\032'}, /* ^Z */ 73 {K_COLON, ':'}, /* : */ 74 {K_CR, '\r'}, /* \r */ 75 {K_ESCAPE, '\033'}, /* ^[ */ 76 {K_FORMFEED, '\f'}, /* \f */ 77 {K_HEXCHAR, '\030'}, /* ^X */ 78 {K_NL, '\n'}, /* \n */ 79 {K_RIGHTBRACE, '}'}, /* } */ 80 {K_RIGHTPAREN, ')'}, /* ) */ 81 {K_TAB, '\t'}, /* \t */ 82 {K_VERASE, '\b'}, /* \b */ 83 {K_VKILL, '\025'}, /* ^U */ 84 {K_VLNEXT, '\021'}, /* ^Q */ 85 {K_VLNEXT, '\026'}, /* ^V */ 86 {K_VWERASE, '\027'}, /* ^W */ 87 {K_ZERO, '0'}, /* 0 */ 88 89 #define ADDITIONAL_CHARACTERS 4 90 {K_NOTUSED, 0}, /* VEOF, VERASE, VKILL, VWERASE */ 91 {K_NOTUSED, 0}, 92 {K_NOTUSED, 0}, 93 {K_NOTUSED, 0}, 94 }; 95 static int nkeylist = 96 (sizeof(keylist) / sizeof(keylist[0])) - ADDITIONAL_CHARACTERS; 97 98 /* 99 * v_key_init -- 100 * Initialize the special key lookup table. 101 * 102 * PUBLIC: int v_key_init(SCR *); 103 */ 104 int 105 v_key_init(sp) 106 SCR *sp; 107 { 108 u_int ch; 109 GS *gp; 110 KEYLIST *kp; 111 int cnt; 112 113 gp = sp->gp; 114 115 /* 116 * XXX 117 * 8-bit only, for now. Recompilation should get you any 8-bit 118 * character set, as long as nul isn't a character. 119 */ 120 (void)setlocale(LC_ALL, ""); 121 #if __linux__ 122 /* 123 * In libc 4.5.26, setlocale(LC_ALL, ""), doesn't setup the table 124 * for ctype(3c) correctly. This bug is fixed in libc 4.6.x. 125 * 126 * This code works around this problem for libc 4.5.x users. 127 * Note that this code is harmless if you're using libc 4.6.x. 128 */ 129 (void)setlocale(LC_CTYPE, ""); 130 #endif 131 v_key_ilookup(sp); 132 133 v_keyval(sp, K_CNTRLD, KEY_VEOF); 134 v_keyval(sp, K_VERASE, KEY_VERASE); 135 v_keyval(sp, K_VKILL, KEY_VKILL); 136 v_keyval(sp, K_VWERASE, KEY_VWERASE); 137 138 /* Sort the special key list. */ 139 qsort(keylist, nkeylist, sizeof(keylist[0]), v_key_cmp); 140 141 /* Initialize the fast lookup table. */ 142 for (gp->max_special = 0, kp = keylist, cnt = nkeylist; cnt--; ++kp) { 143 if (gp->max_special < kp->value) 144 gp->max_special = kp->value; 145 if (kp->ch <= MAX_FAST_KEY) 146 gp->special_key[kp->ch] = kp->value; 147 } 148 149 /* Find a non-printable character to use as a message separator. */ 150 for (ch = 1; ch <= MAX_CHAR_T; ++ch) 151 if (!isprint(ch)) { 152 gp->noprint = ch; 153 break; 154 } 155 if (ch != gp->noprint) { 156 msgq(sp, M_ERR, "079|No non-printable character found"); 157 return (1); 158 } 159 return (0); 160 } 161 162 /* 163 * v_keyval -- 164 * Set key values. 165 * 166 * We've left some open slots in the keylist table, and if these values exist, 167 * we put them into place. Note, they may reset (or duplicate) values already 168 * in the table, so we check for that first. 169 */ 170 static void 171 v_keyval(sp, val, name) 172 SCR *sp; 173 int val; 174 scr_keyval_t name; 175 { 176 KEYLIST *kp; 177 CHAR_T ch; 178 int dne; 179 180 /* Get the key's value from the screen. */ 181 if (sp->gp->scr_keyval(sp, name, &ch, &dne)) 182 return; 183 if (dne) 184 return; 185 186 /* Check for duplication. */ 187 for (kp = keylist; kp->value != K_NOTUSED; ++kp) 188 if (kp->ch == ch) { 189 kp->value = val; 190 return; 191 } 192 193 /* Add a new entry. */ 194 if (kp->value == K_NOTUSED) { 195 keylist[nkeylist].ch = ch; 196 keylist[nkeylist].value = val; 197 ++nkeylist; 198 } 199 } 200 201 /* 202 * v_key_ilookup -- 203 * Build the fast-lookup key display array. 204 * 205 * PUBLIC: void v_key_ilookup(SCR *); 206 */ 207 void 208 v_key_ilookup(sp) 209 SCR *sp; 210 { 211 CHAR_T ch, *p, *t; 212 GS *gp; 213 size_t len; 214 215 for (gp = sp->gp, ch = 0; ch <= MAX_FAST_KEY; ++ch) 216 for (p = gp->cname[ch].name, t = v_key_name(sp, ch), 217 len = gp->cname[ch].len = sp->clen; len--;) 218 *p++ = *t++; 219 } 220 221 /* 222 * v_key_len -- 223 * Return the length of the string that will display the key. 224 * This routine is the backup for the KEY_LEN() macro. 225 * 226 * PUBLIC: size_t v_key_len(SCR *, ARG_CHAR_T); 227 */ 228 size_t 229 v_key_len(sp, ch) 230 SCR *sp; 231 ARG_CHAR_T ch; 232 { 233 (void)v_key_name(sp, ch); 234 return (sp->clen); 235 } 236 237 /* 238 * v_key_name -- 239 * Return the string that will display the key. This routine 240 * is the backup for the KEY_NAME() macro. 241 * 242 * PUBLIC: CHAR_T *v_key_name(SCR *, ARG_CHAR_T); 243 */ 244 CHAR_T * 245 v_key_name(sp, ach) 246 SCR *sp; 247 ARG_CHAR_T ach; 248 { 249 static const CHAR_T hexdigit[] = "0123456789abcdef"; 250 static const CHAR_T octdigit[] = "01234567"; 251 CHAR_T ch, *chp, mask; 252 size_t len; 253 int cnt, shift; 254 255 ch = ach; 256 257 /* See if the character was explicitly declared printable or not. */ 258 if ((chp = O_STR(sp, O_PRINT)) != NULL) 259 for (; *chp != '\0'; ++chp) 260 if (*chp == ch) 261 goto pr; 262 if ((chp = O_STR(sp, O_NOPRINT)) != NULL) 263 for (; *chp != '\0'; ++chp) 264 if (*chp == ch) 265 goto nopr; 266 267 /* 268 * Historical (ARPA standard) mappings. Printable characters are left 269 * alone. Control characters less than 0x20 are represented as '^' 270 * followed by the character offset from the '@' character in the ASCII 271 * character set. Del (0x7f) is represented as '^' followed by '?'. 272 * 273 * XXX 274 * The following code depends on the current locale being identical to 275 * the ASCII map from 0x40 to 0x5f (since 0x1f + 0x40 == 0x5f). I'm 276 * told that this is a reasonable assumption... 277 * 278 * XXX 279 * This code will only work with CHAR_T's that are multiples of 8-bit 280 * bytes. 281 * 282 * XXX 283 * NB: There's an assumption here that all printable characters take 284 * up a single column on the screen. This is not always correct. 285 */ 286 if (isprint(ch)) { 287 pr: sp->cname[0] = ch; 288 len = 1; 289 goto done; 290 } 291 nopr: if (iscntrl(ch) && (ch < 0x20 || ch == 0x7f)) { 292 sp->cname[0] = '^'; 293 sp->cname[1] = ch == 0x7f ? '?' : '@' + ch; 294 len = 2; 295 } else if (O_ISSET(sp, O_OCTAL)) { 296 #define BITS (sizeof(CHAR_T) * 8) 297 #define SHIFT (BITS - BITS % 3) 298 #define TOPMASK (BITS % 3 == 2 ? 3 : 1) << (BITS - BITS % 3) 299 sp->cname[0] = '\\'; 300 sp->cname[1] = octdigit[(ch & TOPMASK) >> SHIFT]; 301 shift = SHIFT - 3; 302 for (len = 2, mask = 7 << (SHIFT - 3), 303 cnt = BITS / 3; cnt-- > 0; mask >>= 3, shift -= 3) 304 sp->cname[len++] = octdigit[(ch & mask) >> shift]; 305 } else { 306 sp->cname[0] = '\\'; 307 sp->cname[1] = 'x'; 308 for (len = 2, chp = (u_int8_t *)&ch, 309 cnt = sizeof(CHAR_T); cnt-- > 0; ++chp) { 310 sp->cname[len++] = hexdigit[(*chp & 0xf0) >> 4]; 311 sp->cname[len++] = hexdigit[*chp & 0x0f]; 312 } 313 } 314 done: sp->cname[sp->clen = len] = '\0'; 315 return (sp->cname); 316 } 317 318 /* 319 * v_key_val -- 320 * Fill in the value for a key. This routine is the backup 321 * for the KEY_VAL() macro. 322 * 323 * PUBLIC: int v_key_val(SCR *, ARG_CHAR_T); 324 */ 325 int 326 v_key_val(sp, ch) 327 SCR *sp; 328 ARG_CHAR_T ch; 329 { 330 KEYLIST k, *kp; 331 332 k.ch = ch; 333 kp = bsearch(&k, keylist, nkeylist, sizeof(keylist[0]), v_key_cmp); 334 return (kp == NULL ? K_NOTUSED : kp->value); 335 } 336 337 /* 338 * v_event_push -- 339 * Push events/keys onto the front of the buffer. 340 * 341 * There is a single input buffer in ex/vi. Characters are put onto the 342 * end of the buffer by the terminal input routines, and pushed onto the 343 * front of the buffer by various other functions in ex/vi. Each key has 344 * an associated flag value, which indicates if it has already been quoted, 345 * and if it is the result of a mapping or an abbreviation. 346 * 347 * PUBLIC: int v_event_push(SCR *, EVENT *, CHAR_T *, size_t, u_int); 348 */ 349 int 350 v_event_push(sp, p_evp, p_s, nitems, flags) 351 SCR *sp; 352 EVENT *p_evp; /* Push event. */ 353 CHAR_T *p_s; /* Push characters. */ 354 size_t nitems; /* Number of items to push. */ 355 u_int flags; /* CH_* flags. */ 356 { 357 EVENT *evp; 358 GS *gp; 359 size_t total; 360 361 /* If we have room, stuff the items into the buffer. */ 362 gp = sp->gp; 363 if (nitems <= gp->i_next || 364 (gp->i_event != NULL && gp->i_cnt == 0 && nitems <= gp->i_nelem)) { 365 if (gp->i_cnt != 0) 366 gp->i_next -= nitems; 367 goto copy; 368 } 369 370 /* 371 * If there are currently items in the queue, shift them up, 372 * leaving some extra room. Get enough space plus a little 373 * extra. 374 */ 375 #define TERM_PUSH_SHIFT 30 376 total = gp->i_cnt + gp->i_next + nitems + TERM_PUSH_SHIFT; 377 if (total >= gp->i_nelem && v_event_grow(sp, MAX(total, 64))) 378 return (1); 379 if (gp->i_cnt) 380 MEMMOVE(gp->i_event + TERM_PUSH_SHIFT + nitems, 381 gp->i_event + gp->i_next, gp->i_cnt); 382 gp->i_next = TERM_PUSH_SHIFT; 383 384 /* Put the new items into the queue. */ 385 copy: gp->i_cnt += nitems; 386 for (evp = gp->i_event + gp->i_next; nitems--; ++evp) { 387 if (p_evp != NULL) 388 *evp = *p_evp++; 389 else { 390 evp->e_event = E_CHARACTER; 391 evp->e_c = *p_s++; 392 evp->e_value = KEY_VAL(sp, evp->e_c); 393 F_INIT(&evp->e_ch, flags); 394 } 395 } 396 return (0); 397 } 398 399 /* 400 * v_event_append -- 401 * Append events onto the tail of the buffer. 402 */ 403 static int 404 v_event_append(sp, argp) 405 SCR *sp; 406 EVENT *argp; 407 { 408 CHAR_T *s; /* Characters. */ 409 EVENT *evp; 410 GS *gp; 411 size_t nevents; /* Number of events. */ 412 413 /* Grow the buffer as necessary. */ 414 nevents = argp->e_event == E_STRING ? argp->e_len : 1; 415 gp = sp->gp; 416 if (gp->i_event == NULL || 417 nevents > gp->i_nelem - (gp->i_next + gp->i_cnt)) 418 v_event_grow(sp, MAX(nevents, 64)); 419 evp = gp->i_event + gp->i_next + gp->i_cnt; 420 gp->i_cnt += nevents; 421 422 /* Transform strings of characters into single events. */ 423 if (argp->e_event == E_STRING) 424 for (s = argp->e_csp; nevents--; ++evp) { 425 evp->e_event = E_CHARACTER; 426 evp->e_c = *s++; 427 evp->e_value = KEY_VAL(sp, evp->e_c); 428 evp->e_flags = 0; 429 } 430 else 431 *evp = *argp; 432 return (0); 433 } 434 435 /* Remove events from the queue. */ 436 #define QREM(len) { \ 437 if ((gp->i_cnt -= (len)) == 0) \ 438 gp->i_next = 0; \ 439 else \ 440 gp->i_next += (len); \ 441 } 442 443 /* 444 * v_event_get -- 445 * Return the next event. 446 * 447 * !!! 448 * The flag EC_NODIGIT probably needs some explanation. First, the idea of 449 * mapping keys is that one or more keystrokes act like a function key. 450 * What's going on is that vi is reading a number, and the character following 451 * the number may or may not be mapped (EC_MAPCOMMAND). For example, if the 452 * user is entering the z command, a valid command is "z40+", and we don't want 453 * to map the '+', i.e. if '+' is mapped to "xxx", we don't want to change it 454 * into "z40xxx". However, if the user enters "35x", we want to put all of the 455 * characters through the mapping code. 456 * 457 * Historical practice is a bit muddled here. (Surprise!) It always permitted 458 * mapping digits as long as they weren't the first character of the map, e.g. 459 * ":map ^A1 xxx" was okay. It also permitted the mapping of the digits 1-9 460 * (the digit 0 was a special case as it doesn't indicate the start of a count) 461 * as the first character of the map, but then ignored those mappings. While 462 * it's probably stupid to map digits, vi isn't your mother. 463 * 464 * The way this works is that the EC_MAPNODIGIT causes term_key to return the 465 * end-of-digit without "looking" at the next character, i.e. leaving it as the 466 * user entered it. Presumably, the next term_key call will tell us how the 467 * user wants it handled. 468 * 469 * There is one more complication. Users might map keys to digits, and, as 470 * it's described above, the commands: 471 * 472 * :map g 1G 473 * d2g 474 * 475 * would return the keys "d2<end-of-digits>1G", when the user probably wanted 476 * "d21<end-of-digits>G". So, if a map starts off with a digit we continue as 477 * before, otherwise, we pretend we haven't mapped the character, and return 478 * <end-of-digits>. 479 * 480 * Now that that's out of the way, let's talk about Energizer Bunny macros. 481 * It's easy to create macros that expand to a loop, e.g. map x 3x. It's 482 * fairly easy to detect this example, because it's all internal to term_key. 483 * If we're expanding a macro and it gets big enough, at some point we can 484 * assume it's looping and kill it. The examples that are tough are the ones 485 * where the parser is involved, e.g. map x "ayyx"byy. We do an expansion 486 * on 'x', and get "ayyx"byy. We then return the first 4 characters, and then 487 * find the looping macro again. There is no way that we can detect this 488 * without doing a full parse of the command, because the character that might 489 * cause the loop (in this case 'x') may be a literal character, e.g. the map 490 * map x "ayy"xyy"byy is perfectly legal and won't cause a loop. 491 * 492 * Historic vi tried to detect looping macros by disallowing obvious cases in 493 * the map command, maps that that ended with the same letter as they started 494 * (which wrongly disallowed "map x 'x"), and detecting macros that expanded 495 * too many times before keys were returned to the command parser. It didn't 496 * get many (most?) of the tricky cases right, however, and it was certainly 497 * possible to create macros that ran forever. And, even if it did figure out 498 * what was going on, the user was usually tossed into ex mode. Finally, any 499 * changes made before vi realized that the macro was recursing were left in 500 * place. We recover gracefully, but the only recourse the user has in an 501 * infinite macro loop is to interrupt. 502 * 503 * !!! 504 * It is historic practice that mapping characters to themselves as the first 505 * part of the mapped string was legal, and did not cause infinite loops, i.e. 506 * ":map! { {^M^T" and ":map n nz." were known to work. The initial, matching 507 * characters were returned instead of being remapped. 508 * 509 * !!! 510 * It is also historic practice that the macro "map ] ]]^" caused a single ] 511 * keypress to behave as the command ]] (the ^ got the map past the vi check 512 * for "tail recursion"). Conversely, the mapping "map n nn^" went recursive. 513 * What happened was that, in the historic vi, maps were expanded as the keys 514 * were retrieved, but not all at once and not centrally. So, the keypress ] 515 * pushed ]]^ on the stack, and then the first ] from the stack was passed to 516 * the ]] command code. The ]] command then retrieved a key without entering 517 * the mapping code. This could bite us anytime a user has a map that depends 518 * on secondary keys NOT being mapped. I can't see any possible way to make 519 * this work in here without the complete abandonment of Rationality Itself. 520 * 521 * XXX 522 * The final issue is recovery. It would be possible to undo all of the work 523 * that was done by the macro if we entered a record into the log so that we 524 * knew when the macro started, and, in fact, this might be worth doing at some 525 * point. Given that this might make the log grow unacceptably (consider that 526 * cursor keys are done with maps), for now we leave any changes made in place. 527 * 528 * PUBLIC: int v_event_get(SCR *, EVENT *, int, u_int32_t); 529 */ 530 int 531 v_event_get(sp, argp, timeout, flags) 532 SCR *sp; 533 EVENT *argp; 534 int timeout; 535 u_int32_t flags; 536 { 537 EVENT *evp, ev; 538 GS *gp; 539 SEQ *qp; 540 int init_nomap, ispartial, istimeout, remap_cnt; 541 542 gp = sp->gp; 543 544 /* If simply checking for interrupts, argp may be NULL. */ 545 if (argp == NULL) 546 argp = &ev; 547 548 retry: istimeout = remap_cnt = 0; 549 550 /* 551 * If the queue isn't empty and we're timing out for characters, 552 * return immediately. 553 */ 554 if (gp->i_cnt != 0 && LF_ISSET(EC_TIMEOUT)) 555 return (0); 556 557 /* 558 * If the queue is empty, we're checking for interrupts, or we're 559 * timing out for characters, get more events. 560 */ 561 if (gp->i_cnt == 0 || LF_ISSET(EC_INTERRUPT | EC_TIMEOUT)) { 562 /* 563 * If we're reading new characters, check any scripting 564 * windows for input. 565 */ 566 if (F_ISSET(gp, G_SCRWIN) && sscr_input(sp)) 567 return (1); 568 loop: if (gp->scr_event(sp, argp, 569 LF_ISSET(EC_INTERRUPT | EC_QUOTED | EC_RAW), timeout)) 570 return (1); 571 switch (argp->e_event) { 572 case E_ERR: 573 case E_SIGHUP: 574 case E_SIGTERM: 575 /* 576 * Fatal conditions cause the file to be synced to 577 * disk immediately. 578 */ 579 v_sync(sp, RCV_ENDSESSION | RCV_PRESERVE | 580 (argp->e_event == E_SIGTERM ? 0: RCV_EMAIL)); 581 return (1); 582 case E_TIMEOUT: 583 istimeout = 1; 584 break; 585 case E_INTERRUPT: 586 /* Set the global interrupt flag. */ 587 F_SET(sp->gp, G_INTERRUPTED); 588 589 /* 590 * If the caller was interested in interrupts, return 591 * immediately. 592 */ 593 if (LF_ISSET(EC_INTERRUPT)) 594 return (0); 595 goto append; 596 default: 597 append: if (v_event_append(sp, argp)) 598 return (1); 599 break; 600 } 601 } 602 603 /* 604 * If the caller was only interested in interrupts or timeouts, return 605 * immediately. (We may have gotten characters, and that's okay, they 606 * were queued up for later use.) 607 */ 608 if (LF_ISSET(EC_INTERRUPT | EC_TIMEOUT)) 609 return (0); 610 611 newmap: evp = &gp->i_event[gp->i_next]; 612 613 /* 614 * If the next event in the queue isn't a character event, return 615 * it, we're done. 616 */ 617 if (evp->e_event != E_CHARACTER) { 618 *argp = *evp; 619 QREM(1); 620 return (0); 621 } 622 623 /* 624 * If the key isn't mappable because: 625 * 626 * + ... the timeout has expired 627 * + ... it's not a mappable key 628 * + ... neither the command or input map flags are set 629 * + ... there are no maps that can apply to it 630 * 631 * return it forthwith. 632 */ 633 if (istimeout || F_ISSET(&evp->e_ch, CH_NOMAP) || 634 !LF_ISSET(EC_MAPCOMMAND | EC_MAPINPUT) || 635 (evp->e_c < MAX_BIT_SEQ && !bit_test(gp->seqb, evp->e_c))) 636 goto nomap; 637 638 /* Search the map. */ 639 qp = seq_find(sp, NULL, evp, NULL, gp->i_cnt, 640 LF_ISSET(EC_MAPCOMMAND) ? SEQ_COMMAND : SEQ_INPUT, &ispartial); 641 642 /* 643 * If get a partial match, get more characters and retry the map. 644 * If time out without further characters, return the characters 645 * unmapped. 646 * 647 * !!! 648 * <escape> characters are a problem. Cursor keys start with <escape> 649 * characters, so there's almost always a map in place that begins with 650 * an <escape> character. If we timeout <escape> keys in the same way 651 * that we timeout other keys, the user will get a noticeable pause as 652 * they enter <escape> to terminate input mode. If key timeout is set 653 * for a slow link, users will get an even longer pause. Nvi used to 654 * simply timeout <escape> characters at 1/10th of a second, but this 655 * loses over PPP links where the latency is greater than 100Ms. 656 */ 657 if (ispartial) { 658 if (O_ISSET(sp, O_TIMEOUT)) 659 timeout = (evp->e_value == K_ESCAPE ? 660 O_VAL(sp, O_ESCAPETIME) : 661 O_VAL(sp, O_KEYTIME)) * 100; 662 else 663 timeout = 0; 664 goto loop; 665 } 666 667 /* If no map, return the character. */ 668 if (qp == NULL) { 669 nomap: if (!isdigit(evp->e_c) && LF_ISSET(EC_MAPNODIGIT)) 670 goto not_digit; 671 *argp = *evp; 672 QREM(1); 673 return (0); 674 } 675 676 /* 677 * If looking for the end of a digit string, and the first character 678 * of the map is it, pretend we haven't seen the character. 679 */ 680 if (LF_ISSET(EC_MAPNODIGIT) && 681 qp->output != NULL && !isdigit(qp->output[0])) { 682 not_digit: argp->e_c = CH_NOT_DIGIT; 683 argp->e_value = K_NOTUSED; 684 argp->e_event = E_CHARACTER; 685 F_INIT(&argp->e_ch, 0); 686 return (0); 687 } 688 689 /* Find out if the initial segments are identical. */ 690 init_nomap = !e_memcmp(qp->output, &gp->i_event[gp->i_next], qp->ilen); 691 692 /* Delete the mapped characters from the queue. */ 693 QREM(qp->ilen); 694 695 /* If keys mapped to nothing, go get more. */ 696 if (qp->output == NULL) 697 goto retry; 698 699 /* If remapping characters... */ 700 if (O_ISSET(sp, O_REMAP)) { 701 /* 702 * Periodically check for interrupts. Always check the first 703 * time through, because it's possible to set up a map that 704 * will return a character every time, but will expand to more, 705 * e.g. "map! a aaaa" will always return a 'a', but we'll never 706 * get anywhere useful. 707 */ 708 if ((++remap_cnt == 1 || remap_cnt % 10 == 0) && 709 (gp->scr_event(sp, &ev, 710 EC_INTERRUPT, 0) || ev.e_event == E_INTERRUPT)) { 711 F_SET(sp->gp, G_INTERRUPTED); 712 argp->e_event = E_INTERRUPT; 713 return (0); 714 } 715 716 /* 717 * If an initial part of the characters mapped, they are not 718 * further remapped -- return the first one. Push the rest 719 * of the characters, or all of the characters if no initial 720 * part mapped, back on the queue. 721 */ 722 if (init_nomap) { 723 if (v_event_push(sp, NULL, qp->output + qp->ilen, 724 qp->olen - qp->ilen, CH_MAPPED)) 725 return (1); 726 if (v_event_push(sp, NULL, 727 qp->output, qp->ilen, CH_NOMAP | CH_MAPPED)) 728 return (1); 729 evp = &gp->i_event[gp->i_next]; 730 goto nomap; 731 } 732 if (v_event_push(sp, NULL, qp->output, qp->olen, CH_MAPPED)) 733 return (1); 734 goto newmap; 735 } 736 737 /* Else, push the characters on the queue and return one. */ 738 if (v_event_push(sp, NULL, qp->output, qp->olen, CH_MAPPED | CH_NOMAP)) 739 return (1); 740 741 goto nomap; 742 } 743 744 /* 745 * v_sync -- 746 * Walk the screen lists, sync'ing files to their backup copies. 747 */ 748 static void 749 v_sync(sp, flags) 750 SCR *sp; 751 int flags; 752 { 753 GS *gp; 754 755 gp = sp->gp; 756 CIRCLEQ_FOREACH(sp, &gp->dq, q) 757 rcv_sync(sp, flags); 758 CIRCLEQ_FOREACH(sp, &gp->hq, q) 759 rcv_sync(sp, flags); 760 } 761 762 /* 763 * v_event_err -- 764 * Unexpected event. 765 * 766 * PUBLIC: void v_event_err(SCR *, EVENT *); 767 */ 768 void 769 v_event_err(sp, evp) 770 SCR *sp; 771 EVENT *evp; 772 { 773 switch (evp->e_event) { 774 case E_CHARACTER: 775 msgq(sp, M_ERR, "276|Unexpected character event"); 776 break; 777 case E_EOF: 778 msgq(sp, M_ERR, "277|Unexpected end-of-file event"); 779 break; 780 case E_INTERRUPT: 781 msgq(sp, M_ERR, "279|Unexpected interrupt event"); 782 break; 783 case E_QUIT: 784 msgq(sp, M_ERR, "280|Unexpected quit event"); 785 break; 786 case E_REPAINT: 787 msgq(sp, M_ERR, "281|Unexpected repaint event"); 788 break; 789 case E_STRING: 790 msgq(sp, M_ERR, "285|Unexpected string event"); 791 break; 792 case E_TIMEOUT: 793 msgq(sp, M_ERR, "286|Unexpected timeout event"); 794 break; 795 case E_WRESIZE: 796 msgq(sp, M_ERR, "316|Unexpected resize event"); 797 break; 798 case E_WRITE: 799 msgq(sp, M_ERR, "287|Unexpected write event"); 800 break; 801 802 /* 803 * Theoretically, none of these can occur, as they're handled at the 804 * top editor level. 805 */ 806 case E_ERR: 807 case E_SIGHUP: 808 case E_SIGTERM: 809 default: 810 abort(); 811 } 812 813 /* Free any allocated memory. */ 814 if (evp->e_asp != NULL) 815 free(evp->e_asp); 816 } 817 818 /* 819 * v_event_flush -- 820 * Flush any flagged keys, returning if any keys were flushed. 821 * 822 * PUBLIC: int v_event_flush(SCR *, u_int); 823 */ 824 int 825 v_event_flush(sp, flags) 826 SCR *sp; 827 u_int flags; 828 { 829 GS *gp; 830 int rval; 831 832 for (rval = 0, gp = sp->gp; gp->i_cnt != 0 && 833 F_ISSET(&gp->i_event[gp->i_next].e_ch, flags); rval = 1) 834 QREM(1); 835 return (rval); 836 } 837 838 /* 839 * v_event_grow -- 840 * Grow the terminal queue. 841 */ 842 static int 843 v_event_grow(sp, add) 844 SCR *sp; 845 int add; 846 { 847 GS *gp; 848 size_t new_nelem, olen; 849 850 gp = sp->gp; 851 new_nelem = gp->i_nelem + add; 852 olen = gp->i_nelem * sizeof(gp->i_event[0]); 853 BINC_RET(sp, gp->i_event, olen, new_nelem * sizeof(gp->i_event[0])); 854 gp->i_nelem = olen / sizeof(gp->i_event[0]); 855 return (0); 856 } 857 858 /* 859 * v_key_cmp -- 860 * Compare two keys for sorting. 861 */ 862 static int 863 v_key_cmp(ap, bp) 864 const void *ap, *bp; 865 { 866 return (((KEYLIST *)ap)->ch - ((KEYLIST *)bp)->ch); 867 } 868