1 /* $OpenBSD: mkfs.c,v 1.14 2021/10/06 00:40:41 deraadt Exp $ */ 2 /* $NetBSD: mkfs.c,v 1.34 2016/06/24 19:24:11 christos Exp $ */ 3 4 /* 5 * Copyright (c) 2002 Networks Associates Technology, Inc. 6 * All rights reserved. 7 * 8 * This software was developed for the FreeBSD Project by Marshall 9 * Kirk McKusick and Network Associates Laboratories, the Security 10 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 11 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 12 * research program 13 * 14 * Copyright (c) 1980, 1989, 1993 15 * The Regents of the University of California. All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions 19 * are met: 20 * 1. Redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer. 22 * 2. Redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution. 25 * 3. Neither the name of the University nor the names of its contributors 26 * may be used to endorse or promote products derived from this software 27 * without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 39 * SUCH DAMAGE. 40 */ 41 42 #include <sys/param.h> /* roundup howmany setbit */ 43 #include <sys/time.h> 44 #include <sys/resource.h> 45 46 #include <stdio.h> 47 #include <stdlib.h> 48 #include <limits.h> 49 #include <string.h> 50 #include <unistd.h> 51 #include <errno.h> 52 #include <util.h> 53 54 #include <ufs/ufs/dinode.h> 55 #include <ufs/ffs/fs.h> 56 57 #include "ffs/ufs_inode.h" 58 #include "ffs/ffs_extern.h" 59 60 #include "makefs.h" 61 #include "ffs.h" 62 #include "ffs/newfs_extern.h" 63 64 static void initcg(int, time_t, const fsinfo_t *); 65 static int ilog2(int); 66 67 static int count_digits(int); 68 69 /* 70 * make file system for cylinder-group style file systems 71 */ 72 #define UMASK 0755 73 #define POWEROF2(num) (((num) & ((num) - 1)) == 0) 74 75 union { 76 struct fs fs; 77 char pad[SBLOCKSIZE]; 78 } fsun; 79 #define sblock fsun.fs 80 struct csum *fscs; 81 82 union { 83 struct cg cg; 84 char pad[FFS_MAXBSIZE]; 85 } cgun; 86 #define acg cgun.cg 87 88 char *iobuf; 89 int iobufsize; 90 91 char writebuf[FFS_MAXBSIZE]; 92 93 static int Oflag; /* format as an 4.3BSD file system */ 94 static int64_t fssize; /* file system size */ 95 static int sectorsize; /* bytes/sector */ 96 static int fsize; /* fragment size */ 97 static int bsize; /* block size */ 98 static int maxbsize; /* maximum clustering */ 99 static int maxblkspercg; 100 static int minfree; /* free space threshold */ 101 static int opt; /* optimization preference (space or time) */ 102 static int density; /* number of bytes per inode */ 103 static int maxcontig; /* max contiguous blocks to allocate */ 104 static int maxbpg; /* maximum blocks per file in a cyl group */ 105 static int bbsize; /* boot block size */ 106 static int avgfilesize; /* expected average file size */ 107 static int avgfpdir; /* expected number of files per directory */ 108 109 struct fs * 110 ffs_mkfs(const char *fsys, const fsinfo_t *fsopts, time_t tstamp) 111 { 112 int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg; 113 int32_t cylno, i, csfrags; 114 long long sizepb; 115 void *space; 116 int size; 117 int nprintcols, printcolwidth; 118 ffs_opt_t *ffs_opts = fsopts->fs_specific; 119 120 Oflag = ffs_opts->version; 121 fssize = fsopts->size / fsopts->sectorsize; 122 sectorsize = fsopts->sectorsize; 123 fsize = ffs_opts->fsize; 124 bsize = ffs_opts->bsize; 125 maxbsize = ffs_opts->maxbsize; 126 maxblkspercg = ffs_opts->maxblkspercg; 127 minfree = ffs_opts->minfree; 128 opt = ffs_opts->optimization; 129 density = ffs_opts->density; 130 maxcontig = MAXIMUM(1, MINIMUM(MAXBSIZE, FFS_MAXBSIZE) / bsize); 131 maxbpg = ffs_opts->maxbpg; 132 avgfilesize = ffs_opts->avgfilesize; 133 avgfpdir = ffs_opts->avgfpdir; 134 bbsize = BBSIZE; 135 136 strlcpy((char *)sblock.fs_volname, ffs_opts->label, 137 sizeof(sblock.fs_volname)); 138 139 sblock.fs_inodefmt = FS_44INODEFMT; 140 sblock.fs_maxsymlinklen = (Oflag == 1 ? MAXSYMLINKLEN_UFS1 : 141 MAXSYMLINKLEN_UFS2); 142 sblock.fs_ffs1_flags = FS_FLAGS_UPDATED; 143 sblock.fs_flags = 0; 144 145 /* 146 * Validate the given file system size. 147 * Verify that its last block can actually be accessed. 148 * Convert to file system fragment sized units. 149 */ 150 if (fssize <= 0) { 151 printf("preposterous size %lld\n", (long long)fssize); 152 exit(13); 153 } 154 ffs_wtfs(fssize - 1, sectorsize, (char *)&sblock, fsopts); 155 156 /* 157 * collect and verify the filesystem density info 158 */ 159 sblock.fs_avgfilesize = avgfilesize; 160 sblock.fs_avgfpdir = avgfpdir; 161 if (sblock.fs_avgfilesize <= 0) 162 printf("illegal expected average file size %d\n", 163 sblock.fs_avgfilesize), exit(14); 164 if (sblock.fs_avgfpdir <= 0) 165 printf("illegal expected number of files per directory %d\n", 166 sblock.fs_avgfpdir), exit(15); 167 /* 168 * collect and verify the block and fragment sizes 169 */ 170 sblock.fs_bsize = bsize; 171 sblock.fs_fsize = fsize; 172 if (!POWEROF2(sblock.fs_bsize)) { 173 printf("block size must be a power of 2, not %d\n", 174 sblock.fs_bsize); 175 exit(16); 176 } 177 if (!POWEROF2(sblock.fs_fsize)) { 178 printf("fragment size must be a power of 2, not %d\n", 179 sblock.fs_fsize); 180 exit(17); 181 } 182 if (sblock.fs_fsize < sectorsize) { 183 printf("fragment size %d is too small, minimum is %d\n", 184 sblock.fs_fsize, sectorsize); 185 exit(18); 186 } 187 if (sblock.fs_bsize < MINBSIZE) { 188 printf("block size %d is too small, minimum is %d\n", 189 sblock.fs_bsize, MINBSIZE); 190 exit(19); 191 } 192 if (sblock.fs_bsize > FFS_MAXBSIZE) { 193 printf("block size %d is too large, maximum is %d\n", 194 sblock.fs_bsize, FFS_MAXBSIZE); 195 exit(19); 196 } 197 if (sblock.fs_bsize < sblock.fs_fsize) { 198 printf("block size (%d) cannot be smaller than fragment size (%d)\n", 199 sblock.fs_bsize, sblock.fs_fsize); 200 exit(20); 201 } 202 203 if (maxbsize < bsize || !POWEROF2(maxbsize)) { 204 sblock.fs_maxbsize = sblock.fs_bsize; 205 printf("Extent size set to %d\n", sblock.fs_maxbsize); 206 } else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) { 207 sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize; 208 printf("Extent size reduced to %d\n", sblock.fs_maxbsize); 209 } else { 210 sblock.fs_maxbsize = maxbsize; 211 } 212 sblock.fs_maxcontig = maxcontig; 213 if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) { 214 sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize; 215 printf("Maxcontig raised to %d\n", sblock.fs_maxbsize); 216 } 217 218 if (sblock.fs_maxcontig > 1) 219 sblock.fs_contigsumsize = MINIMUM(sblock.fs_maxcontig,FS_MAXCONTIG); 220 221 sblock.fs_bmask = ~(sblock.fs_bsize - 1); 222 sblock.fs_fmask = ~(sblock.fs_fsize - 1); 223 sblock.fs_qbmask = ~sblock.fs_bmask; 224 sblock.fs_qfmask = ~sblock.fs_fmask; 225 for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1) 226 sblock.fs_bshift++; 227 for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1) 228 sblock.fs_fshift++; 229 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize); 230 for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1) 231 sblock.fs_fragshift++; 232 if (sblock.fs_frag > MAXFRAG) { 233 printf("fragment size %d is too small, " 234 "minimum with block size %d is %d\n", 235 sblock.fs_fsize, sblock.fs_bsize, 236 sblock.fs_bsize / MAXFRAG); 237 exit(21); 238 } 239 sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize); 240 sblock.fs_size = fssize = dbtofsb(&sblock, fssize); 241 242 if (Oflag <= 1) { 243 sblock.fs_magic = FS_UFS1_MAGIC; 244 sblock.fs_sblockloc = SBLOCK_UFS1; 245 sblock.fs_nindir = sblock.fs_bsize / sizeof(int32_t); 246 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode); 247 sblock.fs_maxsymlinklen = (NDADDR + NIADDR) * sizeof (int32_t); 248 sblock.fs_inodefmt = FS_44INODEFMT; 249 sblock.fs_cgoffset = 0; 250 sblock.fs_cgmask = 0xffffffff; 251 sblock.fs_ffs1_size = sblock.fs_size; 252 sblock.fs_rotdelay = 0; 253 sblock.fs_rps = 60; 254 sblock.fs_nspf = sblock.fs_fsize / sectorsize; 255 sblock.fs_cpg = 1; 256 sblock.fs_interleave = 1; 257 sblock.fs_trackskew = 0; 258 sblock.fs_cpc = 0; 259 sblock.fs_postblformat = 1; 260 sblock.fs_nrpos = 1; 261 } else { 262 sblock.fs_magic = FS_UFS2_MAGIC; 263 #if 0 /* XXX makefs is used for small filesystems. */ 264 sblock.fs_sblockloc = SBLOCK_UFS2; 265 #else 266 sblock.fs_sblockloc = SBLOCK_UFS1; 267 #endif 268 sblock.fs_nindir = sblock.fs_bsize / sizeof(int64_t); 269 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode); 270 sblock.fs_maxsymlinklen = (NDADDR + NIADDR) * sizeof (int64_t); 271 } 272 273 sblock.fs_sblkno = 274 roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize), 275 sblock.fs_frag); 276 sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno + 277 roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag)); 278 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag; 279 sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1; 280 for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) { 281 sizepb *= NINDIR(&sblock); 282 sblock.fs_maxfilesize += sizepb; 283 } 284 285 /* 286 * Calculate the number of blocks to put into each cylinder group. 287 * 288 * This algorithm selects the number of blocks per cylinder 289 * group. The first goal is to have at least enough data blocks 290 * in each cylinder group to meet the density requirement. Once 291 * this goal is achieved we try to expand to have at least 292 * 1 cylinder group. Once this goal is achieved, we pack as 293 * many blocks into each cylinder group map as will fit. 294 * 295 * We start by calculating the smallest number of blocks that we 296 * can put into each cylinder group. If this is too big, we reduce 297 * the density until it fits. 298 */ 299 origdensity = density; 300 for (;;) { 301 fragsperinode = MAXIMUM(numfrags(&sblock, density), 1); 302 minfpg = fragsperinode * INOPB(&sblock); 303 if (minfpg > sblock.fs_size) 304 minfpg = sblock.fs_size; 305 sblock.fs_ipg = INOPB(&sblock); 306 sblock.fs_fpg = roundup(sblock.fs_iblkno + 307 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 308 if (sblock.fs_fpg < minfpg) 309 sblock.fs_fpg = minfpg; 310 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 311 INOPB(&sblock)); 312 sblock.fs_fpg = roundup(sblock.fs_iblkno + 313 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 314 if (sblock.fs_fpg < minfpg) 315 sblock.fs_fpg = minfpg; 316 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 317 INOPB(&sblock)); 318 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 319 break; 320 density -= sblock.fs_fsize; 321 } 322 if (density != origdensity) 323 printf("density reduced from %d to %d\n", origdensity, density); 324 325 if (maxblkspercg <= 0 || maxblkspercg >= fssize) 326 maxblkspercg = fssize - 1; 327 /* 328 * Start packing more blocks into the cylinder group until 329 * it cannot grow any larger, the number of cylinder groups 330 * drops below 1, or we reach the size requested. 331 */ 332 for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) { 333 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 334 INOPB(&sblock)); 335 if (sblock.fs_size / sblock.fs_fpg < 1) 336 break; 337 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 338 continue; 339 if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize) 340 break; 341 sblock.fs_fpg -= sblock.fs_frag; 342 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 343 INOPB(&sblock)); 344 break; 345 } 346 /* 347 * Check to be sure that the last cylinder group has enough blocks 348 * to be viable. If it is too small, reduce the number of blocks 349 * per cylinder group which will have the effect of moving more 350 * blocks into the last cylinder group. 351 */ 352 optimalfpg = sblock.fs_fpg; 353 for (;;) { 354 sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg); 355 lastminfpg = roundup(sblock.fs_iblkno + 356 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 357 if (sblock.fs_size < lastminfpg) { 358 printf("Filesystem size %lld < minimum size of %d\n", 359 (long long)sblock.fs_size, lastminfpg); 360 exit(28); 361 } 362 if (sblock.fs_size % sblock.fs_fpg >= lastminfpg || 363 sblock.fs_size % sblock.fs_fpg == 0) 364 break; 365 sblock.fs_fpg -= sblock.fs_frag; 366 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 367 INOPB(&sblock)); 368 } 369 if (optimalfpg != sblock.fs_fpg) 370 printf("Reduced frags per cylinder group from %d to %d %s\n", 371 optimalfpg, sblock.fs_fpg, "to enlarge last cyl group"); 372 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock)); 373 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock); 374 if (Oflag <= 1) { 375 sblock.fs_spc = sblock.fs_fpg * sblock.fs_nspf; 376 sblock.fs_nsect = sblock.fs_spc; 377 sblock.fs_npsect = sblock.fs_spc; 378 sblock.fs_ncyl = sblock.fs_ncg; 379 } 380 381 /* 382 * fill in remaining fields of the super block 383 */ 384 sblock.fs_csaddr = cgdmin(&sblock, 0); 385 sblock.fs_cssize = 386 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); 387 388 /* 389 * Setup memory for temporary in-core cylgroup summaries. 390 * Cribbed from ffs_mountfs(). 391 */ 392 size = sblock.fs_cssize; 393 if (sblock.fs_contigsumsize > 0) 394 size += sblock.fs_ncg * sizeof(int32_t); 395 space = ecalloc(1, size); 396 sblock.fs_csp = space; 397 space = (char *)space + sblock.fs_cssize; 398 if (sblock.fs_contigsumsize > 0) { 399 int32_t *lp; 400 401 sblock.fs_maxcluster = lp = space; 402 for (i = 0; i < sblock.fs_ncg; i++) 403 *lp++ = sblock.fs_contigsumsize; 404 } 405 406 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs)); 407 if (sblock.fs_sbsize > SBLOCKSIZE) 408 sblock.fs_sbsize = SBLOCKSIZE; 409 sblock.fs_minfree = minfree; 410 sblock.fs_maxcontig = maxcontig; 411 sblock.fs_maxbpg = maxbpg; 412 sblock.fs_optim = opt; 413 sblock.fs_cgrotor = 0; 414 sblock.fs_pendingblocks = 0; 415 sblock.fs_pendinginodes = 0; 416 sblock.fs_cstotal.cs_ndir = 0; 417 sblock.fs_cstotal.cs_nbfree = 0; 418 sblock.fs_cstotal.cs_nifree = 0; 419 sblock.fs_cstotal.cs_nffree = 0; 420 sblock.fs_fmod = 0; 421 sblock.fs_ronly = 0; 422 sblock.fs_state = 0; 423 sblock.fs_clean = FS_ISCLEAN; 424 sblock.fs_ronly = 0; 425 sblock.fs_id[0] = tstamp; 426 sblock.fs_id[1] = random(); 427 sblock.fs_fsmnt[0] = '\0'; 428 csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize); 429 sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno - 430 sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno); 431 sblock.fs_cstotal.cs_nbfree = 432 fragstoblks(&sblock, sblock.fs_dsize) - 433 howmany(csfrags, sblock.fs_frag); 434 sblock.fs_cstotal.cs_nffree = 435 fragnum(&sblock, sblock.fs_size) + 436 (fragnum(&sblock, csfrags) > 0 ? 437 sblock.fs_frag - fragnum(&sblock, csfrags) : 0); 438 sblock.fs_cstotal.cs_nifree = sblock.fs_ncg * sblock.fs_ipg - ROOTINO; 439 sblock.fs_cstotal.cs_ndir = 0; 440 sblock.fs_dsize -= csfrags; 441 sblock.fs_time = tstamp; 442 if (Oflag <= 1) { 443 sblock.fs_ffs1_time = tstamp; 444 sblock.fs_ffs1_dsize = sblock.fs_dsize; 445 sblock.fs_ffs1_csaddr = sblock.fs_csaddr; 446 sblock.fs_ffs1_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 447 sblock.fs_ffs1_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 448 sblock.fs_ffs1_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 449 sblock.fs_ffs1_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 450 } 451 /* 452 * Dump out summary information about file system. 453 */ 454 #define B2MBFACTOR (1 / (1024.0 * 1024.0)) 455 printf("%s: %.1fMB (%lld sectors) block size %d, " 456 "fragment size %d\n", 457 fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, 458 (long long)fsbtodb(&sblock, sblock.fs_size), 459 sblock.fs_bsize, sblock.fs_fsize); 460 printf("\tusing %d cylinder groups of %.2fMB, %d blks, " 461 "%d inodes.\n", 462 sblock.fs_ncg, 463 (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, 464 sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg); 465 #undef B2MBFACTOR 466 /* 467 * Now determine how wide each column will be, and calculate how 468 * many columns will fit in a 76 char line. 76 is the width of the 469 * subwindows in sysinst. 470 */ 471 printcolwidth = count_digits( 472 fsbtodb(&sblock, cgsblock(&sblock, sblock.fs_ncg -1))); 473 nprintcols = 76 / (printcolwidth + 2); 474 475 /* 476 * allocate space for superblock, cylinder group map, and 477 * two sets of inode blocks. 478 */ 479 if (sblock.fs_bsize < SBLOCKSIZE) 480 iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize; 481 else 482 iobufsize = 4 * sblock.fs_bsize; 483 iobuf = ecalloc(1, iobufsize); 484 /* 485 * Make a copy of the superblock into the buffer that we will be 486 * writing out in each cylinder group. 487 */ 488 memcpy(writebuf, &sblock, SBLOCKSIZE); 489 memcpy(iobuf, writebuf, SBLOCKSIZE); 490 491 printf("super-block backups (for fsck -b #) at:"); 492 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) { 493 initcg(cylno, tstamp, fsopts); 494 if (cylno % nprintcols == 0) 495 printf("\n"); 496 printf(" %*lld,", printcolwidth, 497 (long long)fsbtodb(&sblock, cgsblock(&sblock, cylno))); 498 fflush(stdout); 499 } 500 printf("\n"); 501 502 /* 503 * Now construct the initial file system, 504 * then write out the super-block. 505 */ 506 sblock.fs_time = tstamp; 507 if (Oflag <= 1) { 508 sblock.fs_ffs1_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 509 sblock.fs_ffs1_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 510 sblock.fs_ffs1_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 511 sblock.fs_ffs1_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 512 } 513 ffs_write_superblock(&sblock, fsopts); 514 return (&sblock); 515 } 516 517 /* 518 * Write out the superblock and its duplicates, 519 * and the cylinder group summaries 520 */ 521 void 522 ffs_write_superblock(struct fs *fs, const fsinfo_t *fsopts) 523 { 524 int cylno, size, blks, i; 525 struct fs *fsdup; 526 void *space; 527 char *wrbuf; 528 529 memcpy(writebuf, fs, SBLOCKSIZE); 530 531 fsdup = (struct fs *)writebuf; 532 fsdup->fs_csp = NULL; 533 fsdup->fs_maxcluster = NULL; 534 535 ffs_wtfs(fs->fs_sblockloc / sectorsize, SBLOCKSIZE, writebuf, fsopts); 536 537 /* Write out the duplicate super blocks */ 538 for (cylno = 0; cylno < fs->fs_ncg; cylno++) 539 ffs_wtfs(fsbtodb(fs, cgsblock(fs, cylno)), 540 SBLOCKSIZE, writebuf, fsopts); 541 542 /* Write out the cylinder group summaries */ 543 size = fs->fs_cssize; 544 blks = howmany(size, fs->fs_fsize); 545 space = (void *)fs->fs_csp; 546 wrbuf = emalloc(size); 547 for (i = 0; i < blks; i+= fs->fs_frag) { 548 size = fs->fs_bsize; 549 if (i + fs->fs_frag > blks) 550 size = (blks - i) * fs->fs_fsize; 551 memcpy(wrbuf, space, (u_int)size); 552 ffs_wtfs(fsbtodb(fs, fs->fs_csaddr + i), size, wrbuf, fsopts); 553 space = (char *)space + size; 554 } 555 free(wrbuf); 556 } 557 558 /* 559 * Initialize a cylinder group. 560 */ 561 static void 562 initcg(int cylno, time_t utime, const fsinfo_t *fsopts) 563 { 564 daddr_t cbase, dmax; 565 int i, j, d, dlower, dupper, blkno; 566 struct ufs1_dinode *dp1; 567 struct ufs2_dinode *dp2; 568 int start; 569 570 /* 571 * Determine block bounds for cylinder group. 572 * Allow space for super block summary information in first 573 * cylinder group. 574 */ 575 cbase = cgbase(&sblock, cylno); 576 dmax = cbase + sblock.fs_fpg; 577 if (dmax > sblock.fs_size) 578 dmax = sblock.fs_size; 579 dlower = cgsblock(&sblock, cylno) - cbase; 580 dupper = cgdmin(&sblock, cylno) - cbase; 581 if (cylno == 0) 582 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); 583 memset(&acg, 0, sblock.fs_cgsize); 584 acg.cg_ffs2_time = utime; 585 acg.cg_magic = CG_MAGIC; 586 acg.cg_cgx = cylno; 587 acg.cg_ffs2_niblk = sblock.fs_ipg; 588 acg.cg_initediblk = sblock.fs_ipg < 2 * INOPB(&sblock) ? 589 sblock.fs_ipg : 2 * INOPB(&sblock); 590 acg.cg_ndblk = dmax - cbase; 591 if (sblock.fs_contigsumsize > 0) 592 acg.cg_nclusterblks = acg.cg_ndblk >> sblock.fs_fragshift; 593 start = sizeof(struct cg); 594 if (Oflag == 2) { 595 acg.cg_iusedoff = start; 596 } else { 597 if (cylno == sblock.fs_ncg - 1) 598 acg.cg_ncyl = howmany(acg.cg_ndblk, 599 sblock.fs_fpg / sblock.fs_cpg); 600 else 601 acg.cg_ncyl = sblock.fs_cpg; 602 acg.cg_time = acg.cg_ffs2_time; 603 acg.cg_ffs2_time = 0; 604 acg.cg_niblk = acg.cg_ffs2_niblk; 605 acg.cg_ffs2_niblk = 0; 606 acg.cg_initediblk = 0; 607 acg.cg_btotoff = start; 608 acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t); 609 acg.cg_iusedoff = acg.cg_boff + 610 sblock.fs_cpg * sizeof(u_int16_t); 611 } 612 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT); 613 if (sblock.fs_contigsumsize <= 0) { 614 acg.cg_nextfreeoff = acg.cg_freeoff + 615 howmany(sblock.fs_fpg, CHAR_BIT); 616 } else { 617 acg.cg_clustersumoff = acg.cg_freeoff + 618 howmany(sblock.fs_fpg, CHAR_BIT) - sizeof(int32_t); 619 acg.cg_clustersumoff = 620 roundup(acg.cg_clustersumoff, sizeof(int32_t)); 621 acg.cg_clusteroff = acg.cg_clustersumoff + 622 (sblock.fs_contigsumsize + 1) * sizeof(int32_t); 623 acg.cg_nextfreeoff = acg.cg_clusteroff + 624 howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT); 625 } 626 if (acg.cg_nextfreeoff > sblock.fs_cgsize) { 627 printf("Panic: cylinder group too big\n"); 628 exit(37); 629 } 630 acg.cg_cs.cs_nifree += sblock.fs_ipg; 631 if (cylno == 0) { 632 size_t r; 633 634 for (r = 0; r < ROOTINO; r++) { 635 setbit(cg_inosused(&acg), r); 636 acg.cg_cs.cs_nifree--; 637 } 638 } 639 if (cylno > 0) { 640 /* 641 * In cylno 0, beginning space is reserved 642 * for boot and super blocks. 643 */ 644 for (d = 0, blkno = 0; d < dlower;) { 645 ffs_setblock(&sblock, cg_blksfree(&acg), blkno); 646 if (sblock.fs_contigsumsize > 0) 647 setbit(cg_clustersfree(&acg), blkno); 648 acg.cg_cs.cs_nbfree++; 649 d += sblock.fs_frag; 650 blkno++; 651 } 652 } 653 if ((i = (dupper & (sblock.fs_frag - 1))) != 0) { 654 acg.cg_frsum[sblock.fs_frag - i]++; 655 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { 656 setbit(cg_blksfree(&acg), dupper); 657 acg.cg_cs.cs_nffree++; 658 } 659 } 660 for (d = dupper, blkno = dupper >> sblock.fs_fragshift; 661 d + sblock.fs_frag <= acg.cg_ndblk; ) { 662 ffs_setblock(&sblock, cg_blksfree(&acg), blkno); 663 if (sblock.fs_contigsumsize > 0) 664 setbit(cg_clustersfree(&acg), blkno); 665 acg.cg_cs.cs_nbfree++; 666 d += sblock.fs_frag; 667 blkno++; 668 } 669 if (d < acg.cg_ndblk) { 670 acg.cg_frsum[acg.cg_ndblk - d]++; 671 for (; d < acg.cg_ndblk; d++) { 672 setbit(cg_blksfree(&acg), d); 673 acg.cg_cs.cs_nffree++; 674 } 675 } 676 if (sblock.fs_contigsumsize > 0) { 677 int32_t *sump = cg_clustersum(&acg); 678 u_char *mapp = cg_clustersfree(&acg); 679 int map = *mapp++; 680 int bit = 1; 681 int run = 0; 682 683 for (i = 0; i < acg.cg_nclusterblks; i++) { 684 if ((map & bit) != 0) { 685 run++; 686 } else if (run != 0) { 687 if (run > sblock.fs_contigsumsize) 688 run = sblock.fs_contigsumsize; 689 sump[run]++; 690 run = 0; 691 } 692 if ((i & (CHAR_BIT - 1)) != (CHAR_BIT - 1)) { 693 bit <<= 1; 694 } else { 695 map = *mapp++; 696 bit = 1; 697 } 698 } 699 if (run != 0) { 700 if (run > sblock.fs_contigsumsize) 701 run = sblock.fs_contigsumsize; 702 sump[run]++; 703 } 704 } 705 sblock.fs_cs(&sblock, cylno) = acg.cg_cs; 706 /* 707 * Write out the duplicate super block, the cylinder group map 708 * and two blocks worth of inodes in a single write. 709 */ 710 start = sblock.fs_bsize > SBLOCKSIZE ? sblock.fs_bsize : SBLOCKSIZE; 711 memcpy(&iobuf[start], &acg, sblock.fs_cgsize); 712 start += sblock.fs_bsize; 713 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 714 dp2 = (struct ufs2_dinode *)(&iobuf[start]); 715 for (i = 0; i < acg.cg_initediblk; i++) { 716 if (sblock.fs_magic == FS_UFS1_MAGIC) { 717 /* No need to swap, it'll stay random */ 718 dp1->di_gen = random(); 719 dp1++; 720 } else { 721 dp2->di_gen = random(); 722 dp2++; 723 } 724 } 725 ffs_wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf, 726 fsopts); 727 /* 728 * For the old file system, we have to initialize all the inodes. 729 */ 730 if (Oflag <= 1) { 731 for (i = 2 * sblock.fs_frag; 732 i < sblock.fs_ipg / INOPF(&sblock); 733 i += sblock.fs_frag) { 734 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 735 for (j = 0; j < INOPB(&sblock); j++) { 736 dp1->di_gen = random(); 737 dp1++; 738 } 739 ffs_wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), 740 sblock.fs_bsize, &iobuf[start], fsopts); 741 } 742 } 743 } 744 745 /* 746 * read a block from the file system 747 */ 748 void 749 ffs_rdfs(daddr_t bno, int size, void *bf, const fsinfo_t *fsopts) 750 { 751 int n; 752 off_t offset; 753 754 offset = bno * fsopts->sectorsize + fsopts->offset; 755 if (lseek(fsopts->fd, offset, SEEK_SET) < 0) 756 err(1, "%s: seek error for sector %lld", __func__, 757 (long long)bno); 758 n = read(fsopts->fd, bf, size); 759 if (n == -1) { 760 err(1, "%s: read error bno %lld size %d", __func__, 761 (long long)bno, size); 762 } 763 else if (n != size) 764 errx(1, "%s: short read error for sector %lld", __func__, 765 (long long)bno); 766 } 767 768 /* 769 * write a block to the file system 770 */ 771 void 772 ffs_wtfs(daddr_t bno, int size, void *bf, const fsinfo_t *fsopts) 773 { 774 int n; 775 off_t offset; 776 777 offset = bno * fsopts->sectorsize + fsopts->offset; 778 if (lseek(fsopts->fd, offset, SEEK_SET) == -1) 779 err(1, "%s: seek error for sector %lld", __func__, 780 (long long)bno); 781 n = write(fsopts->fd, bf, size); 782 if (n == -1) 783 err(1, "%s: write error for sector %lld", __func__, 784 (long long)bno); 785 else if (n != size) 786 errx(1, "%s: short write error for sector %lld", __func__, 787 (long long)bno); 788 } 789 790 791 /* Determine how many digits are needed to print a given integer */ 792 static int 793 count_digits(int num) 794 { 795 int ndig; 796 797 for(ndig = 1; num > 9; num /=10, ndig++); 798 799 return (ndig); 800 } 801 802 static int 803 ilog2(int val) 804 { 805 u_int n; 806 807 for (n = 0; n < sizeof(n) * CHAR_BIT; n++) 808 if (1 << n == val) 809 return (n); 810 errx(1, "%s: %d is not a power of 2", __func__, val); 811 } 812