xref: /original-bsd/games/pom/pom.c (revision 7717c4d4)
1 /*
2  * Copyright (c) 1989 The Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software posted to USENET.
6  *
7  * Redistribution and use in source and binary forms are permitted
8  * provided that the above copyright notice and this paragraph are
9  * duplicated in all such forms and that any documentation,
10  * advertising materials, and other materials related to such
11  * distribution and use acknowledge that the software was developed
12  * by the University of California, Berkeley.  The name of the
13  * University may not be used to endorse or promote products derived
14  * from this software without specific prior written permission.
15  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
17  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
18  */
19 
20 #ifndef lint
21 char copyright[] =
22 "@(#) Copyright (c) 1989 The Regents of the University of California.\n\
23  All rights reserved.\n";
24 #endif /* not lint */
25 
26 #ifndef lint
27 static char sccsid[] = "@(#)pom.c	5.1 (Berkeley) 09/07/89";
28 #endif /* not lint */
29 
30 /*
31  * Phase of the Moon.  Calculates the current phase of the moon.
32  * Based on routines from `Practical Astronomy with Your Calculator',
33  * by Duffett-Smith.  Comments give the section from the book that
34  * particular piece of code was adapted from.
35  *
36  * -- Keith E. Brandt  VIII 1984
37  *
38  */
39 
40 #include <sys/time.h>
41 #include <stdio.h>
42 #include <tzfile.h>
43 #include <math.h>
44 
45 #define	PI	  3.141592654
46 #define	EPOCH	  85
47 #define	EPSILONg  279.611371	/* solar ecliptic long at EPOCH */
48 #define	RHOg	  282.680403	/* solar ecliptic long of perigee at EPOCH */
49 #define	ECCEN	  0.01671542	/* solar orbit eccentricity */
50 #define	lzero	  18.251907	/* lunar mean long at EPOCH */
51 #define	Pzero	  192.917585	/* lunar mean long of perigee at EPOCH */
52 #define	Nzero	  55.204723	/* lunar mean long of node at EPOCH */
53 
54 main()
55 {
56 	extern int errno;
57 	struct timeval tp;
58 	struct timezone tzp;
59 	struct tm *GMT, *gmtime();
60 	double days, today, tomorrow, dtor(), adj360(), potm();
61 	int cnt;
62 	char *strerror();
63 
64 	if (gettimeofday(&tp,&tzp)) {
65 		(void)fprintf(stderr, "pom: %s\n", strerror(errno));
66 		exit(1);
67 	}
68 	GMT = gmtime(&tp.tv_sec);
69 	days = (GMT->tm_yday + 1) + ((GMT->tm_hour +
70 	    (GMT->tm_min / 60.0) + (GMT->tm_sec / 3600.0)) / 24.0);
71 	for (cnt = EPOCH; cnt < GMT->tm_year; ++cnt)
72 		days += isleap(cnt) ? 366 : 365;
73 	today = potm(days) + .5;
74 	(void)printf("The Moon is ");
75 	if ((int)today == 100)
76 		(void)printf("Full\n");
77 	else if (!(int)today)
78 		(void)printf("New\n");
79 	else {
80 		tomorrow = potm(days + 1);
81 		if ((int)today == 50)
82 			(void)printf("%s\n", tomorrow > today ?
83 			    "at the First Quarter" : "at the Last Quarter");
84 		else {
85 			(void)printf("%s ", tomorrow > today ?
86 			    "Waxing" : "Waning");
87 			if (today > 50)
88 				(void)printf("Gibbous (%1.0f%% of Full)\n",
89 				    today);
90 			else if (today < 50)
91 				(void)printf("Crescent (%1.0f%% of Full)\n",
92 				    today);
93 		}
94 	}
95 }
96 
97 /*
98  * potm --
99  *	return phase of the moon
100  */
101 double
102 potm(days)
103 	double days;
104 {
105 	double N, Msol, Ec, LambdaSol, l, Mm, Ev, Ac, A3, Mmprime;
106 	double A4, lprime, V, ldprime, D, Nm;
107 
108 	N = 360 * days / 365.2422;				/* sec 42 #3 */
109 	adj360(&N);
110 	Msol = N + EPSILONg - RHOg;				/* sec 42 #4 */
111 	adj360(&Msol);
112 	Ec = 360 / PI * ECCEN * sin(dtor(Msol));		/* sec 42 #5 */
113 	LambdaSol = N + Ec + EPSILONg;				/* sec 42 #6 */
114 	adj360(&LambdaSol);
115 	l = 13.1763966 * days + lzero;				/* sec 61 #4 */
116 	adj360(&l);
117 	Mm = l - (0.1114041 * days) - Pzero;			/* sec 61 #5 */
118 	adj360(&Mm);
119 	Nm = Nzero - (0.0529539 * days);			/* sec 61 #6 */
120 	adj360(&Nm);
121 	Ev = 1.2739 * sin(dtor(2*(l - LambdaSol) - Mm));	/* sec 61 #7 */
122 	Ac = 0.1858 * sin(dtor(Msol));				/* sec 61 #8 */
123 	A3 = 0.37 * sin(dtor(Msol));
124 	Mmprime = Mm + Ev - Ac - A3;				/* sec 61 #9 */
125 	Ec = 6.2886 * sin(dtor(Mmprime));			/* sec 61 #10 */
126 	A4 = 0.214 * sin(dtor(2 * Mmprime));			/* sec 61 #11 */
127 	lprime = l + Ev + Ec - Ac + A4;				/* sec 61 #12 */
128 	V = 0.6583 * sin(dtor(2 * (lprime - LambdaSol)));	/* sec 61 #13 */
129 	ldprime = lprime + V;					/* sec 61 #14 */
130 	D = ldprime - LambdaSol;				/* sec 63 #2 */
131 	return(50 * (1 - cos(dtor(D))));			/* sec 63 #3 */
132 }
133 
134 /*
135  * dtor --
136  *	convert degrees to radians
137  */
138 double
139 dtor(deg)
140 	double deg;
141 {
142 	return(deg * PI / 180);
143 }
144 
145 /*
146  * adj360 --
147  *	adjust value so 0 <= deg <= 360
148  */
149 double
150 adj360(deg)
151 	double *deg;
152 {
153 	for (;;)
154 		if (*deg < 0)
155 			*deg += 360;
156 		else if (*deg > 360)
157 			*deg -= 360;
158 		else
159 			break;
160 }
161