xref: /original-bsd/games/primes/primes.c (revision 898c7514)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Landon Curt Noll.
7  *
8  * %sccs.include.redist.c%
9  */
10 
11 #ifndef lint
12 static char copyright[] =
13 "@(#) Copyright (c) 1989, 1993\n\
14 	The Regents of the University of California.  All rights reserved.\n";
15 #endif /* not lint */
16 
17 #ifndef lint
18 static char sccsid[] = "@(#)primes.c	8.5 (Berkeley) 05/10/95";
19 #endif /* not lint */
20 
21 /*
22  * primes - generate a table of primes between two values
23  *
24  * By: Landon Curt Noll chongo@toad.com, ...!{sun,tolsoft}!hoptoad!chongo
25  *
26  * chongo <for a good prime call: 391581 * 2^216193 - 1> /\oo/\
27  *
28  * usage:
29  *	primes [start [stop]]
30  *
31  *	Print primes >= start and < stop.  If stop is omitted,
32  *	the value 4294967295 (2^32-1) is assumed.  If start is
33  *	omitted, start is read from standard input.
34  *
35  * validation check: there are 664579 primes between 0 and 10^7
36  */
37 
38 #include <ctype.h>
39 #include <err.h>
40 #include <errno.h>
41 #include <limits.h>
42 #include <math.h>
43 #include <memory.h>
44 #include <stdio.h>
45 #include <stdlib.h>
46 #include <unistd.h>
47 
48 #include "primes.h"
49 
50 /*
51  * Eratosthenes sieve table
52  *
53  * We only sieve the odd numbers.  The base of our sieve windows are always
54  * odd.  If the base of table is 1, table[i] represents 2*i-1.  After the
55  * sieve, table[i] == 1 if and only iff 2*i-1 is prime.
56  *
57  * We make TABSIZE large to reduce the overhead of inner loop setup.
58  */
59 char table[TABSIZE];	 /* Eratosthenes sieve of odd numbers */
60 
61 /*
62  * prime[i] is the (i-1)th prime.
63  *
64  * We are able to sieve 2^32-1 because this byte table yields all primes
65  * up to 65537 and 65537^2 > 2^32-1.
66  */
67 extern ubig prime[];
68 extern ubig *pr_limit;		/* largest prime in the prime array */
69 
70 /*
71  * To avoid excessive sieves for small factors, we use the table below to
72  * setup our sieve blocks.  Each element represents a odd number starting
73  * with 1.  All non-zero elements are factors of 3, 5, 7, 11 and 13.
74  */
75 extern char pattern[];
76 extern int pattern_size;	/* length of pattern array */
77 
78 void	primes __P((ubig, ubig));
79 ubig	read_num_buf __P((void));
80 void	usage __P((void));
81 
82 int
83 main(argc, argv)
84 	int argc;
85 	char *argv[];
86 {
87 	ubig start;		/* where to start generating */
88 	ubig stop;		/* don't generate at or above this value */
89 	int ch;
90 	char *p;
91 
92 	while ((ch = getopt(argc, argv, "")) != EOF)
93 		switch (ch) {
94 		case '?':
95 		default:
96 			usage();
97 		}
98 	argc -= optind;
99 	argv += optind;
100 
101 	start = 0;
102 	stop = BIG;
103 
104 	/*
105 	 * Convert low and high args.  Strtoul(3) sets errno to
106 	 * ERANGE if the number is too large, but, if there's
107 	 * a leading minus sign it returns the negation of the
108 	 * result of the conversion, which we'd rather disallow.
109 	 */
110 	switch (argc) {
111 	case 2:
112 		/* Start and stop supplied on the command line. */
113 		if (argv[0][0] == '-' || argv[1][0] == '-')
114 			errx(1, "negative numbers aren't permitted.");
115 
116 		errno = 0;
117 		start = strtoul(argv[0], &p, 10);
118 		if (errno)
119 			err(1, "%s", argv[0]);
120 		if (*p != '\0')
121 			errx(1, "%s: illegal numeric format.", argv[0]);
122 
123 		errno = 0;
124 		stop = strtoul(argv[1], &p, 10);
125 		if (errno)
126 			err(1, "%s", argv[1]);
127 		if (*p != '\0')
128 			errx(1, "%s: illegal numeric format.", argv[1]);
129 		break;
130 	case 1:
131 		/* Start on the command line. */
132 		if (argv[0][0] == '-')
133 			errx(1, "negative numbers aren't permitted.");
134 
135 		errno = 0;
136 		start = strtoul(argv[0], &p, 10);
137 		if (errno)
138 			err(1, "%s", argv[0]);
139 		if (*p != '\0')
140 			errx(1, "%s: illegal numeric format.", argv[0]);
141 		break;
142 	case 0:
143 		start = read_num_buf();
144 		break;
145 	default:
146 		usage();
147 	}
148 
149 	if (start > stop)
150 		errx(1, "start value must be less than stop value.");
151 	primes(start, stop);
152 	exit(0);
153 }
154 
155 /*
156  * read_num_buf --
157  *	This routine returns a number n, where 0 <= n && n <= BIG.
158  */
159 ubig
160 read_num_buf()
161 {
162 	ubig val;
163 	char *p, buf[100];		/* > max number of digits. */
164 
165 	for (;;) {
166 		if (fgets(buf, sizeof(buf), stdin) == NULL) {
167 			if (ferror(stdin))
168 				err(1, "stdin");
169 			exit(0);
170 		}
171 		for (p = buf; isblank(*p); ++p);
172 		if (*p == '\n' || *p == '\0')
173 			continue;
174 		if (*p == '-')
175 			errx(1, "negative numbers aren't permitted.");
176 		errno = 0;
177 		val = strtoul(buf, &p, 10);
178 		if (errno)
179 			err(1, "%s", buf);
180 		if (*p != '\n')
181 			errx(1, "%s: illegal numeric format.", buf);
182 		return (val);
183 	}
184 }
185 
186 /*
187  * primes - sieve and print primes from start up to and but not including stop
188  */
189 void
190 primes(start, stop)
191 	ubig start;	/* where to start generating */
192 	ubig stop;	/* don't generate at or above this value */
193 {
194 	register char *q;		/* sieve spot */
195 	register ubig factor;		/* index and factor */
196 	register char *tab_lim;		/* the limit to sieve on the table */
197 	register ubig *p;		/* prime table pointer */
198 	register ubig fact_lim;		/* highest prime for current block */
199 
200 	/*
201 	 * A number of systems can not convert double values into unsigned
202 	 * longs when the values are larger than the largest signed value.
203 	 * We don't have this problem, so we can go all the way to BIG.
204 	 */
205 	if (start < 3) {
206 		start = (ubig)2;
207 	}
208 	if (stop < 3) {
209 		stop = (ubig)2;
210 	}
211 	if (stop <= start) {
212 		return;
213 	}
214 
215 	/*
216 	 * be sure that the values are odd, or 2
217 	 */
218 	if (start != 2 && (start&0x1) == 0) {
219 		++start;
220 	}
221 	if (stop != 2 && (stop&0x1) == 0) {
222 		++stop;
223 	}
224 
225 	/*
226 	 * quick list of primes <= pr_limit
227 	 */
228 	if (start <= *pr_limit) {
229 		/* skip primes up to the start value */
230 		for (p = &prime[0], factor = prime[0];
231 		    factor < stop && p <= pr_limit; factor = *(++p)) {
232 			if (factor >= start) {
233 				printf("%u\n", factor);
234 			}
235 		}
236 		/* return early if we are done */
237 		if (p <= pr_limit) {
238 			return;
239 		}
240 		start = *pr_limit+2;
241 	}
242 
243 	/*
244 	 * we shall sieve a bytemap window, note primes and move the window
245 	 * upward until we pass the stop point
246 	 */
247 	while (start < stop) {
248 		/*
249 		 * factor out 3, 5, 7, 11 and 13
250 		 */
251 		/* initial pattern copy */
252 		factor = (start%(2*3*5*7*11*13))/2; /* starting copy spot */
253 		memcpy(table, &pattern[factor], pattern_size-factor);
254 		/* main block pattern copies */
255 		for (fact_lim=pattern_size-factor;
256 		    fact_lim+pattern_size<=TABSIZE; fact_lim+=pattern_size) {
257 			memcpy(&table[fact_lim], pattern, pattern_size);
258 		}
259 		/* final block pattern copy */
260 		memcpy(&table[fact_lim], pattern, TABSIZE-fact_lim);
261 
262 		/*
263 		 * sieve for primes 17 and higher
264 		 */
265 		/* note highest useful factor and sieve spot */
266 		if (stop-start > TABSIZE+TABSIZE) {
267 			tab_lim = &table[TABSIZE]; /* sieve it all */
268 			fact_lim = (int)sqrt(
269 					(double)(start)+TABSIZE+TABSIZE+1.0);
270 		} else {
271 			tab_lim = &table[(stop-start)/2]; /* partial sieve */
272 			fact_lim = (int)sqrt((double)(stop)+1.0);
273 		}
274 		/* sieve for factors >= 17 */
275 		factor = 17;	/* 17 is first prime to use */
276 		p = &prime[7];	/* 19 is next prime, pi(19)=7 */
277 		do {
278 			/* determine the factor's initial sieve point */
279 			q = (char *)(start%factor); /* temp storage for mod */
280 			if ((int)q & 0x1) {
281 				q = &table[(factor-(int)q)/2];
282 			} else {
283 				q = &table[q ? factor-((int)q/2) : 0];
284 			}
285 			/* sive for our current factor */
286 			for ( ; q < tab_lim; q += factor) {
287 				*q = '\0'; /* sieve out a spot */
288 			}
289 		} while ((factor=(ubig)(*(p++))) <= fact_lim);
290 
291 		/*
292 		 * print generated primes
293 		 */
294 		for (q = table; q < tab_lim; ++q, start+=2) {
295 			if (*q) {
296 				printf("%u\n", start);
297 			}
298 		}
299 	}
300 }
301 
302 void
303 usage()
304 {
305 	(void)fprintf(stderr, "usage: primes [start [stop]]\n");
306 	exit(1);
307 }
308