xref: /original-bsd/games/primes/primes.c (revision f737e041)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Landon Curt Noll.
7  *
8  * %sccs.include.redist.c%
9  */
10 
11 #ifndef lint
12 static char copyright[] =
13 "@(#) Copyright (c) 1989, 1993\n\
14 	The Regents of the University of California.  All rights reserved.\n";
15 #endif /* not lint */
16 
17 #ifndef lint
18 static char sccsid[] = "@(#)primes.c	8.2 (Berkeley) 03/01/94";
19 #endif /* not lint */
20 
21 /*
22  * primes - generate a table of primes between two values
23  *
24  * By: Landon Curt Noll chongo@toad.com, ...!{sun,tolsoft}!hoptoad!chongo
25  *
26  * chongo <for a good prime call: 391581 * 2^216193 - 1> /\oo/\
27  *
28  * usage:
29  *	primes [start [stop]]
30  *
31  *	Print primes >= start and < stop.  If stop is omitted,
32  *	the value 4294967295 (2^32-1) is assumed.  If start is
33  *	omitted, start is read from standard input.
34  *
35  * validation check: there are 664579 primes between 0 and 10^7
36  */
37 
38 #include <err.h>
39 #include <errno.h>
40 #include <ctype.h>
41 #include <limits.h>
42 #include <math.h>
43 #include <memory.h>
44 #include <stdio.h>
45 #include <stdlib.h>
46 #include "primes.h"
47 
48 /*
49  * Eratosthenes sieve table
50  *
51  * We only sieve the odd numbers.  The base of our sieve windows are always
52  * odd.  If the base of table is 1, table[i] represents 2*i-1.  After the
53  * sieve, table[i] == 1 if and only iff 2*i-1 is prime.
54  *
55  * We make TABSIZE large to reduce the overhead of inner loop setup.
56  */
57 char table[TABSIZE];	 /* Eratosthenes sieve of odd numbers */
58 
59 /*
60  * prime[i] is the (i-1)th prime.
61  *
62  * We are able to sieve 2^32-1 because this byte table yields all primes
63  * up to 65537 and 65537^2 > 2^32-1.
64  */
65 extern ubig prime[];
66 extern ubig *pr_limit;		/* largest prime in the prime array */
67 
68 /*
69  * To avoid excessive sieves for small factors, we use the table below to
70  * setup our sieve blocks.  Each element represents a odd number starting
71  * with 1.  All non-zero elements are factors of 3, 5, 7, 11 and 13.
72  */
73 extern char pattern[];
74 extern int pattern_size;	/* length of pattern array */
75 
76 #define MAX_LINE 255		/* max line allowed on stdin */
77 
78 void	 primes __P((ubig, ubig));
79 char	*read_num_buf __P((FILE *, char *));
80 void	 usage __P((void));
81 
82 int
83 main(argc, argv)
84 	int argc;
85 	char *argv[];
86 {
87 	ubig start;		/* where to start generating */
88 	ubig stop;		/* don't generate at or above this value */
89 	int ch;
90 	char buf[MAX_LINE+1];	/* input buffer */
91 
92 	while ((ch = getopt(argc, argv, "")) != EOF)
93 		switch (ch) {
94 		case '?':
95 		default:
96 			usage();
97 		}
98 	argc -= optind;
99 	argv += optind;
100 
101 	/*
102 	 * parse args
103 	 */
104 	start = 0;
105 	stop = BIG;
106 	if (argc == 2) {
107 		/* convert low and high args */
108 		if (read_num_buf(NULL, argv[0]) == NULL)
109 			exit (1);
110 		if (sscanf(argv[0], "%lu", &start) != 1)
111 			err(1, "%s", argv[0]);
112 		if (read_num_buf(NULL, argv[1]) == NULL)
113 			exit (1);
114 		if (sscanf(argv[1], "%lu", &stop) != 1)
115 			err(1, "%s", argv[0]);
116 	} else if (argc == 1) {
117 		/* convert low arg */
118 		if (read_num_buf(NULL, argv[0]) == NULL)
119 			exit (1);
120 		if (sscanf(argv[0], "%lu", &start) != 1)
121 			err(1, "%s", argv[0]);
122 	} else {
123 		/* read input until we get a good line */
124 		if (read_num_buf(stdin, buf) == NULL)
125 			exit (1);
126 		if (sscanf(buf, "%lu", &start) != 1)
127 			err(1, "illegal value: %s", buf);
128 	}
129 	if (start > stop)
130 		errx(1, "start value > stop value");
131 	primes(start, stop);
132 	exit(0);
133 }
134 
135 /*
136  * read_num_buf - read a number buffer from a stream
137  *
138  * Read a number on a line of the form:
139  *
140  *	^[ \t]*\(+?[0-9][0-9]\)*.*$
141  *
142  * where ? is a 1-or-0 operator and the number is within \( \).
143  *
144  * If does not match the above pattern, it is ignored and a new
145  * line is read.  If the number is too large or small, we will
146  * object and read a new line.
147  *
148  * We have to be very careful on how we check the magnitude of the
149  * input.  We can not use numeric checks because of the need to
150  * check values against maximum numeric values.
151  *
152  * This routine will return a line containing a ascii number between
153  * 0 and BIG, or it will return NULL.
154  *
155  * If the stream is NULL then buf will be processed as if were
156  * a single line stream.
157  *
158  * returns:
159  *	char *	pointer to leading digit or +
160  *	NULL	EOF or error
161  */
162 char *
163 read_num_buf(input, buf)
164 	FILE *input;		/* input stream or NULL */
165 	char *buf;		/* input buffer */
166 {
167 	static char limit[MAX_LINE+1];	/* ascii value of BIG */
168 	static int limit_len;		/* digit count of limit */
169 	int len;			/* digits in input (excluding +/-) */
170 	char *s;	/* line start marker */
171 	char *d;	/* first digit, skip +/- */
172 	char *p;	/* scan pointer */
173 	char *z;	/* zero scan pointer */
174 
175 	/* form the ascii value of BIG if needed */
176 	if (!isascii(limit[0]) || !isdigit(limit[0])) {
177 		(void)sprintf(limit, "%lu", BIG);
178 		limit_len = strlen(limit);
179 	}
180 
181 	/*
182 	 * the search for a good line
183 	 */
184 	if (input != NULL && fgets(buf, MAX_LINE, input) == NULL) {
185 		/* error or EOF */
186 		return (NULL);
187 	}
188 	do {
189 
190 		/* ignore leading whitespace */
191 		for (s=buf; *s && s < buf+MAX_LINE; ++s) {
192 			if (!isascii(*s) || !isspace(*s)) {
193 				break;
194 			}
195 		}
196 
197 		/* object if - */
198 		if (*s == '-') {
199 			(void)fprintf(stderr,
200 			    "primes: numbers can't be negative.\n");
201 			continue;
202 		}
203 
204 		/* skip over any leading + */
205 		if (*s == '+') {
206 			d = s+1;
207 		} else {
208 			d = s;
209 		}
210 
211 		/* note leading zeros */
212 		for (z=d; *z && z < buf+MAX_LINE; ++z) {
213 			if (*z != '0') {
214 				break;
215 			}
216 		}
217 
218 		/* scan for the first non-digit/non-plus/non-minus */
219 		for (p=d; *p && p < buf+MAX_LINE; ++p) {
220 			if (!isascii(*p) || !isdigit(*p)) {
221 				break;
222 			}
223 		}
224 
225 		/* ignore empty lines */
226 		if (p == d) {
227 			continue;
228 		}
229 		*p = '\0';
230 
231 		/* object if too many digits */
232 		len = strlen(z);
233 		len = (len<=0) ? 1 : len;
234 		/* accept if digit count is below limit */
235 		if (len < limit_len) {
236 			/* we have good input */
237 			return (s);
238 
239 		/*
240 		 * reject very large numbers, carefully check against
241 		 * near limit numbers
242 		 */
243 		} else if (len > limit_len || strcmp(z, limit) > 0) {
244 			errno = ERANGE;
245 			warn("%s", z);
246 			continue;
247 		}
248 		/* number is near limit, but is under it */
249 		return (s);
250 	} while (input != NULL && fgets(buf, MAX_LINE, input) != NULL);
251 
252 	/* error or EOF */
253 	return (NULL);
254 }
255 
256 /*
257  * primes - sieve and print primes from start up to and but not including stop
258  */
259 void
260 primes(start, stop)
261 	ubig start;	/* where to start generating */
262 	ubig stop;	/* don't generate at or above this value */
263 {
264 	register char *q;		/* sieve spot */
265 	register ubig factor;		/* index and factor */
266 	register char *tab_lim;		/* the limit to sieve on the table */
267 	register ubig *p;		/* prime table pointer */
268 	register ubig fact_lim;		/* highest prime for current block */
269 
270 	/*
271 	 * A number of systems can not convert double values into unsigned
272 	 * longs when the values are larger than the largest signed value.
273 	 * We don't have this problem, so we can go all the way to BIG.
274 	 */
275 	if (start < 3) {
276 		start = (ubig)2;
277 	}
278 	if (stop < 3) {
279 		stop = (ubig)2;
280 	}
281 	if (stop <= start) {
282 		return;
283 	}
284 
285 	/*
286 	 * be sure that the values are odd, or 2
287 	 */
288 	if (start != 2 && (start&0x1) == 0) {
289 		++start;
290 	}
291 	if (stop != 2 && (stop&0x1) == 0) {
292 		++stop;
293 	}
294 
295 	/*
296 	 * quick list of primes <= pr_limit
297 	 */
298 	if (start <= *pr_limit) {
299 		/* skip primes up to the start value */
300 		for (p = &prime[0], factor = prime[0];
301 		    factor < stop && p <= pr_limit; factor = *(++p)) {
302 			if (factor >= start) {
303 				printf("%u\n", factor);
304 			}
305 		}
306 		/* return early if we are done */
307 		if (p <= pr_limit) {
308 			return;
309 		}
310 		start = *pr_limit+2;
311 	}
312 
313 	/*
314 	 * we shall sieve a bytemap window, note primes and move the window
315 	 * upward until we pass the stop point
316 	 */
317 	while (start < stop) {
318 		/*
319 		 * factor out 3, 5, 7, 11 and 13
320 		 */
321 		/* initial pattern copy */
322 		factor = (start%(2*3*5*7*11*13))/2; /* starting copy spot */
323 		memcpy(table, &pattern[factor], pattern_size-factor);
324 		/* main block pattern copies */
325 		for (fact_lim=pattern_size-factor;
326 		    fact_lim+pattern_size<=TABSIZE; fact_lim+=pattern_size) {
327 			memcpy(&table[fact_lim], pattern, pattern_size);
328 		}
329 		/* final block pattern copy */
330 		memcpy(&table[fact_lim], pattern, TABSIZE-fact_lim);
331 
332 		/*
333 		 * sieve for primes 17 and higher
334 		 */
335 		/* note highest useful factor and sieve spot */
336 		if (stop-start > TABSIZE+TABSIZE) {
337 			tab_lim = &table[TABSIZE]; /* sieve it all */
338 			fact_lim = (int)sqrt(
339 					(double)(start)+TABSIZE+TABSIZE+1.0);
340 		} else {
341 			tab_lim = &table[(stop-start)/2]; /* partial sieve */
342 			fact_lim = (int)sqrt((double)(stop)+1.0);
343 		}
344 		/* sieve for factors >= 17 */
345 		factor = 17;	/* 17 is first prime to use */
346 		p = &prime[7];	/* 19 is next prime, pi(19)=7 */
347 		do {
348 			/* determine the factor's initial sieve point */
349 			q = (char *)(start%factor); /* temp storage for mod */
350 			if ((int)q & 0x1) {
351 				q = &table[(factor-(int)q)/2];
352 			} else {
353 				q = &table[q ? factor-((int)q/2) : 0];
354 			}
355 			/* sive for our current factor */
356 			for ( ; q < tab_lim; q += factor) {
357 				*q = '\0'; /* sieve out a spot */
358 			}
359 		} while ((factor=(ubig)(*(p++))) <= fact_lim);
360 
361 		/*
362 		 * print generated primes
363 		 */
364 		for (q = table; q < tab_lim; ++q, start+=2) {
365 			if (*q) {
366 				printf("%u\n", start);
367 			}
368 		}
369 	}
370 }
371 
372 void
373 usage()
374 {
375 	(void)fprintf(stderr, "usage: primes [start stop]\n");
376 	exit(1);
377 }
378