xref: /original-bsd/lib/libc/db/btree/bt_split.c (revision 27393bdf)
1 /*-
2  * Copyright (c) 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Mike Olson.
7  *
8  * %sccs.include.redist.c%
9  */
10 
11 #if defined(LIBC_SCCS) && !defined(lint)
12 static char sccsid[] = "@(#)bt_split.c	8.4 (Berkeley) 01/09/95";
13 #endif /* LIBC_SCCS and not lint */
14 
15 #include <sys/types.h>
16 
17 #include <limits.h>
18 #include <stdio.h>
19 #include <stdlib.h>
20 #include <string.h>
21 
22 #include <db.h>
23 #include "btree.h"
24 
25 static int	 bt_broot __P((BTREE *, PAGE *, PAGE *, PAGE *));
26 static PAGE	*bt_page
27 		    __P((BTREE *, PAGE *, PAGE **, PAGE **, indx_t *, size_t));
28 static int	 bt_preserve __P((BTREE *, pgno_t));
29 static PAGE	*bt_psplit
30 		    __P((BTREE *, PAGE *, PAGE *, PAGE *, indx_t *, size_t));
31 static PAGE	*bt_root
32 		    __P((BTREE *, PAGE *, PAGE **, PAGE **, indx_t *, size_t));
33 static int	 bt_rroot __P((BTREE *, PAGE *, PAGE *, PAGE *));
34 static recno_t	 rec_total __P((PAGE *));
35 
36 #ifdef STATISTICS
37 u_long	bt_rootsplit, bt_split, bt_sortsplit, bt_pfxsaved;
38 #endif
39 
40 /*
41  * __BT_SPLIT -- Split the tree.
42  *
43  * Parameters:
44  *	t:	tree
45  *	sp:	page to split
46  *	key:	key to insert
47  *	data:	data to insert
48  *	flags:	BIGKEY/BIGDATA flags
49  *	ilen:	insert length
50  *	skip:	index to leave open
51  *
52  * Returns:
53  *	RET_ERROR, RET_SUCCESS
54  */
55 int
56 __bt_split(t, sp, key, data, flags, ilen, skip)
57 	BTREE *t;
58 	PAGE *sp;
59 	const DBT *key, *data;
60 	int flags;
61 	size_t ilen;
62 	indx_t skip;
63 {
64 	BINTERNAL *bi;
65 	BLEAF *bl, *tbl;
66 	DBT a, b;
67 	EPGNO *parent;
68 	PAGE *h, *l, *r, *lchild, *rchild;
69 	indx_t nxtindex;
70 	size_t n, nbytes, nksize;
71 	int parentsplit;
72 	char *dest;
73 
74 	/*
75 	 * Split the page into two pages, l and r.  The split routines return
76 	 * a pointer to the page into which the key should be inserted and with
77 	 * skip set to the offset which should be used.  Additionally, l and r
78 	 * are pinned.
79 	 */
80 	h = sp->pgno == P_ROOT ?
81 	    bt_root(t, sp, &l, &r, &skip, ilen) :
82 	    bt_page(t, sp, &l, &r, &skip, ilen);
83 	if (h == NULL)
84 		return (RET_ERROR);
85 
86 	/*
87 	 * Insert the new key/data pair into the leaf page.  (Key inserts
88 	 * always cause a leaf page to split first.)
89 	 */
90 	h->linp[skip] = h->upper -= ilen;
91 	dest = (char *)h + h->upper;
92 	if (ISSET(t, R_RECNO))
93 		WR_RLEAF(dest, data, flags)
94 	else
95 		WR_BLEAF(dest, key, data, flags)
96 
97 	/* If the root page was split, make it look right. */
98 	if (sp->pgno == P_ROOT &&
99 	    (ISSET(t, R_RECNO) ?
100 	    bt_rroot(t, sp, l, r) : bt_broot(t, sp, l, r)) == RET_ERROR)
101 		goto err2;
102 
103 	/*
104 	 * Now we walk the parent page stack -- a LIFO stack of the pages that
105 	 * were traversed when we searched for the page that split.  Each stack
106 	 * entry is a page number and a page index offset.  The offset is for
107 	 * the page traversed on the search.  We've just split a page, so we
108 	 * have to insert a new key into the parent page.
109 	 *
110 	 * If the insert into the parent page causes it to split, may have to
111 	 * continue splitting all the way up the tree.  We stop if the root
112 	 * splits or the page inserted into didn't have to split to hold the
113 	 * new key.  Some algorithms replace the key for the old page as well
114 	 * as the new page.  We don't, as there's no reason to believe that the
115 	 * first key on the old page is any better than the key we have, and,
116 	 * in the case of a key being placed at index 0 causing the split, the
117 	 * key is unavailable.
118 	 *
119 	 * There are a maximum of 5 pages pinned at any time.  We keep the left
120 	 * and right pages pinned while working on the parent.   The 5 are the
121 	 * two children, left parent and right parent (when the parent splits)
122 	 * and the root page or the overflow key page when calling bt_preserve.
123 	 * This code must make sure that all pins are released other than the
124 	 * root page or overflow page which is unlocked elsewhere.
125 	 */
126 	while ((parent = BT_POP(t)) != NULL) {
127 		lchild = l;
128 		rchild = r;
129 
130 		/* Get the parent page. */
131 		if ((h = mpool_get(t->bt_mp, parent->pgno, 0)) == NULL)
132 			goto err2;
133 
134 	 	/*
135 		 * The new key goes ONE AFTER the index, because the split
136 		 * was to the right.
137 		 */
138 		skip = parent->index + 1;
139 
140 		/*
141 		 * Calculate the space needed on the parent page.
142 		 *
143 		 * Prefix trees: space hack when inserting into BINTERNAL
144 		 * pages.  Retain only what's needed to distinguish between
145 		 * the new entry and the LAST entry on the page to its left.
146 		 * If the keys compare equal, retain the entire key.  Note,
147 		 * we don't touch overflow keys, and the entire key must be
148 		 * retained for the next-to-left most key on the leftmost
149 		 * page of each level, or the search will fail.  Applicable
150 		 * ONLY to internal pages that have leaf pages as children.
151 		 * Further reduction of the key between pairs of internal
152 		 * pages loses too much information.
153 		 */
154 		switch (rchild->flags & P_TYPE) {
155 		case P_BINTERNAL:
156 			bi = GETBINTERNAL(rchild, 0);
157 			nbytes = NBINTERNAL(bi->ksize);
158 			break;
159 		case P_BLEAF:
160 			bl = GETBLEAF(rchild, 0);
161 			nbytes = NBINTERNAL(bl->ksize);
162 			if (t->bt_pfx && !(bl->flags & P_BIGKEY) &&
163 			    (h->prevpg != P_INVALID || skip > 1)) {
164 				tbl = GETBLEAF(lchild, NEXTINDEX(lchild) - 1);
165 				a.size = tbl->ksize;
166 				a.data = tbl->bytes;
167 				b.size = bl->ksize;
168 				b.data = bl->bytes;
169 				nksize = t->bt_pfx(&a, &b);
170 				n = NBINTERNAL(nksize);
171 				if (n < nbytes) {
172 #ifdef STATISTICS
173 					bt_pfxsaved += nbytes - n;
174 #endif
175 					nbytes = n;
176 				} else
177 					nksize = 0;
178 			} else
179 				nksize = 0;
180 			break;
181 		case P_RINTERNAL:
182 		case P_RLEAF:
183 			nbytes = NRINTERNAL;
184 			break;
185 		default:
186 			abort();
187 		}
188 
189 		/* Split the parent page if necessary or shift the indices. */
190 		if (h->upper - h->lower < nbytes + sizeof(indx_t)) {
191 			sp = h;
192 			h = h->pgno == P_ROOT ?
193 			    bt_root(t, h, &l, &r, &skip, nbytes) :
194 			    bt_page(t, h, &l, &r, &skip, nbytes);
195 			if (h == NULL)
196 				goto err1;
197 			parentsplit = 1;
198 		} else {
199 			if (skip < (nxtindex = NEXTINDEX(h)))
200 				memmove(h->linp + skip + 1, h->linp + skip,
201 				    (nxtindex - skip) * sizeof(indx_t));
202 			h->lower += sizeof(indx_t);
203 			parentsplit = 0;
204 		}
205 
206 		/* Insert the key into the parent page. */
207 		switch(rchild->flags & P_TYPE) {
208 		case P_BINTERNAL:
209 			h->linp[skip] = h->upper -= nbytes;
210 			dest = (char *)h + h->linp[skip];
211 			memmove(dest, bi, nbytes);
212 			((BINTERNAL *)dest)->pgno = rchild->pgno;
213 			break;
214 		case P_BLEAF:
215 			h->linp[skip] = h->upper -= nbytes;
216 			dest = (char *)h + h->linp[skip];
217 			WR_BINTERNAL(dest, nksize ? nksize : bl->ksize,
218 			    rchild->pgno, bl->flags & P_BIGKEY);
219 			memmove(dest, bl->bytes, nksize ? nksize : bl->ksize);
220 			if (bl->flags & P_BIGKEY &&
221 			    bt_preserve(t, *(pgno_t *)bl->bytes) == RET_ERROR)
222 				goto err1;
223 			break;
224 		case P_RINTERNAL:
225 			/*
226 			 * Update the left page count.  If split
227 			 * added at index 0, fix the correct page.
228 			 */
229 			if (skip > 0)
230 				dest = (char *)h + h->linp[skip - 1];
231 			else
232 				dest = (char *)l + l->linp[NEXTINDEX(l) - 1];
233 			((RINTERNAL *)dest)->nrecs = rec_total(lchild);
234 			((RINTERNAL *)dest)->pgno = lchild->pgno;
235 
236 			/* Update the right page count. */
237 			h->linp[skip] = h->upper -= nbytes;
238 			dest = (char *)h + h->linp[skip];
239 			((RINTERNAL *)dest)->nrecs = rec_total(rchild);
240 			((RINTERNAL *)dest)->pgno = rchild->pgno;
241 			break;
242 		case P_RLEAF:
243 			/*
244 			 * Update the left page count.  If split
245 			 * added at index 0, fix the correct page.
246 			 */
247 			if (skip > 0)
248 				dest = (char *)h + h->linp[skip - 1];
249 			else
250 				dest = (char *)l + l->linp[NEXTINDEX(l) - 1];
251 			((RINTERNAL *)dest)->nrecs = NEXTINDEX(lchild);
252 			((RINTERNAL *)dest)->pgno = lchild->pgno;
253 
254 			/* Update the right page count. */
255 			h->linp[skip] = h->upper -= nbytes;
256 			dest = (char *)h + h->linp[skip];
257 			((RINTERNAL *)dest)->nrecs = NEXTINDEX(rchild);
258 			((RINTERNAL *)dest)->pgno = rchild->pgno;
259 			break;
260 		default:
261 			abort();
262 		}
263 
264 		/* Unpin the held pages. */
265 		if (!parentsplit) {
266 			mpool_put(t->bt_mp, h, MPOOL_DIRTY);
267 			break;
268 		}
269 
270 		/* If the root page was split, make it look right. */
271 		if (sp->pgno == P_ROOT &&
272 		    (ISSET(t, R_RECNO) ?
273 		    bt_rroot(t, sp, l, r) : bt_broot(t, sp, l, r)) == RET_ERROR)
274 			goto err1;
275 
276 		mpool_put(t->bt_mp, lchild, MPOOL_DIRTY);
277 		mpool_put(t->bt_mp, rchild, MPOOL_DIRTY);
278 	}
279 
280 	/* Unpin the held pages. */
281 	mpool_put(t->bt_mp, l, MPOOL_DIRTY);
282 	mpool_put(t->bt_mp, r, MPOOL_DIRTY);
283 
284 	/* Clear any pages left on the stack. */
285 	return (RET_SUCCESS);
286 
287 	/*
288 	 * If something fails in the above loop we were already walking back
289 	 * up the tree and the tree is now inconsistent.  Nothing much we can
290 	 * do about it but release any memory we're holding.
291 	 */
292 err1:	mpool_put(t->bt_mp, lchild, MPOOL_DIRTY);
293 	mpool_put(t->bt_mp, rchild, MPOOL_DIRTY);
294 
295 err2:	mpool_put(t->bt_mp, l, 0);
296 	mpool_put(t->bt_mp, r, 0);
297 	__dbpanic(t->bt_dbp);
298 	return (RET_ERROR);
299 }
300 
301 /*
302  * BT_PAGE -- Split a non-root page of a btree.
303  *
304  * Parameters:
305  *	t:	tree
306  *	h:	root page
307  *	lp:	pointer to left page pointer
308  *	rp:	pointer to right page pointer
309  *	skip:	pointer to index to leave open
310  *	ilen:	insert length
311  *
312  * Returns:
313  *	Pointer to page in which to insert or NULL on error.
314  */
315 static PAGE *
316 bt_page(t, h, lp, rp, skip, ilen)
317 	BTREE *t;
318 	PAGE *h, **lp, **rp;
319 	indx_t *skip;
320 	size_t ilen;
321 {
322 	PAGE *l, *r, *tp;
323 	pgno_t npg;
324 
325 #ifdef STATISTICS
326 	++bt_split;
327 #endif
328 	/* Put the new right page for the split into place. */
329 	if ((r = __bt_new(t, &npg)) == NULL)
330 		return (NULL);
331 	r->pgno = npg;
332 	r->lower = BTDATAOFF;
333 	r->upper = t->bt_psize;
334 	r->nextpg = h->nextpg;
335 	r->prevpg = h->pgno;
336 	r->flags = h->flags & P_TYPE;
337 
338 	/*
339 	 * If we're splitting the last page on a level because we're appending
340 	 * a key to it (skip is NEXTINDEX()), it's likely that the data is
341 	 * sorted.  Adding an empty page on the side of the level is less work
342 	 * and can push the fill factor much higher than normal.  If we're
343 	 * wrong it's no big deal, we'll just do the split the right way next
344 	 * time.  It may look like it's equally easy to do a similar hack for
345 	 * reverse sorted data, that is, split the tree left, but it's not.
346 	 * Don't even try.
347 	 */
348 	if (h->nextpg == P_INVALID && *skip == NEXTINDEX(h)) {
349 #ifdef STATISTICS
350 		++bt_sortsplit;
351 #endif
352 		h->nextpg = r->pgno;
353 		r->lower = BTDATAOFF + sizeof(indx_t);
354 		*skip = 0;
355 		*lp = h;
356 		*rp = r;
357 		return (r);
358 	}
359 
360 	/* Put the new left page for the split into place. */
361 	if ((l = (PAGE *)malloc(t->bt_psize)) == NULL) {
362 		mpool_put(t->bt_mp, r, 0);
363 		return (NULL);
364 	}
365 	l->pgno = h->pgno;
366 	l->nextpg = r->pgno;
367 	l->prevpg = h->prevpg;
368 	l->lower = BTDATAOFF;
369 	l->upper = t->bt_psize;
370 	l->flags = h->flags & P_TYPE;
371 
372 	/* Fix up the previous pointer of the page after the split page. */
373 	if (h->nextpg != P_INVALID) {
374 		if ((tp = mpool_get(t->bt_mp, h->nextpg, 0)) == NULL) {
375 			free(l);
376 			/* XXX mpool_free(t->bt_mp, r->pgno); */
377 			return (NULL);
378 		}
379 		tp->prevpg = r->pgno;
380 		mpool_put(t->bt_mp, tp, 0);
381 	}
382 
383 	/*
384 	 * Split right.  The key/data pairs aren't sorted in the btree page so
385 	 * it's simpler to copy the data from the split page onto two new pages
386 	 * instead of copying half the data to the right page and compacting
387 	 * the left page in place.  Since the left page can't change, we have
388 	 * to swap the original and the allocated left page after the split.
389 	 */
390 	tp = bt_psplit(t, h, l, r, skip, ilen);
391 
392 	/* Move the new left page onto the old left page. */
393 	memmove(h, l, t->bt_psize);
394 	if (tp == l)
395 		tp = h;
396 	free(l);
397 
398 	*lp = h;
399 	*rp = r;
400 	return (tp);
401 }
402 
403 /*
404  * BT_ROOT -- Split the root page of a btree.
405  *
406  * Parameters:
407  *	t:	tree
408  *	h:	root page
409  *	lp:	pointer to left page pointer
410  *	rp:	pointer to right page pointer
411  *	skip:	pointer to index to leave open
412  *	ilen:	insert length
413  *
414  * Returns:
415  *	Pointer to page in which to insert or NULL on error.
416  */
417 static PAGE *
418 bt_root(t, h, lp, rp, skip, ilen)
419 	BTREE *t;
420 	PAGE *h, **lp, **rp;
421 	indx_t *skip;
422 	size_t ilen;
423 {
424 	PAGE *l, *r, *tp;
425 	pgno_t lnpg, rnpg;
426 
427 #ifdef STATISTICS
428 	++bt_split;
429 	++bt_rootsplit;
430 #endif
431 	/* Put the new left and right pages for the split into place. */
432 	if ((l = __bt_new(t, &lnpg)) == NULL ||
433 	    (r = __bt_new(t, &rnpg)) == NULL)
434 		return (NULL);
435 	l->pgno = lnpg;
436 	r->pgno = rnpg;
437 	l->nextpg = r->pgno;
438 	r->prevpg = l->pgno;
439 	l->prevpg = r->nextpg = P_INVALID;
440 	l->lower = r->lower = BTDATAOFF;
441 	l->upper = r->upper = t->bt_psize;
442 	l->flags = r->flags = h->flags & P_TYPE;
443 
444 	/* Split the root page. */
445 	tp = bt_psplit(t, h, l, r, skip, ilen);
446 
447 	*lp = l;
448 	*rp = r;
449 	return (tp);
450 }
451 
452 /*
453  * BT_RROOT -- Fix up the recno root page after it has been split.
454  *
455  * Parameters:
456  *	t:	tree
457  *	h:	root page
458  *	l:	left page
459  *	r:	right page
460  *
461  * Returns:
462  *	RET_ERROR, RET_SUCCESS
463  */
464 static int
465 bt_rroot(t, h, l, r)
466 	BTREE *t;
467 	PAGE *h, *l, *r;
468 {
469 	char *dest;
470 
471 	/* Insert the left and right keys, set the header information. */
472 	h->linp[0] = h->upper = t->bt_psize - NRINTERNAL;
473 	dest = (char *)h + h->upper;
474 	WR_RINTERNAL(dest,
475 	    l->flags & P_RLEAF ? NEXTINDEX(l) : rec_total(l), l->pgno);
476 
477 	h->linp[1] = h->upper -= NRINTERNAL;
478 	dest = (char *)h + h->upper;
479 	WR_RINTERNAL(dest,
480 	    r->flags & P_RLEAF ? NEXTINDEX(r) : rec_total(r), r->pgno);
481 
482 	h->lower = BTDATAOFF + 2 * sizeof(indx_t);
483 
484 	/* Unpin the root page, set to recno internal page. */
485 	h->flags &= ~P_TYPE;
486 	h->flags |= P_RINTERNAL;
487 	mpool_put(t->bt_mp, h, MPOOL_DIRTY);
488 
489 	return (RET_SUCCESS);
490 }
491 
492 /*
493  * BT_BROOT -- Fix up the btree root page after it has been split.
494  *
495  * Parameters:
496  *	t:	tree
497  *	h:	root page
498  *	l:	left page
499  *	r:	right page
500  *
501  * Returns:
502  *	RET_ERROR, RET_SUCCESS
503  */
504 static int
505 bt_broot(t, h, l, r)
506 	BTREE *t;
507 	PAGE *h, *l, *r;
508 {
509 	BINTERNAL *bi;
510 	BLEAF *bl;
511 	size_t nbytes;
512 	char *dest;
513 
514 	/*
515 	 * If the root page was a leaf page, change it into an internal page.
516 	 * We copy the key we split on (but not the key's data, in the case of
517 	 * a leaf page) to the new root page.
518 	 *
519 	 * The btree comparison code guarantees that the left-most key on any
520 	 * level of the tree is never used, so it doesn't need to be filled in.
521 	 */
522 	nbytes = NBINTERNAL(0);
523 	h->linp[0] = h->upper = t->bt_psize - nbytes;
524 	dest = (char *)h + h->upper;
525 	WR_BINTERNAL(dest, 0, l->pgno, 0);
526 
527 	switch(h->flags & P_TYPE) {
528 	case P_BLEAF:
529 		bl = GETBLEAF(r, 0);
530 		nbytes = NBINTERNAL(bl->ksize);
531 		h->linp[1] = h->upper -= nbytes;
532 		dest = (char *)h + h->upper;
533 		WR_BINTERNAL(dest, bl->ksize, r->pgno, 0);
534 		memmove(dest, bl->bytes, bl->ksize);
535 
536 		/*
537 		 * If the key is on an overflow page, mark the overflow chain
538 		 * so it isn't deleted when the leaf copy of the key is deleted.
539 		 */
540 		if (bl->flags & P_BIGKEY &&
541 		    bt_preserve(t, *(pgno_t *)bl->bytes) == RET_ERROR)
542 			return (RET_ERROR);
543 		break;
544 	case P_BINTERNAL:
545 		bi = GETBINTERNAL(r, 0);
546 		nbytes = NBINTERNAL(bi->ksize);
547 		h->linp[1] = h->upper -= nbytes;
548 		dest = (char *)h + h->upper;
549 		memmove(dest, bi, nbytes);
550 		((BINTERNAL *)dest)->pgno = r->pgno;
551 		break;
552 	default:
553 		abort();
554 	}
555 
556 	/* There are two keys on the page. */
557 	h->lower = BTDATAOFF + 2 * sizeof(indx_t);
558 
559 	/* Unpin the root page, set to btree internal page. */
560 	h->flags &= ~P_TYPE;
561 	h->flags |= P_BINTERNAL;
562 	mpool_put(t->bt_mp, h, MPOOL_DIRTY);
563 
564 	return (RET_SUCCESS);
565 }
566 
567 /*
568  * BT_PSPLIT -- Do the real work of splitting the page.
569  *
570  * Parameters:
571  *	t:	tree
572  *	h:	page to be split
573  *	l:	page to put lower half of data
574  *	r:	page to put upper half of data
575  *	pskip:	pointer to index to leave open
576  *	ilen:	insert length
577  *
578  * Returns:
579  *	Pointer to page in which to insert.
580  */
581 static PAGE *
582 bt_psplit(t, h, l, r, pskip, ilen)
583 	BTREE *t;
584 	PAGE *h, *l, *r;
585 	indx_t *pskip;
586 	size_t ilen;
587 {
588 	BINTERNAL *bi;
589 	BLEAF *bl;
590 	RLEAF *rl;
591 	EPGNO *c;
592 	PAGE *rval;
593 	void *src;
594 	indx_t full, half, nxt, off, skip, top, used;
595 	size_t nbytes;
596 	int bigkeycnt, isbigkey;
597 
598 	/*
599 	 * Split the data to the left and right pages.  Leave the skip index
600 	 * open.  Additionally, make some effort not to split on an overflow
601 	 * key.  This makes internal page processing faster and can save
602 	 * space as overflow keys used by internal pages are never deleted.
603 	 */
604 	bigkeycnt = 0;
605 	skip = *pskip;
606 	full = t->bt_psize - BTDATAOFF;
607 	half = full / 2;
608 	used = 0;
609 	for (nxt = off = 0, top = NEXTINDEX(h); nxt < top; ++off) {
610 		if (skip == off) {
611 			nbytes = ilen;
612 			isbigkey = 0;		/* XXX: not really known. */
613 		} else
614 			switch (h->flags & P_TYPE) {
615 			case P_BINTERNAL:
616 				src = bi = GETBINTERNAL(h, nxt);
617 				nbytes = NBINTERNAL(bi->ksize);
618 				isbigkey = bi->flags & P_BIGKEY;
619 				break;
620 			case P_BLEAF:
621 				src = bl = GETBLEAF(h, nxt);
622 				nbytes = NBLEAF(bl);
623 				isbigkey = bl->flags & P_BIGKEY;
624 				break;
625 			case P_RINTERNAL:
626 				src = GETRINTERNAL(h, nxt);
627 				nbytes = NRINTERNAL;
628 				isbigkey = 0;
629 				break;
630 			case P_RLEAF:
631 				src = rl = GETRLEAF(h, nxt);
632 				nbytes = NRLEAF(rl);
633 				isbigkey = 0;
634 				break;
635 			default:
636 				abort();
637 			}
638 
639 		/*
640 		 * If the key/data pairs are substantial fractions of the max
641 		 * possible size for the page, it's possible to get situations
642 		 * where we decide to try and copy too much onto the left page.
643 		 * Make sure that doesn't happen.
644 		 */
645 		if (skip <= off && used + nbytes >= full || nxt == top - 1) {
646 			--off;
647 			break;
648 		}
649 
650 		/* Copy the key/data pair, if not the skipped index. */
651 		if (skip != off) {
652 			++nxt;
653 
654 			l->linp[off] = l->upper -= nbytes;
655 			memmove((char *)l + l->upper, src, nbytes);
656 		}
657 
658 		used += nbytes;
659 		if (used >= half) {
660 			if (!isbigkey || bigkeycnt == 3)
661 				break;
662 			else
663 				++bigkeycnt;
664 		}
665 	}
666 
667 	/*
668 	 * Off is the last offset that's valid for the left page.
669 	 * Nxt is the first offset to be placed on the right page.
670 	 */
671 	l->lower += (off + 1) * sizeof(indx_t);
672 
673 	/*
674 	 * If splitting the page that the cursor was on, the cursor has to be
675 	 * adjusted to point to the same record as before the split.  If the
676 	 * cursor is at or past the skipped slot, the cursor is incremented by
677 	 * one.  If the cursor is on the right page, it is decremented by the
678 	 * number of records split to the left page.
679 	 *
680 	 * Don't bother checking for the B_SEQINIT flag, the page number will
681 	 * be P_INVALID.
682 	 */
683 	c = &t->bt_bcursor;
684 	if (c->pgno == h->pgno) {
685 		if (c->index >= skip)
686 			++c->index;
687 		if (c->index < nxt)			/* Left page. */
688 			c->pgno = l->pgno;
689 		else {					/* Right page. */
690 			c->pgno = r->pgno;
691 			c->index -= nxt;
692 		}
693 	}
694 
695 	/*
696 	 * If the skipped index was on the left page, just return that page.
697 	 * Otherwise, adjust the skip index to reflect the new position on
698 	 * the right page.
699 	 */
700 	if (skip <= off) {
701 		skip = 0;
702 		rval = l;
703 	} else {
704 		rval = r;
705 		*pskip -= nxt;
706 	}
707 
708 	for (off = 0; nxt < top; ++off) {
709 		if (skip == nxt) {
710 			++off;
711 			skip = 0;
712 		}
713 		switch (h->flags & P_TYPE) {
714 		case P_BINTERNAL:
715 			src = bi = GETBINTERNAL(h, nxt);
716 			nbytes = NBINTERNAL(bi->ksize);
717 			break;
718 		case P_BLEAF:
719 			src = bl = GETBLEAF(h, nxt);
720 			nbytes = NBLEAF(bl);
721 			break;
722 		case P_RINTERNAL:
723 			src = GETRINTERNAL(h, nxt);
724 			nbytes = NRINTERNAL;
725 			break;
726 		case P_RLEAF:
727 			src = rl = GETRLEAF(h, nxt);
728 			nbytes = NRLEAF(rl);
729 			break;
730 		default:
731 			abort();
732 		}
733 		++nxt;
734 		r->linp[off] = r->upper -= nbytes;
735 		memmove((char *)r + r->upper, src, nbytes);
736 	}
737 	r->lower += off * sizeof(indx_t);
738 
739 	/* If the key is being appended to the page, adjust the index. */
740 	if (skip == top)
741 		r->lower += sizeof(indx_t);
742 
743 	return (rval);
744 }
745 
746 /*
747  * BT_PRESERVE -- Mark a chain of pages as used by an internal node.
748  *
749  * Chains of indirect blocks pointed to by leaf nodes get reclaimed when the
750  * record that references them gets deleted.  Chains pointed to by internal
751  * pages never get deleted.  This routine marks a chain as pointed to by an
752  * internal page.
753  *
754  * Parameters:
755  *	t:	tree
756  *	pg:	page number of first page in the chain.
757  *
758  * Returns:
759  *	RET_SUCCESS, RET_ERROR.
760  */
761 static int
762 bt_preserve(t, pg)
763 	BTREE *t;
764 	pgno_t pg;
765 {
766 	PAGE *h;
767 
768 	if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
769 		return (RET_ERROR);
770 	h->flags |= P_PRESERVE;
771 	mpool_put(t->bt_mp, h, MPOOL_DIRTY);
772 	return (RET_SUCCESS);
773 }
774 
775 /*
776  * REC_TOTAL -- Return the number of recno entries below a page.
777  *
778  * Parameters:
779  *	h:	page
780  *
781  * Returns:
782  *	The number of recno entries below a page.
783  *
784  * XXX
785  * These values could be set by the bt_psplit routine.  The problem is that the
786  * entry has to be popped off of the stack etc. or the values have to be passed
787  * all the way back to bt_split/bt_rroot and it's not very clean.
788  */
789 static recno_t
790 rec_total(h)
791 	PAGE *h;
792 {
793 	recno_t recs;
794 	indx_t nxt, top;
795 
796 	for (recs = 0, nxt = 0, top = NEXTINDEX(h); nxt < top; ++nxt)
797 		recs += GETRINTERNAL(h, nxt)->nrecs;
798 	return (recs);
799 }
800