xref: /original-bsd/lib/libc/db/btree/bt_split.c (revision fe531de5)
1 /*-
2  * Copyright (c) 1990 The Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Mike Olson.
7  *
8  * %sccs.include.redist.c%
9  */
10 
11 #if defined(LIBC_SCCS) && !defined(lint)
12 static char sccsid[] = "@(#)bt_split.c	5.3 (Berkeley) 09/04/91";
13 #endif /* LIBC_SCCS and not lint */
14 
15 #include <sys/types.h>
16 #define	__DBINTERFACE_PRIVATE
17 #include <db.h>
18 #include <limits.h>
19 #include <stdio.h>
20 #include <stdlib.h>
21 #include <string.h>
22 #include "btree.h"
23 
24 static int	 bt_preserve __P((BTREE *, pgno_t));
25 static PAGE	*bt_psplit __P((BTREE *, PAGE *, PAGE *, PAGE *, int *));
26 static PAGE	*bt_page __P((BTREE *, PAGE *, PAGE **, PAGE **, int *));
27 static PAGE	*bt_root __P((BTREE *, PAGE *, PAGE **, PAGE **, int *));
28 static int	 bt_rroot __P((BTREE *, PAGE *, PAGE *, PAGE *));
29 static int	 bt_broot __P((BTREE *, PAGE *, PAGE *, PAGE *));
30 static recno_t	 rec_total __P((PAGE *));
31 
32 #ifdef STATISTICS
33 u_long	bt_rootsplit, bt_split, bt_sortsplit, bt_pfxsaved;
34 #endif
35 
36 /*
37  * __BT_SPLIT -- Split the tree.
38  *
39  * Parameters:
40  *	t:	tree
41  *	h:	page to split
42  *	key:	key to insert
43  *	data:	data to insert
44  *	flags:	BIGKEY/BIGDATA flags
45  *	nbytes:	length of insertion
46  *	skip:	index to leave open
47  *
48  * Returns:
49  *	RET_ERROR, RET_SUCCESS
50  */
51 int
52 __bt_split(t, h, key, data, flags, nbytes, skip)
53 	BTREE *t;
54 	PAGE *h;
55 	const DBT *key, *data;
56 	u_long flags;
57 	size_t nbytes;
58 	int skip;
59 {
60 	BINTERNAL *bi;
61 	BLEAF *bl;
62 	DBT a, b;
63 	EPGNO *parent;
64 	PAGE *l, *r, *lchild, *rchild;
65 	index_t nxtindex;
66 	size_t nksize;
67 	int nosplit;
68 	char *dest;
69 
70 	/*
71 	 * Split the page into two pages, l and r.  The split routines return
72 	 * a pointer to the page into which the key should be inserted and skip
73 	 * set to the offset which should be used.  Additionally, l and r are
74 	 * pinned.
75 	 */
76 	h = h->pgno == P_ROOT ?
77 	    bt_root(t, h, &l, &r, &skip) : bt_page(t, h, &l, &r, &skip);
78 	if (h == NULL)
79 		return (RET_ERROR);
80 
81 	/*
82 	 * Grab the space and insert the [rb]leaf structure.  Always a [rb]leaf
83 	 * structure since key inserts always cause a leaf page to split first.
84 	 */
85 	h->linp[skip] = h->upper -= nbytes;
86 	dest = (char *)h + h->upper;
87 	if (ISSET(t, BTF_RECNO)) {
88 		WR_RLEAF(dest, data, flags)
89 		++t->bt_nrecs;
90 		SET(t, BTF_METADIRTY | BTF_MODIFIED);
91 	} else {
92 		WR_BLEAF(dest, key, data, flags)
93 		SET(t, BTF_MODIFIED);
94 	}
95 
96 	/*
97 	 * Now we walk the parent page stack -- a LIFO stack of the pages that
98 	 * were traversed when we searched for the page that split.  Each stack
99 	 * entry is a page number and a page index offset.  The offset is for
100 	 * the page traversed on the search.  We've just split a page, so we
101 	 * have to insert a new key into the parent page.
102 	 *
103 	 * If the insert into the parent page causes it to split, may have to
104 	 * continue splitting all the way up the tree.  We stop if the root
105 	 * splits or the page inserted into didn't have to split to hold the
106 	 * new key.  Some algorithms replace the key for the old page as well
107 	 * as the new page.  We don't, as there's no reason to believe that the
108 	 * first key on the old page is any better than the key we have, and,
109 	 * in the case of a key being placed at index 0 causing the split, the
110 	 * key is unavailable.
111 	 *
112 	 * There are a maximum of 5 pages pinned at any time.  We keep the left
113 	 * and right pages pinned while working on the parent.   The 5 are the
114 	 * two children, left parent and right parent (when the parent splits)
115 	 * and the root page or the overflow key page when calling bt_preserve.
116 	 * This code must make sure that all pins are released other than the
117 	 * root page or overflow page which is unlocked elsewhere.
118 	 */
119 	for (nosplit = 0; (parent = BT_POP(t)) != NULL;) {
120 		lchild = l;
121 		rchild = r;
122 
123 		/* Get the parent page. */
124 		if ((h = mpool_get(t->bt_mp, parent->pgno, 0)) == NULL)
125 			goto err2;
126 
127 	 	/* The new key goes ONE AFTER the index. */
128 		skip = parent->index + 1;
129 
130 		/*
131 		 * Calculate the space needed on the parent page.
132 		 *
133 		 * Space hack when insertin into BINTERNAL pages.  Only need to
134 		 * retain the number of bytes that will distinguish between the
135 		 * new entry and the LAST entry on the page to its left.  If
136 		 * the keys compare equal, only need to retain one byte as a
137 		 * placeholder.  Special cases are that the entire key must be
138 		 * retained for the next-to-leftmost key on the leftmost page
139 		 * of each level, or the search will fail, and can't mess with
140 		 * overflow keys.
141 		 */
142 		switch (rchild->flags & P_TYPE) {
143 		case P_BINTERNAL:
144 			bi = GETBINTERNAL(rchild, 0);
145 			nbytes = NBINTERNAL(bi->ksize);
146 			if (t->bt_pfx && (h->prevpg != P_INVALID || skip > 1) &&
147 			    !(bi->flags & P_BIGKEY)) {
148 				BINTERNAL *tbi;
149 				tbi =
150 				    GETBINTERNAL(lchild, NEXTINDEX(lchild) - 1);
151 				a.size = tbi->ksize;
152 				a.data = tbi->bytes;
153 				b.size = bi->ksize;
154 				b.data = bi->bytes;
155 				goto prefix;
156 			}
157 			break;
158 		case P_BLEAF:
159 			bl = GETBLEAF(rchild, 0);
160 			nbytes = NBLEAF(bl);
161 			if (t->bt_pfx && (h->prevpg != P_INVALID || skip > 1) &&
162 			    !(bl->flags & P_BIGKEY)) {
163 				BLEAF *tbl;
164 				size_t n;
165 
166 				tbl = GETBLEAF(lchild, NEXTINDEX(lchild) - 1);
167 				a.size = tbl->ksize;
168 				a.data = tbl->bytes;
169 				b.size = bl->ksize;
170 				b.data = bl->bytes;
171 prefix:				nksize = t->bt_pfx(&a, &b);
172 				n = NBINTERNAL(nksize);
173 				if (n < nbytes) {
174 #ifdef STATISTICS
175 					bt_pfxsaved += nbytes - n;
176 #endif
177 					nbytes = n;
178 				} else
179 					nksize = 0;
180 			} else
181 				nksize = 0;
182 			break;
183 		case P_RINTERNAL:
184 		case P_RLEAF:
185 			nbytes = NRINTERNAL;
186 			break;
187 		}
188 
189 		/* Split the parent page if necessary or shift the indices. */
190 		if (h->upper - h->lower < nbytes + sizeof(index_t)) {
191 			h = h->pgno == P_ROOT ?
192 			    bt_root(t, h, &l, &r, &skip) :
193 			    bt_page(t, h, &l, &r, &skip);
194 			if (h == NULL)
195 				goto err1;
196 		} else {
197 			if (skip < (nxtindex = NEXTINDEX(h)))
198 				bcopy(h->linp + skip, h->linp + skip + 1,
199 				    (nxtindex - skip) * sizeof(index_t));
200 			h->lower += sizeof(index_t);
201 			nosplit = 1;
202 		}
203 
204 		/* Insert the key into the parent page. */
205 		switch(rchild->flags & P_TYPE) {
206 		case P_BINTERNAL:
207 			h->linp[skip] = h->upper -= nbytes;
208 			dest = (char *)h + h->linp[skip];
209 			bcopy(bi, dest, nbytes);
210 			if (nksize)
211 				((BINTERNAL *)dest)->ksize = nksize;
212 			((BINTERNAL *)dest)->pgno = rchild->pgno;
213 			break;
214 		case P_BLEAF:
215 			h->linp[skip] = h->upper -= nbytes;
216 			dest = (char *)h + h->linp[skip];
217 			WR_BINTERNAL(dest, nksize ? nksize : bl->ksize,
218 			    rchild->pgno, rchild->flags & P_OVERFLOW);
219 			bcopy(bl->bytes, dest, nksize ? nksize : bl->ksize);
220 			if (bl->flags & P_BIGKEY &&
221 			    bt_preserve(t, *(pgno_t *)bl->bytes) == RET_ERROR)
222 				goto err1;
223 			break;
224 		case P_RINTERNAL:
225 			/* Update both left and right page counts. */
226 			h->linp[skip] = h->upper -= nbytes;
227 			dest = (char *)h + h->linp[skip];
228 			((RINTERNAL *)dest)->nrecs = rec_total(rchild);
229 			((RINTERNAL *)dest)->pgno = rchild->pgno;
230 			dest = (char *)h + h->linp[skip - 1];
231 			((RINTERNAL *)dest)->nrecs = rec_total(lchild);
232 			((RINTERNAL *)dest)->pgno = lchild->pgno;
233 			break;
234 		case P_RLEAF:
235 			/* Update both left and right page counts. */
236 			h->linp[skip] = h->upper -= nbytes;
237 			dest = (char *)h + h->linp[skip];
238 			((RINTERNAL *)dest)->nrecs = NEXTINDEX(rchild);
239 			((RINTERNAL *)dest)->pgno = rchild->pgno;
240 			dest = (char *)h + h->linp[skip - 1];
241 			((RINTERNAL *)dest)->nrecs = NEXTINDEX(lchild);
242 			((RINTERNAL *)dest)->pgno = lchild->pgno;
243 			break;
244 		}
245 
246 		/* Unpin the held pages. */
247 		if (nosplit) {
248 			mpool_put(t->bt_mp, h, MPOOL_DIRTY);
249 			break;
250 		}
251 		mpool_put(t->bt_mp, lchild, MPOOL_DIRTY);
252 		mpool_put(t->bt_mp, rchild, MPOOL_DIRTY);
253 	}
254 
255 	/* Unpin the held pages. */
256 	mpool_put(t->bt_mp, l, MPOOL_DIRTY);
257 	mpool_put(t->bt_mp, r, MPOOL_DIRTY);
258 
259 	/*
260 	 * If it's a recno tree, increment the count on all remaining parent
261 	 * pages.  Otherwise, clear the stack.
262 	 */
263 	if (ISSET(t, BTF_RECNO))
264 		while  ((parent = BT_POP(t)) != NULL) {
265 			if ((h = mpool_get(t->bt_mp, parent->pgno, 0)) == NULL)
266 				return (RET_ERROR);
267 			++GETRINTERNAL(h, parent->index)->nrecs;
268 			mpool_put(t->bt_mp, h, MPOOL_DIRTY);
269 		}
270 	else
271 		BT_CLR(t);
272 	return (RET_SUCCESS);
273 
274 	/*
275 	 * If something fails in the above loop we were already walking back
276 	 * up the tree and the tree is now inconsistent.  Nothing much we can
277 	 * do about it but release any memory we're holding.
278 	 */
279 err1:	mpool_put(t->bt_mp, lchild, MPOOL_DIRTY);
280 	mpool_put(t->bt_mp, rchild, MPOOL_DIRTY);
281 
282 err2:	mpool_put(t->bt_mp, l, 0);
283 	mpool_put(t->bt_mp, r, 0);
284 	__dbpanic(t->bt_dbp);
285 	return (RET_ERROR);
286 }
287 
288 /*
289  * BT_PAGE -- Split a non-root page of a btree.
290  *
291  * Parameters:
292  *	t:	tree
293  *	h:	root page
294  *	lp:	pointer to left page pointer
295  *	rp:	pointer to right page pointer
296  *	skip:	pointer to index to leave open
297  *
298  * Returns:
299  *	Pointer to page in which to insert or NULL on error.
300  */
301 static PAGE *
302 bt_page(t, h, lp, rp, skip)
303 	BTREE *t;
304 	PAGE *h, **lp, **rp;
305 	int *skip;
306 {
307 	PAGE *l, *r, *tp;
308 	pgno_t npg;
309 
310 #ifdef STATISTICS
311 	++bt_split;
312 #endif
313 	/* Put the new right page for the split into place. */
314 	if ((r = mpool_new(t->bt_mp, &npg)) == NULL)
315 		return (NULL);
316 	r->pgno = npg;
317 	r->lower = BTDATAOFF;
318 	r->upper = t->bt_psize;
319 	r->nextpg = h->nextpg;
320 	r->prevpg = h->pgno;
321 	r->flags = h->flags & P_TYPE;
322 
323 	/*
324 	 * If we're splitting the last page on a level because we're appending
325 	 * a key to it (skip is NEXTINDEX()), it's likely that the data is
326 	 * sorted.  Adding an empty page on the side of the level is less work
327 	 * and can push the fill factor much higher than normal.  If we're
328 	 * wrong it's no big deal, we'll just do the split the right way next
329 	 * time.  It may look like it's equally easy to do a similar hack for
330 	 * reverse sorted data, that is, split the tree left, but it's not.
331 	 * Don't even try.
332 	 */
333 	if (h->nextpg == P_INVALID && *skip == NEXTINDEX(h)) {
334 #ifdef STATISTICS
335 		++bt_sortsplit;
336 #endif
337 		h->nextpg = r->pgno;
338 		r->lower = BTDATAOFF + sizeof(index_t);
339 		*skip = 0;
340 		*lp = h;
341 		*rp = r;
342 		return (r);
343 	}
344 
345 	/* Put the new left page for the split into place. */
346 	if ((l = malloc(t->bt_psize)) == NULL) {
347 		mpool_put(t->bt_mp, r, 0);
348 		return (NULL);
349 	}
350 	l->pgno = h->pgno;
351 	l->nextpg = r->pgno;
352 	l->prevpg = h->prevpg;
353 	l->lower = BTDATAOFF;
354 	l->upper = t->bt_psize;
355 	l->flags = h->flags & P_TYPE;
356 
357 	/* Fix up the previous pointer of the page after the split page. */
358 	if (h->nextpg != P_INVALID) {
359 		if ((tp = mpool_get(t->bt_mp, h->nextpg, 0)) == NULL) {
360 			free(l);
361 			/* XXX mpool_free(t->bt_mp, r->pgno); */
362 			return (NULL);
363 		}
364 		tp->prevpg = r->pgno;
365 		mpool_put(t->bt_mp, tp, 0);
366 	}
367 
368 	/*
369 	 * Split right.  The key/data pairs aren't sorted in the btree page so
370 	 * it's simpler to copy the data from the split page onto two new pages
371 	 * instead of copying half the data to the right page and compacting
372 	 * the left page in place.  Since the left page can't change, we have
373 	 * to swap the original and the allocated left page after the split.
374 	 */
375 	tp = bt_psplit(t, h, l, r, skip);
376 
377 	/* Move the new left page onto the old left page. */
378 	bcopy(l, h, t->bt_psize);
379 	if (tp == l)
380 		tp = h;
381 	free(l);
382 
383 	*lp = h;
384 	*rp = r;
385 	return (tp);
386 }
387 
388 /*
389  * BT_RSPLIT -- Split the root page of a btree.
390  *
391  * Parameters:
392  *	t:	tree
393  *	h:	root page
394  *	lp:	pointer to left page pointer
395  *	rp:	pointer to right page pointer
396  *	skip:	pointer to index to leave open
397  *
398  * Returns:
399  *	Pointer to page in which to insert or NULL on error.
400  */
401 static PAGE *
402 bt_root(t, h, lp, rp, skip)
403 	BTREE *t;
404 	PAGE *h, **lp, **rp;
405 	int *skip;
406 {
407 	PAGE *l, *r, *tp;
408 	pgno_t lnpg, rnpg;
409 
410 #ifdef STATISTICS
411 	++bt_split;
412 	++bt_rootsplit;
413 #endif
414 	/* Put the new left and right pages for the split into place. */
415 	if ((l = mpool_new(t->bt_mp, &lnpg)) == NULL ||
416 	    (r = mpool_new(t->bt_mp, &rnpg)) == NULL)
417 		return (NULL);
418 	l->pgno = lnpg;
419 	r->pgno = rnpg;
420 	l->nextpg = r->pgno;
421 	r->prevpg = l->pgno;
422 	l->prevpg = r->nextpg = P_INVALID;
423 	l->lower = r->lower = BTDATAOFF;
424 	l->upper = r->upper = t->bt_psize;
425 	l->flags = r->flags = h->flags & P_TYPE;
426 
427 	/* Split the root page. */
428 	tp = bt_psplit(t, h, l, r, skip);
429 
430 	/* Make the root page look right. */
431 	if ((ISSET(t, BTF_RECNO) ?
432 	    bt_rroot(t, h, l, r) : bt_broot(t, h, l, r)) == RET_ERROR)
433 		return (NULL);
434 
435 	*lp = l;
436 	*rp = r;
437 	return (tp);
438 }
439 
440 /*
441  * BT_RROOT -- Fix up the recno root page after the split.
442  *
443  * Parameters:
444  *	t:	tree
445  *	h:	root page
446  *
447  * Returns:
448  *	RET_ERROR, RET_SUCCESS
449  */
450 static int
451 bt_rroot(t, h, l, r)
452 	BTREE *t;
453 	PAGE *h, *l, *r;
454 {
455 	char *dest;
456 
457 	/* Insert the left and right keys, set the header information. */
458 	h->linp[0] = h->upper = t->bt_psize - NRINTERNAL;
459 	dest = (char *)h + h->upper;
460 	WR_RINTERNAL(dest,
461 	    l->flags & P_RLEAF ? NEXTINDEX(l) : rec_total(l), l->pgno);
462 
463 	h->linp[1] = h->upper -= NRINTERNAL;
464 	dest = (char *)h + h->upper;
465 	WR_RINTERNAL(dest,
466 	    r->flags & P_RLEAF ? NEXTINDEX(r) : rec_total(r), r->pgno);
467 
468 	h->lower = BTDATAOFF + 2 * sizeof(index_t);
469 
470 	/* Unpin the root page, set to recno internal page. */
471 	h->flags &= ~P_TYPE;
472 	h->flags |= P_RINTERNAL;
473 	mpool_put(t->bt_mp, h, MPOOL_DIRTY);
474 
475 	return (RET_SUCCESS);
476 }
477 
478 /*
479  * BT_BROOT -- Fix up the btree root page after the split.
480  *
481  * Parameters:
482  *	t:	tree
483  *	h:	root page
484  *
485  * Returns:
486  *	RET_ERROR, RET_SUCCESS
487  */
488 static int
489 bt_broot(t, h, l, r)
490 	BTREE *t;
491 	PAGE *h, *l, *r;
492 {
493 	BINTERNAL *bi;
494 	BLEAF *bl;
495 	size_t nbytes;
496 	char *dest;
497 
498 	/*
499 	 * If the root page was a leaf page, change it into an internal page.
500 	 * We copy the key we split on (but not the key's data, in the case of
501 	 * a leaf page) to the new root page.  If the key is on an overflow
502 	 * page, mark the overflow chain so it isn't deleted when the leaf copy
503 	 * of the key is deleted.
504 	 *
505 	 * The btree comparison code guarantees that the left-most key on any
506 	 * level of the tree is never used, so it doesn't need to be filled
507 	 * in.  (This is not just convenience -- if the insert index is 0, we
508 	 * don't *have* a key to fill in.)  The right key is available because
509 	 * the split code guarantees not to split on the skipped index.
510 	 */
511 	nbytes = LALIGN(sizeof(size_t) + sizeof(pgno_t) + sizeof(u_char));
512 	h->linp[0] = h->upper = t->bt_psize - nbytes;
513 	dest = (char *)h + h->upper;
514 	WR_BINTERNAL(dest, 0, l->pgno, 0);
515 
516 	switch(h->flags & P_TYPE) {
517 	case P_BLEAF:
518 		bl = GETBLEAF(r, 0);
519 		nbytes = NBINTERNAL(bl->ksize);
520 		h->linp[1] = h->upper -= nbytes;
521 		dest = (char *)h + h->upper;
522 		WR_BINTERNAL(dest, bl->ksize, r->pgno, 0);
523 		bcopy(bl->bytes, dest, bl->ksize);
524 
525 		if (bl->flags & P_BIGKEY &&
526 		    bt_preserve(t, *(pgno_t *)bl->bytes) == RET_ERROR)
527 			return (RET_ERROR);
528 		break;
529 	case P_BINTERNAL:
530 		bi = GETBINTERNAL(r, 0);
531 		nbytes = NBINTERNAL(bi->ksize);
532 		h->linp[1] = h->upper -= nbytes;
533 		dest = (char *)h + h->upper;
534 		bcopy(bi, dest, nbytes);
535 		((BINTERNAL *)dest)->pgno = r->pgno;
536 		break;
537 	}
538 	h->lower = BTDATAOFF + 2 * sizeof(index_t);
539 
540 	/* Unpin the root page, set to btree internal page. */
541 	h->flags &= ~P_TYPE;
542 	h->flags |= P_BINTERNAL;
543 	mpool_put(t->bt_mp, h, MPOOL_DIRTY);
544 
545 	return (RET_SUCCESS);
546 }
547 
548 /*
549  * BT_PSPLIT -- Do the real work of splitting the page.
550  *
551  * Parameters:
552  *	t:	tree
553  *	h:	page to be split
554  *	l:	page to put lower half of data
555  *	r:	page to put upper half of data
556  *	skip:	pointer to index to leave open
557  *
558  * Returns:
559  *	Pointer to page in which to insert.
560  */
561 static PAGE *
562 bt_psplit(t, h, l, r, skip)
563 	BTREE *t;
564 	PAGE *h, *l, *r;
565 	int *skip;
566 {
567 	BINTERNAL *bi;
568 	BLEAF *bl;
569 	RLEAF *rl;
570 	EPGNO *c;
571 	PAGE *rval;
572 	index_t half, sval;
573 	size_t nbytes;
574 	void *src;
575 	int bigkeycnt, isbigkey, nxt, off, top;
576 
577 	/*
578 	 * Split the data to the left and right pages. Leave the skip index
579 	 * open and guarantee that the split doesn't happen on that index (the
580 	 * right key must be available for the parent page).  Additionally,
581 	 * make some effort not to split on an overflow key.  This makes it
582 	 * faster to process internal pages and can save space since overflow
583 	 * keys used by internal pages are never deleted.
584 	 */
585 	bigkeycnt = 0;
586 	sval = *skip;
587 	half = (t->bt_psize - BTDATAOFF) / 2;
588 	for (nxt = off = 0, top = NEXTINDEX(h); nxt < top; ++off) {
589 		if (sval == off)
590 			continue;
591 		switch (h->flags & P_TYPE) {
592 		case P_BINTERNAL:
593 			src = bi = GETBINTERNAL(h, nxt);
594 			nbytes = NBINTERNAL(bi->ksize);
595 			isbigkey = bi->flags & P_BIGKEY;
596 			break;
597 		case P_BLEAF:
598 			src = bl = GETBLEAF(h, nxt);
599 			nbytes = NBLEAF(bl);
600 			isbigkey = bl->flags & P_BIGKEY;
601 			break;
602 		case P_RINTERNAL:
603 			src = GETRINTERNAL(h, nxt);
604 			nbytes = NRINTERNAL;
605 			isbigkey = 0;
606 			break;
607 		case P_RLEAF:
608 			src = rl = GETRLEAF(h, nxt);
609 			nbytes = NRLEAF(rl);
610 			isbigkey = 0;
611 			break;
612 		}
613 		++nxt;
614 		l->linp[off] = l->upper -= nbytes;
615 		bcopy(src, (char *)l + l->upper, nbytes);
616 
617 		/* There's no empirical justification for the '3'. */
618 		if (half < nbytes)
619 			if (!isbigkey || bigkeycnt == 3)
620 				break;
621 			else
622 				++bigkeycnt;
623 		else
624 			half -= nbytes;
625 	}
626 	l->lower += (off + 1) * sizeof(index_t);
627 
628 	/*
629 	 * If we're splitting the page that the cursor was on, have to adjust
630 	 * the cursor to point to the same record as before the split.
631 	 */
632 	c = &t->bt_bcursor;
633 	if (c->pgno == h->pgno)
634 		if (c->index < off)
635 			c->pgno = l->pgno;
636 		else {
637 			c->pgno = r->pgno;
638 			c->index -= off;
639 		}
640 
641 	/*
642 	 * Decide which page to return, and adjust the skip index if the
643 	 * to-be-inserted-upon page has changed.
644 	 */
645 	if (sval > off) {
646 		rval = r;
647 		*skip -= off + 1;
648 	} else
649 		rval = l;
650 
651 	for (off = 0; nxt < top; ++off) {
652 		if (sval == nxt) {
653 			sval = 0;
654 			continue;
655 		}
656 		switch (h->flags & P_TYPE) {
657 		case P_BINTERNAL:
658 			src = bi = GETBINTERNAL(h, nxt);
659 			nbytes = NBINTERNAL(bi->ksize);
660 			break;
661 		case P_BLEAF:
662 			src = bl = GETBLEAF(h, nxt);
663 			nbytes = NBLEAF(bl);
664 			break;
665 		case P_RINTERNAL:
666 			src = GETRINTERNAL(h, nxt);
667 			nbytes = NRINTERNAL;
668 			break;
669 		case P_RLEAF:
670 			src = rl = GETRLEAF(h, nxt);
671 			nbytes = NRLEAF(rl);
672 			break;
673 		}
674 		++nxt;
675 		r->linp[off] = r->upper -= nbytes;
676 		bcopy(src, (char *)r + r->upper, nbytes);
677 	}
678 	r->lower += off * sizeof(index_t);
679 
680 	/* If the key is being appended to the page, adjust the index. */
681 	if (sval == top)
682 		r->lower += sizeof(index_t);
683 
684 	return (rval);
685 }
686 
687 /*
688  * BT_PRESERVE -- Mark a chain of pages as used by an internal node.
689  *
690  * Chains of indirect blocks pointed to by leaf nodes get reclaimed when the
691  * record that references them gets deleted.  Chains pointed to by internal
692  * pages never get deleted.  This routine marks a chain as pointed to by an
693  * internal page.
694  *
695  * Parameters:
696  *	t:	tree
697  *	pg:	page number of first page in the chain.
698  *
699  * Returns:
700  *	RET_SUCCESS, RET_ERROR.
701  */
702 static int
703 bt_preserve(t, pg)
704 	BTREE *t;
705 	pgno_t pg;
706 {
707 	PAGE *h;
708 
709 	if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
710 		return (RET_ERROR);
711 	h->flags |= P_PRESERVE;
712 	mpool_put(t->bt_mp, h, MPOOL_DIRTY);
713 	return (RET_SUCCESS);
714 }
715 
716 /*
717  * REC_TOTAL -- Return the number of recno entries below a page.
718  *
719  * Parameters:
720  *	h:	page
721  *
722  * Returns:
723  *	The number of recno entries below a page.
724  *
725  * XXX
726  * These values could be set by the bt_psplit routine.  The problem is that the
727  * entry has to be popped off of the stack etc. or the values have to be passed
728  * all the way back to bt_split/bt_rroot and it's not very clean.
729  */
730 static recno_t
731 rec_total(h)
732 	PAGE *h;
733 {
734 	recno_t recs;
735 	index_t nxt, top;
736 
737 	for (recs = 0, nxt = 0, top = NEXTINDEX(h); nxt < top; ++nxt)
738 		recs += GETRINTERNAL(h, nxt)->nrecs;
739 	return (recs);
740 }
741