xref: /original-bsd/lib/libc/gen/ctime.c (revision 7717c4d4)
1 /*
2  * Copyright (c) 1987, 1989 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Arthur Olson.
7  *
8  * Redistribution and use in source and binary forms are permitted
9  * provided that the above copyright notice and this paragraph are
10  * duplicated in all such forms and that any documentation,
11  * advertising materials, and other materials related to such
12  * distribution and use acknowledge that the software was developed
13  * by the University of California, Berkeley.  The name of the
14  * University may not be used to endorse or promote products derived
15  * from this software without specific prior written permission.
16  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
18  * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
19  */
20 
21 #if defined(LIBC_SCCS) && !defined(lint)
22 static char sccsid[] = "@(#)ctime.c	5.20 (Berkeley) 02/02/90";
23 #endif /* LIBC_SCCS and not lint */
24 
25 /*
26 ** Leap second handling from Bradley White (bww@k.gp.cs.cmu.edu).
27 ** POSIX-style TZ environment variable handling from Guy Harris
28 ** (guy@auspex.com).
29 */
30 
31 /*LINTLIBRARY*/
32 
33 #include <sys/param.h>
34 #include <fcntl.h>
35 #include <time.h>
36 #include <tzfile.h>
37 #include <string.h>
38 #include <ctype.h>
39 #include <stdio.h>
40 
41 #ifdef __STDC__
42 #include <stdlib.h>
43 
44 #define P(s)		s
45 #define alloc_size_t	size_t
46 #define qsort_size_t	size_t
47 #define fread_size_t	size_t
48 #define fwrite_size_t	size_t
49 
50 #else /* !defined __STDC__ */
51 
52 #define P(s)		()
53 #define const
54 #define volatile
55 
56 typedef char *		genericptr_t;
57 typedef unsigned	alloc_size_t;
58 typedef int		qsort_size_t;
59 typedef int		fread_size_t;
60 typedef int		fwrite_size_t;
61 
62 extern char *	calloc();
63 extern char *	malloc();
64 extern char *	realloc();
65 extern char *	getenv();
66 
67 #endif /* !defined __STDC__ */
68 
69 extern time_t	time();
70 
71 #define FILENAME_MAX	MAXPATHLEN
72 #define ACCESS_MODE	O_RDONLY
73 #define OPEN_MODE	O_RDONLY
74 
75 #ifndef WILDABBR
76 /*
77 ** Someone might make incorrect use of a time zone abbreviation:
78 **	1.	They might reference tzname[0] before calling tzset (explicitly
79 **	 	or implicitly).
80 **	2.	They might reference tzname[1] before calling tzset (explicitly
81 **	 	or implicitly).
82 **	3.	They might reference tzname[1] after setting to a time zone
83 **		in which Daylight Saving Time is never observed.
84 **	4.	They might reference tzname[0] after setting to a time zone
85 **		in which Standard Time is never observed.
86 **	5.	They might reference tm.TM_ZONE after calling offtime.
87 ** What's best to do in the above cases is open to debate;
88 ** for now, we just set things up so that in any of the five cases
89 ** WILDABBR is used.  Another possibility:  initialize tzname[0] to the
90 ** string "tzname[0] used before set", and similarly for the other cases.
91 ** And another:  initialize tzname[0] to "ERA", with an explanation in the
92 ** manual page of what this "time zone abbreviation" means (doing this so
93 ** that tzname[0] has the "normal" length of three characters).
94 */
95 #define WILDABBR	"   "
96 #endif /* !defined WILDABBR */
97 
98 #ifndef TRUE
99 #define TRUE		1
100 #define FALSE		0
101 #endif /* !defined TRUE */
102 
103 static const char GMT[] = "GMT";
104 
105 struct ttinfo {				/* time type information */
106 	long		tt_gmtoff;	/* GMT offset in seconds */
107 	int		tt_isdst;	/* used to set tm_isdst */
108 	int		tt_abbrind;	/* abbreviation list index */
109 	int		tt_ttisstd;	/* TRUE if transition is std time */
110 };
111 
112 struct lsinfo {				/* leap second information */
113 	time_t		ls_trans;	/* transition time */
114 	long		ls_corr;	/* correction to apply */
115 };
116 
117 struct state {
118 	int		leapcnt;
119 	int		timecnt;
120 	int		typecnt;
121 	int		charcnt;
122 	time_t		ats[TZ_MAX_TIMES];
123 	unsigned char	types[TZ_MAX_TIMES];
124 	struct ttinfo	ttis[TZ_MAX_TYPES];
125 	char		chars[(TZ_MAX_CHARS + 1 > sizeof GMT) ?
126 				TZ_MAX_CHARS + 1 : sizeof GMT];
127 	struct lsinfo	lsis[TZ_MAX_LEAPS];
128 };
129 
130 struct rule {
131 	int		r_type;		/* type of rule--see below */
132 	int		r_day;		/* day number of rule */
133 	int		r_week;		/* week number of rule */
134 	int		r_mon;		/* month number of rule */
135 	long		r_time;		/* transition time of rule */
136 };
137 
138 #define	JULIAN_DAY		0	/* Jn - Julian day */
139 #define	DAY_OF_YEAR		1	/* n - day of year */
140 #define	MONTH_NTH_DAY_OF_WEEK	2	/* Mm.n.d - month, week, day of week */
141 
142 /*
143 ** Prototypes for static functions.
144 */
145 
146 static long		detzcode P((const char * codep));
147 static const char *	getzname P((const char * strp));
148 static const char *	getnum P((const char * strp, int * nump, int min,
149 				int max));
150 static const char *	getsecs P((const char * strp, long * secsp));
151 static const char *	getoffset P((const char * strp, long * offsetp));
152 static const char *	getrule P((const char * strp, struct rule * rulep));
153 static void		gmtload P((struct state * sp));
154 static void		gmtsub P((const time_t * timep, long offset,
155 				struct tm * tmp));
156 static void		localsub P((const time_t * timep, long offset,
157 				struct tm * tmp));
158 static void		normalize P((int * tensptr, int * unitsptr, int base));
159 static void		settzname P((void));
160 static time_t		time1 P((struct tm * tmp, void (* funcp)(),
161 				long offset));
162 static time_t		time2 P((struct tm *tmp, void (* funcp)(),
163 				long offset, int * okayp));
164 static void		timesub P((const time_t * timep, long offset,
165 				const struct state * sp, struct tm * tmp));
166 static int		tmcomp P((const struct tm * atmp,
167 				const struct tm * btmp));
168 static time_t		transtime P((time_t janfirst, int year,
169 				const struct rule * rulep, long offset));
170 static int		tzload P((const char * name, struct state * sp));
171 static int		tzparse P((const char * name, struct state * sp,
172 				int lastditch));
173 
174 #ifdef ALL_STATE
175 static struct state *	lclptr;
176 static struct state *	gmtptr;
177 #endif /* defined ALL_STATE */
178 
179 #ifndef ALL_STATE
180 static struct state	lclmem;
181 static struct state	gmtmem;
182 #define lclptr		(&lclmem)
183 #define gmtptr		(&gmtmem)
184 #endif /* State Farm */
185 
186 static int		lcl_is_set;
187 static int		gmt_is_set;
188 
189 char *			tzname[2] = {
190 	WILDABBR,
191 	WILDABBR
192 };
193 
194 #ifdef USG_COMPAT
195 time_t			timezone = 0;
196 int			daylight = 0;
197 #endif /* defined USG_COMPAT */
198 
199 #ifdef ALTZONE
200 time_t			altzone = 0;
201 #endif /* defined ALTZONE */
202 
203 static long
204 detzcode(codep)
205 const char * const	codep;
206 {
207 	register long	result;
208 	register int	i;
209 
210 	result = 0;
211 	for (i = 0; i < 4; ++i)
212 		result = (result << 8) | (codep[i] & 0xff);
213 	return result;
214 }
215 
216 static void
217 settzname()
218 {
219 	register const struct state * const	sp = lclptr;
220 	register int				i;
221 
222 	tzname[0] = WILDABBR;
223 	tzname[1] = WILDABBR;
224 #ifdef USG_COMPAT
225 	daylight = 0;
226 	timezone = 0;
227 #endif /* defined USG_COMPAT */
228 #ifdef ALTZONE
229 	altzone = 0;
230 #endif /* defined ALTZONE */
231 #ifdef ALL_STATE
232 	if (sp == NULL) {
233 		tzname[0] = tzname[1] = GMT;
234 		return;
235 	}
236 #endif /* defined ALL_STATE */
237 	for (i = 0; i < sp->typecnt; ++i) {
238 		register const struct ttinfo * const	ttisp = &sp->ttis[i];
239 
240 		tzname[ttisp->tt_isdst] =
241 			(char *) &sp->chars[ttisp->tt_abbrind];
242 #ifdef USG_COMPAT
243 		if (ttisp->tt_isdst)
244 			daylight = 1;
245 		if (i == 0 || !ttisp->tt_isdst)
246 			timezone = -(ttisp->tt_gmtoff);
247 #endif /* defined USG_COMPAT */
248 #ifdef ALTZONE
249 		if (i == 0 || ttisp->tt_isdst)
250 			altzone = -(ttisp->tt_gmtoff);
251 #endif /* defined ALTZONE */
252 	}
253 	/*
254 	** And to get the latest zone names into tzname. . .
255 	*/
256 	for (i = 0; i < sp->timecnt; ++i) {
257 		register const struct ttinfo * const	ttisp =
258 							&sp->ttis[sp->types[i]];
259 
260 		tzname[ttisp->tt_isdst] =
261 			(char *) &sp->chars[ttisp->tt_abbrind];
262 	}
263 }
264 
265 static int
266 tzload(name, sp)
267 register const char *		name;
268 register struct state * const	sp;
269 {
270 	register const char *	p;
271 	register int		i;
272 	register int		fid;
273 
274 	if (name == NULL && (name = TZDEFAULT) == NULL)
275 		return -1;
276 	{
277 		char		fullname[FILENAME_MAX + 1];
278 
279 		if (name[0] == ':')
280 			++name;
281 		if (name[0] != '/') {
282 			if ((p = TZDIR) == NULL)
283 				return -1;
284 			if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
285 				return -1;
286 			(void) strcpy(fullname, p);
287 			(void) strcat(fullname, "/");
288 			(void) strcat(fullname, name);
289 			name = fullname;
290 		}
291 		if ((fid = open(name, OPEN_MODE)) == -1)
292 			return -1;
293 	}
294 	{
295 		register const struct tzhead *	tzhp;
296 		char				buf[sizeof *sp + sizeof *tzhp];
297 		int				ttisstdcnt;
298 
299 		i = read(fid, buf, sizeof buf);
300 		if (close(fid) != 0 || i < sizeof *tzhp)
301 			return -1;
302 		tzhp = (struct tzhead *) buf;
303 		ttisstdcnt = (int) detzcode(tzhp->tzh_ttisstdcnt);
304 		sp->leapcnt = (int) detzcode(tzhp->tzh_leapcnt);
305 		sp->timecnt = (int) detzcode(tzhp->tzh_timecnt);
306 		sp->typecnt = (int) detzcode(tzhp->tzh_typecnt);
307 		sp->charcnt = (int) detzcode(tzhp->tzh_charcnt);
308 		if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
309 			sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
310 			sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
311 			sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
312 			(ttisstdcnt != sp->typecnt && ttisstdcnt != 0))
313 				return -1;
314 		if (i < sizeof *tzhp +
315 			sp->timecnt * (4 + sizeof (char)) +
316 			sp->typecnt * (4 + 2 * sizeof (char)) +
317 			sp->charcnt * sizeof (char) +
318 			sp->leapcnt * 2 * 4 +
319 			ttisstdcnt * sizeof (char))
320 				return -1;
321 		p = buf + sizeof *tzhp;
322 		for (i = 0; i < sp->timecnt; ++i) {
323 			sp->ats[i] = detzcode(p);
324 			p += 4;
325 		}
326 		for (i = 0; i < sp->timecnt; ++i) {
327 			sp->types[i] = (unsigned char) *p++;
328 			if (sp->types[i] >= sp->typecnt)
329 				return -1;
330 		}
331 		for (i = 0; i < sp->typecnt; ++i) {
332 			register struct ttinfo *	ttisp;
333 
334 			ttisp = &sp->ttis[i];
335 			ttisp->tt_gmtoff = detzcode(p);
336 			p += 4;
337 			ttisp->tt_isdst = (unsigned char) *p++;
338 			if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
339 				return -1;
340 			ttisp->tt_abbrind = (unsigned char) *p++;
341 			if (ttisp->tt_abbrind < 0 ||
342 				ttisp->tt_abbrind > sp->charcnt)
343 					return -1;
344 		}
345 		for (i = 0; i < sp->charcnt; ++i)
346 			sp->chars[i] = *p++;
347 		sp->chars[i] = '\0';	/* ensure '\0' at end */
348 		for (i = 0; i < sp->leapcnt; ++i) {
349 			register struct lsinfo *	lsisp;
350 
351 			lsisp = &sp->lsis[i];
352 			lsisp->ls_trans = detzcode(p);
353 			p += 4;
354 			lsisp->ls_corr = detzcode(p);
355 			p += 4;
356 		}
357 		for (i = 0; i < sp->typecnt; ++i) {
358 			register struct ttinfo *	ttisp;
359 
360 			ttisp = &sp->ttis[i];
361 			if (ttisstdcnt == 0)
362 				ttisp->tt_ttisstd = FALSE;
363 			else {
364 				ttisp->tt_ttisstd = *p++;
365 				if (ttisp->tt_ttisstd != TRUE &&
366 					ttisp->tt_ttisstd != FALSE)
367 						return -1;
368 			}
369 		}
370 	}
371 	return 0;
372 }
373 
374 static const int	mon_lengths[2][MONSPERYEAR] = {
375 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31,
376 	31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
377 };
378 
379 static const int	year_lengths[2] = {
380 	DAYSPERNYEAR, DAYSPERLYEAR
381 };
382 
383 /*
384 ** Given a pointer into a time zone string, scan until a character that is not
385 ** a valid character in a zone name is found.  Return a pointer to that
386 ** character.
387 */
388 
389 static const char *
390 getzname(strp)
391 register const char *	strp;
392 {
393 	register char	c;
394 
395 	while ((c = *strp) != '\0' && !isdigit(c) && c != ',' && c != '-' &&
396 		c != '+')
397 			++strp;
398 	return strp;
399 }
400 
401 /*
402 ** Given a pointer into a time zone string, extract a number from that string.
403 ** Check that the number is within a specified range; if it is not, return
404 ** NULL.
405 ** Otherwise, return a pointer to the first character not part of the number.
406 */
407 
408 static const char *
409 getnum(strp, nump, min, max)
410 register const char *	strp;
411 int * const		nump;
412 const int		min;
413 const int		max;
414 {
415 	register char	c;
416 	register int	num;
417 
418 	if (strp == NULL || !isdigit(*strp))
419 		return NULL;
420 	num = 0;
421 	while ((c = *strp) != '\0' && isdigit(c)) {
422 		num = num * 10 + (c - '0');
423 		if (num > max)
424 			return NULL;	/* illegal value */
425 		++strp;
426 	}
427 	if (num < min)
428 		return NULL;		/* illegal value */
429 	*nump = num;
430 	return strp;
431 }
432 
433 /*
434 ** Given a pointer into a time zone string, extract a number of seconds,
435 ** in hh[:mm[:ss]] form, from the string.
436 ** If any error occurs, return NULL.
437 ** Otherwise, return a pointer to the first character not part of the number
438 ** of seconds.
439 */
440 
441 static const char *
442 getsecs(strp, secsp)
443 register const char *	strp;
444 long * const		secsp;
445 {
446 	int	num;
447 
448 	strp = getnum(strp, &num, 0, HOURSPERDAY);
449 	if (strp == NULL)
450 		return NULL;
451 	*secsp = num * SECSPERHOUR;
452 	if (*strp == ':') {
453 		++strp;
454 		strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
455 		if (strp == NULL)
456 			return NULL;
457 		*secsp += num * SECSPERMIN;
458 		if (*strp == ':') {
459 			++strp;
460 			strp = getnum(strp, &num, 0, SECSPERMIN - 1);
461 			if (strp == NULL)
462 				return NULL;
463 			*secsp += num;
464 		}
465 	}
466 	return strp;
467 }
468 
469 /*
470 ** Given a pointer into a time zone string, extract an offset, in
471 ** [+-]hh[:mm[:ss]] form, from the string.
472 ** If any error occurs, return NULL.
473 ** Otherwise, return a pointer to the first character not part of the time.
474 */
475 
476 static const char *
477 getoffset(strp, offsetp)
478 register const char *	strp;
479 long * const		offsetp;
480 {
481 	register int	neg;
482 
483 	if (*strp == '-') {
484 		neg = 1;
485 		++strp;
486 	} else if (isdigit(*strp) || *strp++ == '+')
487 		neg = 0;
488 	else	return NULL;		/* illegal offset */
489 	strp = getsecs(strp, offsetp);
490 	if (strp == NULL)
491 		return NULL;		/* illegal time */
492 	if (neg)
493 		*offsetp = -*offsetp;
494 	return strp;
495 }
496 
497 /*
498 ** Given a pointer into a time zone string, extract a rule in the form
499 ** date[/time].  See POSIX section 8 for the format of "date" and "time".
500 ** If a valid rule is not found, return NULL.
501 ** Otherwise, return a pointer to the first character not part of the rule.
502 */
503 
504 static const char *
505 getrule(strp, rulep)
506 const char *			strp;
507 register struct rule * const	rulep;
508 {
509 	if (*strp == 'J') {
510 		/*
511 		** Julian day.
512 		*/
513 		rulep->r_type = JULIAN_DAY;
514 		++strp;
515 		strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
516 	} else if (*strp == 'M') {
517 		/*
518 		** Month, week, day.
519 		*/
520 		rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
521 		++strp;
522 		strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
523 		if (strp == NULL)
524 			return NULL;
525 		if (*strp++ != '.')
526 			return NULL;
527 		strp = getnum(strp, &rulep->r_week, 1, 5);
528 		if (strp == NULL)
529 			return NULL;
530 		if (*strp++ != '.')
531 			return NULL;
532 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
533 	} else if (isdigit(*strp)) {
534 		/*
535 		** Day of year.
536 		*/
537 		rulep->r_type = DAY_OF_YEAR;
538 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
539 	} else	return NULL;		/* invalid format */
540 	if (strp == NULL)
541 		return NULL;
542 	if (*strp == '/') {
543 		/*
544 		** Time specified.
545 		*/
546 		++strp;
547 		strp = getsecs(strp, &rulep->r_time);
548 	} else	rulep->r_time = 2 * SECSPERHOUR;	/* default = 2:00:00 */
549 	return strp;
550 }
551 
552 /*
553 ** Given the Epoch-relative time of January 1, 00:00:00 GMT, in a year, the
554 ** year, a rule, and the offset from GMT at the time that rule takes effect,
555 ** calculate the Epoch-relative time that rule takes effect.
556 */
557 
558 static time_t
559 transtime(janfirst, year, rulep, offset)
560 const time_t				janfirst;
561 const int				year;
562 register const struct rule * const	rulep;
563 const long				offset;
564 {
565 	register int	leapyear;
566 	register time_t	value;
567 	register int	i;
568 	int		d, m1, yy0, yy1, yy2, dow;
569 
570 	leapyear = isleap(year);
571 	switch (rulep->r_type) {
572 
573 	case JULIAN_DAY:
574 		/*
575 		** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
576 		** years.
577 		** In non-leap years, or if the day number is 59 or less, just
578 		** add SECSPERDAY times the day number-1 to the time of
579 		** January 1, midnight, to get the day.
580 		*/
581 		value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
582 		if (leapyear && rulep->r_day >= 60)
583 			value += SECSPERDAY;
584 		break;
585 
586 	case DAY_OF_YEAR:
587 		/*
588 		** n - day of year.
589 		** Just add SECSPERDAY times the day number to the time of
590 		** January 1, midnight, to get the day.
591 		*/
592 		value = janfirst + rulep->r_day * SECSPERDAY;
593 		break;
594 
595 	case MONTH_NTH_DAY_OF_WEEK:
596 		/*
597 		** Mm.n.d - nth "dth day" of month m.
598 		*/
599 		value = janfirst;
600 		for (i = 0; i < rulep->r_mon - 1; ++i)
601 			value += mon_lengths[leapyear][i] * SECSPERDAY;
602 
603 		/*
604 		** Use Zeller's Congruence to get day-of-week of first day of
605 		** month.
606 		*/
607 		m1 = (rulep->r_mon + 9) % 12 + 1;
608 		yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
609 		yy1 = yy0 / 100;
610 		yy2 = yy0 % 100;
611 		dow = ((26 * m1 - 2) / 10 +
612 			1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
613 		if (dow < 0)
614 			dow += DAYSPERWEEK;
615 
616 		/*
617 		** "dow" is the day-of-week of the first day of the month.  Get
618 		** the day-of-month (zero-origin) of the first "dow" day of the
619 		** month.
620 		*/
621 		d = rulep->r_day - dow;
622 		if (d < 0)
623 			d += DAYSPERWEEK;
624 		for (i = 1; i < rulep->r_week; ++i) {
625 			if (d + DAYSPERWEEK >=
626 				mon_lengths[leapyear][rulep->r_mon - 1])
627 					break;
628 			d += DAYSPERWEEK;
629 		}
630 
631 		/*
632 		** "d" is the day-of-month (zero-origin) of the day we want.
633 		*/
634 		value += d * SECSPERDAY;
635 		break;
636 	}
637 
638 	/*
639 	** "value" is the Epoch-relative time of 00:00:00 GMT on the day in
640 	** question.  To get the Epoch-relative time of the specified local
641 	** time on that day, add the transition time and the current offset
642 	** from GMT.
643 	*/
644 	return value + rulep->r_time + offset;
645 }
646 
647 /*
648 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
649 ** appropriate.
650 */
651 
652 static int
653 tzparse(name, sp, lastditch)
654 const char *			name;
655 register struct state * const	sp;
656 const int			lastditch;
657 {
658 	const char *			stdname;
659 	const char *			dstname;
660 	int				stdlen;
661 	int				dstlen;
662 	long				stdoffset;
663 	long				dstoffset;
664 	register time_t *		atp;
665 	register unsigned char *	typep;
666 	register char *			cp;
667 	register int			load_result;
668 
669 	stdname = name;
670 	if (lastditch) {
671 		stdlen = strlen(name);	/* length of standard zone name */
672 		name += stdlen;
673 		if (stdlen >= sizeof sp->chars)
674 			stdlen = (sizeof sp->chars) - 1;
675 	} else {
676 		name = getzname(name);
677 		stdlen = name - stdname;
678 		if (stdlen < 3)
679 			return -1;
680 	}
681 	if (*name == '\0')
682 		return -1;
683 	else {
684 		name = getoffset(name, &stdoffset);
685 		if (name == NULL)
686 			return -1;
687 	}
688 	load_result = tzload(TZDEFRULES, sp);
689 	if (load_result != 0)
690 		sp->leapcnt = 0;		/* so, we're off a little */
691 	if (*name != '\0') {
692 		dstname = name;
693 		name = getzname(name);
694 		dstlen = name - dstname;	/* length of DST zone name */
695 		if (dstlen < 3)
696 			return -1;
697 		if (*name != '\0' && *name != ',' && *name != ';') {
698 			name = getoffset(name, &dstoffset);
699 			if (name == NULL)
700 				return -1;
701 		} else	dstoffset = stdoffset - SECSPERHOUR;
702 		if (*name == ',' || *name == ';') {
703 			struct rule	start;
704 			struct rule	end;
705 			register int	year;
706 			register time_t	janfirst;
707 			time_t		starttime;
708 			time_t		endtime;
709 
710 			++name;
711 			if ((name = getrule(name, &start)) == NULL)
712 				return -1;
713 			if (*name++ != ',')
714 				return -1;
715 			if ((name = getrule(name, &end)) == NULL)
716 				return -1;
717 			if (*name != '\0')
718 				return -1;
719 			sp->typecnt = 2;	/* standard time and DST */
720 			/*
721 			** Two transitions per year, from EPOCH_YEAR to 2037.
722 			*/
723 			sp->timecnt = 2 * (2037 - EPOCH_YEAR + 1);
724 			if (sp->timecnt > TZ_MAX_TIMES)
725 				return -1;
726 			sp->ttis[0].tt_gmtoff = -dstoffset;
727 			sp->ttis[0].tt_isdst = 1;
728 			sp->ttis[0].tt_abbrind = stdlen + 1;
729 			sp->ttis[1].tt_gmtoff = -stdoffset;
730 			sp->ttis[1].tt_isdst = 0;
731 			sp->ttis[1].tt_abbrind = 0;
732 			atp = sp->ats;
733 			typep = sp->types;
734 			janfirst = 0;
735 			for (year = EPOCH_YEAR; year <= 2037; ++year) {
736 				starttime = transtime(janfirst, year, &start,
737 					stdoffset);
738 				endtime = transtime(janfirst, year, &end,
739 					dstoffset);
740 				if (starttime > endtime) {
741 					*atp++ = endtime;
742 					*typep++ = 1;	/* DST ends */
743 					*atp++ = starttime;
744 					*typep++ = 0;	/* DST begins */
745 				} else {
746 					*atp++ = starttime;
747 					*typep++ = 0;	/* DST begins */
748 					*atp++ = endtime;
749 					*typep++ = 1;	/* DST ends */
750 				}
751 				janfirst +=
752 					year_lengths[isleap(year)] * SECSPERDAY;
753 			}
754 		} else {
755 			int		sawstd;
756 			int		sawdst;
757 			long		stdfix;
758 			long		dstfix;
759 			long		oldfix;
760 			int		isdst;
761 			register int	i;
762 
763 			if (*name != '\0')
764 				return -1;
765 			if (load_result != 0)
766 				return -1;
767 			/*
768 			** Compute the difference between the real and
769 			** prototype standard and summer time offsets
770 			** from GMT, and put the real standard and summer
771 			** time offsets into the rules in place of the
772 			** prototype offsets.
773 			*/
774 			sawstd = FALSE;
775 			sawdst = FALSE;
776 			stdfix = 0;
777 			dstfix = 0;
778 			for (i = 0; i < sp->typecnt; ++i) {
779 				if (sp->ttis[i].tt_isdst) {
780 					oldfix = dstfix;
781 					dstfix =
782 					    sp->ttis[i].tt_gmtoff + dstoffset;
783 					if (sawdst && (oldfix != dstfix))
784 						return -1;
785 					sp->ttis[i].tt_gmtoff = -dstoffset;
786 					sp->ttis[i].tt_abbrind = stdlen + 1;
787 					sawdst = TRUE;
788 				} else {
789 					oldfix = stdfix;
790 					stdfix =
791 					    sp->ttis[i].tt_gmtoff + stdoffset;
792 					if (sawstd && (oldfix != stdfix))
793 						return -1;
794 					sp->ttis[i].tt_gmtoff = -stdoffset;
795 					sp->ttis[i].tt_abbrind = 0;
796 					sawstd = TRUE;
797 				}
798 			}
799 			/*
800 			** Make sure we have both standard and summer time.
801 			*/
802 			if (!sawdst || !sawstd)
803 				return -1;
804 			/*
805 			** Now correct the transition times by shifting
806 			** them by the difference between the real and
807 			** prototype offsets.  Note that this difference
808 			** can be different in standard and summer time;
809 			** the prototype probably has a 1-hour difference
810 			** between standard and summer time, but a different
811 			** difference can be specified in TZ.
812 			*/
813 			isdst = FALSE;	/* we start in standard time */
814 			for (i = 0; i < sp->timecnt; ++i) {
815 				register const struct ttinfo *	ttisp;
816 
817 				/*
818 				** If summer time is in effect, and the
819 				** transition time was not specified as
820 				** standard time, add the summer time
821 				** offset to the transition time;
822 				** otherwise, add the standard time offset
823 				** to the transition time.
824 				*/
825 				ttisp = &sp->ttis[sp->types[i]];
826 				sp->ats[i] +=
827 					(isdst && !ttisp->tt_ttisstd) ?
828 						dstfix : stdfix;
829 				isdst = ttisp->tt_isdst;
830 			}
831 		}
832 	} else {
833 		dstlen = 0;
834 		sp->typecnt = 1;		/* only standard time */
835 		sp->timecnt = 0;
836 		sp->ttis[0].tt_gmtoff = -stdoffset;
837 		sp->ttis[0].tt_isdst = 0;
838 		sp->ttis[0].tt_abbrind = 0;
839 	}
840 	sp->charcnt = stdlen + 1;
841 	if (dstlen != 0)
842 		sp->charcnt += dstlen + 1;
843 	if (sp->charcnt > sizeof sp->chars)
844 		return -1;
845 	cp = sp->chars;
846 	(void) strncpy(cp, stdname, stdlen);
847 	cp += stdlen;
848 	*cp++ = '\0';
849 	if (dstlen != 0) {
850 		(void) strncpy(cp, dstname, dstlen);
851 		*(cp + dstlen) = '\0';
852 	}
853 	return 0;
854 }
855 
856 static void
857 gmtload(sp)
858 struct state * const	sp;
859 {
860 	if (tzload(GMT, sp) != 0)
861 		(void) tzparse(GMT, sp, TRUE);
862 }
863 
864 void
865 tzset()
866 {
867 	register const char *	name;
868 	void tzsetwall();
869 
870 	name = getenv("TZ");
871 	if (name == NULL) {
872 		tzsetwall();
873 		return;
874 	}
875 	lcl_is_set = TRUE;
876 #ifdef ALL_STATE
877 	if (lclptr == NULL) {
878 		lclptr = (struct state *) malloc(sizeof *lclptr);
879 		if (lclptr == NULL) {
880 			settzname();	/* all we can do */
881 			return;
882 		}
883 	}
884 #endif /* defined ALL_STATE */
885 	if (*name == '\0') {
886 		/*
887 		** User wants it fast rather than right.
888 		*/
889 		lclptr->leapcnt = 0;		/* so, we're off a little */
890 		lclptr->timecnt = 0;
891 		lclptr->ttis[0].tt_gmtoff = 0;
892 		lclptr->ttis[0].tt_abbrind = 0;
893 		(void) strcpy(lclptr->chars, GMT);
894 	} else if (tzload(name, lclptr) != 0)
895 		if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
896 			(void) gmtload(lclptr);
897 	settzname();
898 }
899 
900 void
901 tzsetwall()
902 {
903 	lcl_is_set = TRUE;
904 #ifdef ALL_STATE
905 	if (lclptr == NULL) {
906 		lclptr = (struct state *) malloc(sizeof *lclptr);
907 		if (lclptr == NULL) {
908 			settzname();	/* all we can do */
909 			return;
910 		}
911 	}
912 #endif /* defined ALL_STATE */
913 	if (tzload((char *) NULL, lclptr) != 0)
914 		gmtload(lclptr);
915 	settzname();
916 }
917 
918 /*
919 ** The easy way to behave "as if no library function calls" localtime
920 ** is to not call it--so we drop its guts into "localsub", which can be
921 ** freely called.  (And no, the PANS doesn't require the above behavior--
922 ** but it *is* desirable.)
923 **
924 ** The unused offset argument is for the benefit of mktime variants.
925 */
926 
927 /*ARGSUSED*/
928 static void
929 localsub(timep, offset, tmp)
930 const time_t * const	timep;
931 const long		offset;
932 struct tm * const	tmp;
933 {
934 	register const struct state *	sp;
935 	register const struct ttinfo *	ttisp;
936 	register int			i;
937 	const time_t			t = *timep;
938 
939 	if (!lcl_is_set)
940 		tzset();
941 	sp = lclptr;
942 #ifdef ALL_STATE
943 	if (sp == NULL) {
944 		gmtsub(timep, offset, tmp);
945 		return;
946 	}
947 #endif /* defined ALL_STATE */
948 	if (sp->timecnt == 0 || t < sp->ats[0]) {
949 		i = 0;
950 		while (sp->ttis[i].tt_isdst)
951 			if (++i >= sp->typecnt) {
952 				i = 0;
953 				break;
954 			}
955 	} else {
956 		for (i = 1; i < sp->timecnt; ++i)
957 			if (t < sp->ats[i])
958 				break;
959 		i = sp->types[i - 1];
960 	}
961 	ttisp = &sp->ttis[i];
962 	/*
963 	** To get (wrong) behavior that's compatible with System V Release 2.0
964 	** you'd replace the statement below with
965 	**	t += ttisp->tt_gmtoff;
966 	**	timesub(&t, 0L, sp, tmp);
967 	*/
968 	timesub(&t, ttisp->tt_gmtoff, sp, tmp);
969 	tmp->tm_isdst = ttisp->tt_isdst;
970 	tzname[tmp->tm_isdst] = (char *) &sp->chars[ttisp->tt_abbrind];
971 	tmp->tm_zone = &sp->chars[ttisp->tt_abbrind];
972 }
973 
974 struct tm *
975 localtime(timep)
976 const time_t * const	timep;
977 {
978 	static struct tm	tm;
979 
980 	localsub(timep, 0L, &tm);
981 	return &tm;
982 }
983 
984 /*
985 ** gmtsub is to gmtime as localsub is to localtime.
986 */
987 
988 static void
989 gmtsub(timep, offset, tmp)
990 const time_t * const	timep;
991 const long		offset;
992 struct tm * const	tmp;
993 {
994 	if (!gmt_is_set) {
995 		gmt_is_set = TRUE;
996 #ifdef ALL_STATE
997 		gmtptr = (struct state *) malloc(sizeof *gmtptr);
998 		if (gmtptr != NULL)
999 #endif /* defined ALL_STATE */
1000 			gmtload(gmtptr);
1001 	}
1002 	timesub(timep, offset, gmtptr, tmp);
1003 	/*
1004 	** Could get fancy here and deliver something such as
1005 	** "GMT+xxxx" or "GMT-xxxx" if offset is non-zero,
1006 	** but this is no time for a treasure hunt.
1007 	*/
1008 	if (offset != 0)
1009 		tmp->tm_zone = WILDABBR;
1010 	else {
1011 #ifdef ALL_STATE
1012 		if (gmtptr == NULL)
1013 			tmp->TM_ZONE = GMT;
1014 		else	tmp->TM_ZONE = gmtptr->chars;
1015 #endif /* defined ALL_STATE */
1016 #ifndef ALL_STATE
1017 		tmp->tm_zone = gmtptr->chars;
1018 #endif /* State Farm */
1019 	}
1020 }
1021 
1022 struct tm *
1023 gmtime(timep)
1024 const time_t * const	timep;
1025 {
1026 	static struct tm	tm;
1027 
1028 	gmtsub(timep, 0L, &tm);
1029 	return &tm;
1030 }
1031 
1032 static void
1033 timesub(timep, offset, sp, tmp)
1034 const time_t * const			timep;
1035 const long				offset;
1036 register const struct state * const	sp;
1037 register struct tm * const		tmp;
1038 {
1039 	register const struct lsinfo *	lp;
1040 	register long			days;
1041 	register long			rem;
1042 	register int			y;
1043 	register int			yleap;
1044 	register const int *		ip;
1045 	register long			corr;
1046 	register int			hit;
1047 	register int			i;
1048 
1049 	corr = 0;
1050 	hit = FALSE;
1051 #ifdef ALL_STATE
1052 	i = (sp == NULL) ? 0 : sp->leapcnt;
1053 #endif /* defined ALL_STATE */
1054 #ifndef ALL_STATE
1055 	i = sp->leapcnt;
1056 #endif /* State Farm */
1057 	while (--i >= 0) {
1058 		lp = &sp->lsis[i];
1059 		if (*timep >= lp->ls_trans) {
1060 			if (*timep == lp->ls_trans)
1061 				hit = ((i == 0 && lp->ls_corr > 0) ||
1062 					lp->ls_corr > sp->lsis[i - 1].ls_corr);
1063 			corr = lp->ls_corr;
1064 			break;
1065 		}
1066 	}
1067 	days = *timep / SECSPERDAY;
1068 	rem = *timep % SECSPERDAY;
1069 #ifdef mc68k
1070 	if (*timep == 0x80000000) {
1071 		/*
1072 		** A 3B1 muffs the division on the most negative number.
1073 		*/
1074 		days = -24855;
1075 		rem = -11648;
1076 	}
1077 #endif /* mc68k */
1078 	rem += (offset - corr);
1079 	while (rem < 0) {
1080 		rem += SECSPERDAY;
1081 		--days;
1082 	}
1083 	while (rem >= SECSPERDAY) {
1084 		rem -= SECSPERDAY;
1085 		++days;
1086 	}
1087 	tmp->tm_hour = (int) (rem / SECSPERHOUR);
1088 	rem = rem % SECSPERHOUR;
1089 	tmp->tm_min = (int) (rem / SECSPERMIN);
1090 	tmp->tm_sec = (int) (rem % SECSPERMIN);
1091 	if (hit)
1092 		/*
1093 		** A positive leap second requires a special
1094 		** representation.  This uses "... ??:59:60".
1095 		*/
1096 		++(tmp->tm_sec);
1097 	tmp->tm_wday = (int) ((EPOCH_WDAY + days) % DAYSPERWEEK);
1098 	if (tmp->tm_wday < 0)
1099 		tmp->tm_wday += DAYSPERWEEK;
1100 	y = EPOCH_YEAR;
1101 	if (days >= 0)
1102 		for ( ; ; ) {
1103 			yleap = isleap(y);
1104 			if (days < (long) year_lengths[yleap])
1105 				break;
1106 			++y;
1107 			days = days - (long) year_lengths[yleap];
1108 		}
1109 	else do {
1110 		--y;
1111 		yleap = isleap(y);
1112 		days = days + (long) year_lengths[yleap];
1113 	} while (days < 0);
1114 	tmp->tm_year = y - TM_YEAR_BASE;
1115 	tmp->tm_yday = (int) days;
1116 	ip = mon_lengths[yleap];
1117 	for (tmp->tm_mon = 0; days >= (long) ip[tmp->tm_mon]; ++(tmp->tm_mon))
1118 		days = days - (long) ip[tmp->tm_mon];
1119 	tmp->tm_mday = (int) (days + 1);
1120 	tmp->tm_isdst = 0;
1121 #ifdef TM_GMTOFF
1122 	tmp->TM_GMTOFF = offset;
1123 #endif /* defined TM_GMTOFF */
1124 }
1125 
1126 /*
1127 ** A la X3J11
1128 */
1129 
1130 char *
1131 asctime(timeptr)
1132 register const struct tm *	timeptr;
1133 {
1134 	static const char	wday_name[DAYSPERWEEK][3] = {
1135 		"Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"
1136 	};
1137 	static const char	mon_name[MONSPERYEAR][3] = {
1138 		"Jan", "Feb", "Mar", "Apr", "May", "Jun",
1139 		"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
1140 	};
1141 	static char	result[26];
1142 
1143 	(void) sprintf(result, "%.3s %.3s%3d %02.2d:%02.2d:%02.2d %d\n",
1144 		wday_name[timeptr->tm_wday],
1145 		mon_name[timeptr->tm_mon],
1146 		timeptr->tm_mday, timeptr->tm_hour,
1147 		timeptr->tm_min, timeptr->tm_sec,
1148 		TM_YEAR_BASE + timeptr->tm_year);
1149 	return result;
1150 }
1151 
1152 char *
1153 ctime(timep)
1154 const time_t * const	timep;
1155 {
1156 	return asctime(localtime(timep));
1157 }
1158 
1159 /*
1160 ** Adapted from code provided by Robert Elz, who writes:
1161 **	The "best" way to do mktime I think is based on an idea of Bob
1162 **	Kridle's (so its said...) from a long time ago. (mtxinu!kridle now).
1163 **	It does a binary search of the time_t space.  Since time_t's are
1164 **	just 32 bits, its a max of 32 iterations (even at 64 bits it
1165 **	would still be very reasonable).
1166 */
1167 
1168 #ifndef WRONG
1169 #define WRONG	(-1)
1170 #endif /* !defined WRONG */
1171 
1172 static void
1173 normalize(tensptr, unitsptr, base)
1174 int * const	tensptr;
1175 int * const	unitsptr;
1176 const int	base;
1177 {
1178 	if (*unitsptr >= base) {
1179 		*tensptr += *unitsptr / base;
1180 		*unitsptr %= base;
1181 	} else if (*unitsptr < 0) {
1182 		--*tensptr;
1183 		*unitsptr += base;
1184 		if (*unitsptr < 0) {
1185 			*tensptr -= 1 + (-*unitsptr) / base;
1186 			*unitsptr = base - (-*unitsptr) % base;
1187 		}
1188 	}
1189 }
1190 
1191 static int
1192 tmcomp(atmp, btmp)
1193 register const struct tm * const atmp;
1194 register const struct tm * const btmp;
1195 {
1196 	register int	result;
1197 
1198 	if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
1199 		(result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1200 		(result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1201 		(result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1202 		(result = (atmp->tm_min - btmp->tm_min)) == 0)
1203 			result = atmp->tm_sec - btmp->tm_sec;
1204 	return result;
1205 }
1206 
1207 static time_t
1208 time2(tmp, funcp, offset, okayp)
1209 struct tm * const	tmp;
1210 void (* const		funcp)();
1211 const long		offset;
1212 int * const		okayp;
1213 {
1214 	register const struct state *	sp;
1215 	register int			dir;
1216 	register int			bits;
1217 	register int			i, j ;
1218 	register int			saved_seconds;
1219 	time_t				newt;
1220 	time_t				t;
1221 	struct tm			yourtm, mytm;
1222 
1223 	*okayp = FALSE;
1224 	yourtm = *tmp;
1225 	if (yourtm.tm_sec >= SECSPERMIN + 2 || yourtm.tm_sec < 0)
1226 		normalize(&yourtm.tm_min, &yourtm.tm_sec, SECSPERMIN);
1227 	normalize(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR);
1228 	normalize(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY);
1229 	normalize(&yourtm.tm_year, &yourtm.tm_mon, MONSPERYEAR);
1230 	while (yourtm.tm_mday <= 0) {
1231 		--yourtm.tm_year;
1232 		yourtm.tm_mday +=
1233 			year_lengths[isleap(yourtm.tm_year + TM_YEAR_BASE)];
1234 	}
1235 	for ( ; ; ) {
1236 		i = mon_lengths[isleap(yourtm.tm_year +
1237 			TM_YEAR_BASE)][yourtm.tm_mon];
1238 		if (yourtm.tm_mday <= i)
1239 			break;
1240 		yourtm.tm_mday -= i;
1241 		if (++yourtm.tm_mon >= MONSPERYEAR) {
1242 			yourtm.tm_mon = 0;
1243 			++yourtm.tm_year;
1244 		}
1245 	}
1246 	saved_seconds = yourtm.tm_sec;
1247 	yourtm.tm_sec = 0;
1248 	/*
1249 	** Calculate the number of magnitude bits in a time_t
1250 	** (this works regardless of whether time_t is
1251 	** signed or unsigned, though lint complains if unsigned).
1252 	*/
1253 	for (bits = 0, t = 1; t > 0; ++bits, t <<= 1)
1254 		;
1255 	/*
1256 	** If time_t is signed, then 0 is the median value,
1257 	** if time_t is unsigned, then 1 << bits is median.
1258 	*/
1259 	t = (t < 0) ? 0 : ((time_t) 1 << bits);
1260 	for ( ; ; ) {
1261 		(*funcp)(&t, offset, &mytm);
1262 		dir = tmcomp(&mytm, &yourtm);
1263 		if (dir != 0) {
1264 			if (bits-- < 0)
1265 				return WRONG;
1266 			if (bits < 0)
1267 				--t;
1268 			else if (dir > 0)
1269 				t -= (time_t) 1 << bits;
1270 			else	t += (time_t) 1 << bits;
1271 			continue;
1272 		}
1273 		if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1274 			break;
1275 		/*
1276 		** Right time, wrong type.
1277 		** Hunt for right time, right type.
1278 		** It's okay to guess wrong since the guess
1279 		** gets checked.
1280 		*/
1281 		sp = (const struct state *)
1282 			((funcp == localsub) ? lclptr : gmtptr);
1283 #ifdef ALL_STATE
1284 		if (sp == NULL)
1285 			return WRONG;
1286 #endif /* defined ALL_STATE */
1287 		for (i = 0; i < sp->typecnt; ++i) {
1288 			if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1289 				continue;
1290 			for (j = 0; j < sp->typecnt; ++j) {
1291 				if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1292 					continue;
1293 				newt = t + sp->ttis[j].tt_gmtoff -
1294 					sp->ttis[i].tt_gmtoff;
1295 				(*funcp)(&newt, offset, &mytm);
1296 				if (tmcomp(&mytm, &yourtm) != 0)
1297 					continue;
1298 				if (mytm.tm_isdst != yourtm.tm_isdst)
1299 					continue;
1300 				/*
1301 				** We have a match.
1302 				*/
1303 				t = newt;
1304 				goto label;
1305 			}
1306 		}
1307 		return WRONG;
1308 	}
1309 label:
1310 	t += saved_seconds;
1311 	(*funcp)(&t, offset, tmp);
1312 	*okayp = TRUE;
1313 	return t;
1314 }
1315 
1316 static time_t
1317 time1(tmp, funcp, offset)
1318 struct tm * const	tmp;
1319 void (* const		funcp)();
1320 const long		offset;
1321 {
1322 	register time_t			t;
1323 	register const struct state *	sp;
1324 	register int			samei, otheri;
1325 	int				okay;
1326 
1327 	if (tmp->tm_isdst > 1)
1328 		tmp->tm_isdst = 1;
1329 	t = time2(tmp, funcp, offset, &okay);
1330 	if (okay || tmp->tm_isdst < 0)
1331 		return t;
1332 	/*
1333 	** We're supposed to assume that somebody took a time of one type
1334 	** and did some math on it that yielded a "struct tm" that's bad.
1335 	** We try to divine the type they started from and adjust to the
1336 	** type they need.
1337 	*/
1338 	sp = (const struct state *) ((funcp == localsub) ? lclptr : gmtptr);
1339 #ifdef ALL_STATE
1340 	if (sp == NULL)
1341 		return WRONG;
1342 #endif /* defined ALL_STATE */
1343 	for (samei = 0; samei < sp->typecnt; ++samei) {
1344 		if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
1345 			continue;
1346 		for (otheri = 0; otheri < sp->typecnt; ++otheri) {
1347 			if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
1348 				continue;
1349 			tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
1350 					sp->ttis[samei].tt_gmtoff;
1351 			tmp->tm_isdst = !tmp->tm_isdst;
1352 			t = time2(tmp, funcp, offset, &okay);
1353 			if (okay)
1354 				return t;
1355 			tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
1356 					sp->ttis[samei].tt_gmtoff;
1357 			tmp->tm_isdst = !tmp->tm_isdst;
1358 		}
1359 	}
1360 	return WRONG;
1361 }
1362 
1363 time_t
1364 mktime(tmp)
1365 struct tm * const	tmp;
1366 {
1367 	return time1(tmp, localsub, 0L);
1368 }
1369