xref: /original-bsd/lib/libc/quad/qdivrem.c (revision 68d9582f)
1 /*-
2  * Copyright (c) 1992 The Regents of the University of California.
3  * All rights reserved.
4  *
5  * This software was developed by the Computer Systems Engineering group
6  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
7  * contributed to Berkeley.
8  *
9  * %sccs.include.redist.c%
10  */
11 
12 #if defined(LIBC_SCCS) && !defined(lint)
13 static char sccsid[] = "@(#)qdivrem.c	5.6 (Berkeley) 06/02/92";
14 #endif /* LIBC_SCCS and not lint */
15 
16 /*
17  * Multiprecision divide.  This algorithm is from Knuth vol. 2 (2nd ed),
18  * section 4.3.1, pp. 257--259.
19  */
20 
21 #include "quad.h"
22 
23 #define	B	(1 << HALF_BITS)	/* digit base */
24 
25 /* Combine two `digits' to make a single two-digit number. */
26 #define	COMBINE(a, b) (((u_long)(a) << HALF_BITS) | (b))
27 
28 /* select a type for digits in base B: use unsigned short if they fit */
29 #if ULONG_MAX == 0xffffffff && USHRT_MAX >= 0xffff
30 typedef unsigned short digit;
31 #else
32 typedef u_long digit;
33 #endif
34 
35 /*
36  * Shift p[0]..p[len] left `sh' bits, ignoring any bits that
37  * `fall out' the left (there never will be any such anyway).
38  * We may assume len >= 0.  NOTE THAT THIS WRITES len+1 DIGITS.
39  */
40 static void
41 shl(register digit *p, register int len, register int sh)
42 {
43 	register int i;
44 
45 	for (i = 0; i < len; i++)
46 		p[i] = LHALF(p[i] << sh) | (p[i + 1] >> (HALF_BITS - sh));
47 	p[i] = LHALF(p[i] << sh);
48 }
49 
50 /*
51  * __qdivrem(u, v, rem) returns u/v and, optionally, sets *rem to u%v.
52  *
53  * We do this in base 2-sup-HALF_BITS, so that all intermediate products
54  * fit within u_long.  As a consequence, the maximum length dividend and
55  * divisor are 4 `digits' in this base (they are shorter if they have
56  * leading zeros).
57  */
58 u_quad
59 __qdivrem(u_quad uq, u_quad vq, u_quad *arq)
60 {
61 	union uu tmp;
62 	digit *u, *v, *q;
63 	register digit v1, v2;
64 	u_long qhat, rhat, t;
65 	int m, n, d, j, i;
66 	digit uspace[5], vspace[5], qspace[5];
67 
68 	/*
69 	 * Take care of special cases: divide by zero, and u < v.
70 	 */
71 	if (vq == 0) {
72 		/* divide by zero. */
73 		static volatile const unsigned int zero = 0;
74 
75 		tmp.ul[H] = tmp.ul[L] = 1 / zero;
76 		if (arq)
77 			*arq = uq;
78 		return (tmp.q);
79 	}
80 	if (uq < vq) {
81 		if (arq)
82 			*arq = uq;
83 		return (0);
84 	}
85 	u = &uspace[0];
86 	v = &vspace[0];
87 	q = &qspace[0];
88 
89 	/*
90 	 * Break dividend and divisor into digits in base B, then
91 	 * count leading zeros to determine m and n.  When done, we
92 	 * will have:
93 	 *	u = (u[1]u[2]...u[m+n]) sub B
94 	 *	v = (v[1]v[2]...v[n]) sub B
95 	 *	v[1] != 0
96 	 *	1 < n <= 4 (if n = 1, we use a different division algorithm)
97 	 *	m >= 0 (otherwise u < v, which we already checked)
98 	 *	m + n = 4
99 	 * and thus
100 	 *	m = 4 - n <= 2
101 	 */
102 	tmp.uq = uq;
103 	u[0] = 0;
104 	u[1] = HHALF(tmp.ul[H]);
105 	u[2] = LHALF(tmp.ul[H]);
106 	u[3] = HHALF(tmp.ul[L]);
107 	u[4] = LHALF(tmp.ul[L]);
108 	tmp.uq = vq;
109 	v[1] = HHALF(tmp.ul[H]);
110 	v[2] = LHALF(tmp.ul[H]);
111 	v[3] = HHALF(tmp.ul[L]);
112 	v[4] = LHALF(tmp.ul[L]);
113 	for (n = 4; v[1] == 0; v++) {
114 		if (--n == 1) {
115 			u_long rbj;	/* r*B+u[j] (not root boy jim) */
116 			digit q1, q2, q3, q4;
117 
118 			/*
119 			 * Change of plan, per exercise 16.
120 			 *	r = 0;
121 			 *	for j = 1..4:
122 			 *		q[j] = floor((r*B + u[j]) / v),
123 			 *		r = (r*B + u[j]) % v;
124 			 * We unroll this completely here.
125 			 */
126 			t = v[2];	/* nonzero, by definition */
127 			q1 = u[1] / t;
128 			rbj = COMBINE(u[1] % t, u[2]);
129 			q2 = rbj / t;
130 			rbj = COMBINE(rbj % t, u[3]);
131 			q3 = rbj / t;
132 			rbj = COMBINE(rbj % t, u[4]);
133 			q4 = rbj / t;
134 			if (arq)
135 				*arq = rbj % t;
136 			tmp.ul[H] = COMBINE(q1, q2);
137 			tmp.ul[L] = COMBINE(q3, q4);
138 			return (tmp.q);
139 		}
140 	}
141 
142 	/*
143 	 * By adjusting q once we determine m, we can guarantee that
144 	 * there is a complete four-digit quotient at &qspace[1] when
145 	 * we finally stop.
146 	 */
147 	for (m = 4 - n; u[1] == 0; u++)
148 		m--;
149 	for (i = 4 - m; --i >= 0;)
150 		q[i] = 0;
151 	q += 4 - m;
152 
153 	/*
154 	 * Here we run Program D, translated from MIX to C and acquiring
155 	 * a few minor changes.
156 	 *
157 	 * D1: choose multiplier 1 << d to ensure v[1] >= B/2.
158 	 */
159 	d = 0;
160 	for (t = v[1]; t < B / 2; t <<= 1)
161 		d++;
162 	if (d > 0) {
163 		shl(&u[0], m + n, d);		/* u <<= d */
164 		shl(&v[1], n - 1, d);		/* v <<= d */
165 	}
166 	/*
167 	 * D2: j = 0.
168 	 */
169 	j = 0;
170 	v1 = v[1];	/* for D3 -- note that v[1..n] are constant */
171 	v2 = v[2];	/* for D3 */
172 	do {
173 		register digit uj0, uj1, uj2;
174 
175 		/*
176 		 * D3: Calculate qhat (\^q, in TeX notation).
177 		 * Let qhat = min((u[j]*B + u[j+1])/v[1], B-1), and
178 		 * let rhat = (u[j]*B + u[j+1]) mod v[1].
179 		 * While rhat < B and v[2]*qhat > rhat*B+u[j+2],
180 		 * decrement qhat and increase rhat correspondingly.
181 		 * Note that if rhat >= B, v[2]*qhat < rhat*B.
182 		 */
183 		uj0 = u[j + 0];	/* for D3 only -- note that u[j+...] change */
184 		uj1 = u[j + 1];	/* for D3 only */
185 		uj2 = u[j + 2];	/* for D3 only */
186 		if (uj0 == v1) {
187 			qhat = B;
188 			rhat = uj1;
189 			goto qhat_too_big;
190 		} else {
191 			u_long n = COMBINE(uj0, uj1);
192 			qhat = n / v1;
193 			rhat = n % v1;
194 		}
195 		while (v2 * qhat > COMBINE(rhat, uj2)) {
196 	qhat_too_big:
197 			qhat--;
198 			if ((rhat += v1) >= B)
199 				break;
200 		}
201 		/*
202 		 * D4: Multiply and subtract.
203 		 * The variable `t' holds any borrows across the loop.
204 		 * We split this up so that we do not require v[0] = 0,
205 		 * and to eliminate a final special case.
206 		 */
207 		for (t = 0, i = n; i > 0; i--) {
208 			t = u[i + j] - v[i] * qhat - t;
209 			u[i + j] = LHALF(t);
210 			t = (B - HHALF(t)) & (B - 1);
211 		}
212 		t = u[j] - t;
213 		u[j] = LHALF(t);
214 		/*
215 		 * D5: test remainder.
216 		 * There is a borrow if and only if HHALF(t) is nonzero;
217 		 * in that (rare) case, qhat was too large (by exactly 1).
218 		 * Fix it by adding v[1..n] to u[j..j+n].
219 		 */
220 		if (HHALF(t)) {
221 			qhat--;
222 			for (t = 0, i = n; i > 0; i--) { /* D6: add back. */
223 				t += u[i + j] + v[i];
224 				u[i + j] = LHALF(t);
225 				t = HHALF(t);
226 			}
227 			u[j] = LHALF(u[j] + t);
228 		}
229 		q[j] = qhat;
230 	} while (++j <= m);		/* D7: loop on j. */
231 
232 	/*
233 	 * If caller wants the remainder, we have to calculate it as
234 	 * u[m..m+n] >> d (this is at most n digits and thus fits in
235 	 * u[m+1..m+n], but we may need more source digits).
236 	 */
237 	if (arq) {
238 		if (d) {
239 			for (i = m + n; i > m; --i)
240 				u[i] = (u[i] >> d) |
241 				    LHALF(u[i - 1] << (HALF_BITS - d));
242 			u[i] = 0;
243 		}
244 		tmp.ul[H] = COMBINE(uspace[1], uspace[2]);
245 		tmp.ul[L] = COMBINE(uspace[3], uspace[4]);
246 		*arq = tmp.q;
247 	}
248 
249 	tmp.ul[H] = COMBINE(qspace[1], qspace[2]);
250 	tmp.ul[L] = COMBINE(qspace[3], qspace[4]);
251 	return (tmp.q);
252 }
253