xref: /original-bsd/lib/libc/stdlib/radixsort.c (revision 569f7297)
1 /*-
2  * Copyright (c) 1990 The Regents of the University of California.
3  * All rights reserved.
4  *
5  * %sccs.include.redist.c%
6  */
7 
8 #if defined(LIBC_SCCS) && !defined(lint)
9 static char sccsid[] = "@(#)radixsort.c	5.8 (Berkeley) 07/23/91";
10 #endif /* LIBC_SCCS and not lint */
11 
12 #include <sys/types.h>
13 #include <limits.h>
14 #include <stdlib.h>
15 #include <stddef.h>
16 #include <string.h>
17 
18 /*
19  * __rspartition is the cutoff point for a further partitioning instead
20  * of a shellsort.  If it changes check __rsshell_increments.  Both of
21  * these are exported, as the best values are data dependent.
22  */
23 #define	NPARTITION	40
24 int __rspartition = NPARTITION;
25 int __rsshell_increments[] = { 4, 1, 0, 0, 0, 0, 0, 0 };
26 
27 /*
28  * Stackp points to context structures, where each structure schedules a
29  * partitioning.  Radixsort exits when the stack is empty.
30  *
31  * If the buckets are placed on the stack randomly, the worst case is when
32  * all the buckets but one contain (npartitions + 1) elements and the bucket
33  * pushed on the stack last contains the rest of the elements.  In this case,
34  * stack growth is bounded by:
35  *
36  *	limit = (nelements / (npartitions + 1)) - 1;
37  *
38  * This is a very large number, 52,377,648 for the maximum 32-bit signed int.
39  *
40  * By forcing the largest bucket to be pushed on the stack first, the worst
41  * case is when all but two buckets each contain (npartitions + 1) elements,
42  * with the remaining elements split equally between the first and last
43  * buckets pushed on the stack.  In this case, stack growth is bounded when:
44  *
45  *	for (partition_cnt = 0; nelements > npartitions; ++partition_cnt)
46  *		nelements =
47  *		    (nelements - (npartitions + 1) * (nbuckets - 2)) / 2;
48  * The bound is:
49  *
50  *	limit = partition_cnt * (nbuckets - 1);
51  *
52  * This is a much smaller number, 4590 for the maximum 32-bit signed int.
53  */
54 #define	NBUCKETS	(UCHAR_MAX + 1)
55 
56 typedef struct _stack {
57 	const u_char **bot;
58 	int indx, nmemb;
59 } CONTEXT;
60 
61 #define	STACKPUSH { \
62 	stackp->bot = p; \
63 	stackp->nmemb = nmemb; \
64 	stackp->indx = indx; \
65 	++stackp; \
66 }
67 #define	STACKPOP { \
68 	if (stackp == stack) \
69 		break; \
70 	--stackp; \
71 	bot = stackp->bot; \
72 	nmemb = stackp->nmemb; \
73 	indx = stackp->indx; \
74 }
75 
76 /*
77  * A variant of MSD radix sorting; see Knuth Vol. 3, page 177, and 5.2.5,
78  * Ex. 10 and 12.  Also, "Three Partition Refinement Algorithms, Paige
79  * and Tarjan, SIAM J. Comput. Vol. 16, No. 6, December 1987.
80  *
81  * This uses a simple sort as soon as a bucket crosses a cutoff point,
82  * rather than sorting the entire list after partitioning is finished.
83  * This should be an advantage.
84  *
85  * This is pure MSD instead of LSD of some number of MSD, switching to
86  * the simple sort as soon as possible.  Takes linear time relative to
87  * the number of bytes in the strings.
88  */
89 int
90 radixsort(l1, nmemb, tab, endbyte)
91 	const u_char **l1;
92 	register int nmemb;
93 	const u_char *tab;
94 	u_int endbyte;
95 {
96 	register int i, indx, t1, t2;
97 	register const u_char **l2;
98 	register const u_char **p;
99 	register const u_char **bot;
100 	register const u_char *tr;
101 	CONTEXT *stack, *stackp;
102 	int c[NBUCKETS + 1], max;
103 	u_char ltab[NBUCKETS];
104 	static void shellsort();
105 
106 	if (nmemb <= 1)
107 		return(0);
108 
109 	/*
110 	 * T1 is the constant part of the equation, the number of elements
111 	 * represented on the stack between the top and bottom entries.
112 	 * It doesn't get rounded as the divide by 2 rounds down (correct
113 	 * for a value being subtracted).  T2, the nelem value, has to be
114 	 * rounded up before each divide because we want an upper bound;
115 	 * this could overflow if nmemb is the maximum int.
116 	 */
117 	t1 = ((__rspartition + 1) * (NBUCKETS - 2)) >> 1;
118 	for (i = 0, t2 = nmemb; t2 > __rspartition; i += NBUCKETS - 1)
119 		t2 = ((t2 + 1) >> 1) - t1;
120 	if (i) {
121 		if (!(stack = stackp = (CONTEXT *)malloc(i * sizeof(CONTEXT))))
122 			return(-1);
123 	} else
124 		stack = stackp = NULL;
125 
126 	/*
127 	 * There are two arrays, one provided by the user (l1), and the
128 	 * temporary one (l2).  The data is sorted to the temporary stack,
129 	 * and then copied back.  The speedup of using index to determine
130 	 * which stack the data is on and simply swapping stacks back and
131 	 * forth, thus avoiding the copy every iteration, turns out to not
132 	 * be any faster than the current implementation.
133 	 */
134 	if (!(l2 = (const u_char **)malloc(sizeof(u_char *) * nmemb)))
135 		return(-1);
136 
137 	/*
138 	 * Tr references a table of sort weights; multiple entries may
139 	 * map to the same weight; EOS char must have the lowest weight.
140 	 */
141 	if (tab)
142 		tr = tab;
143 	else {
144 		for (t1 = 0, t2 = endbyte; t1 < t2; ++t1)
145 			ltab[t1] = t1 + 1;
146 		ltab[t2] = 0;
147 		for (t1 = endbyte + 1; t1 < NBUCKETS; ++t1)
148 			ltab[t1] = t1;
149 		tr = ltab;
150 	}
151 
152 	/* First sort is entire stack */
153 	bot = l1;
154 	indx = 0;
155 
156 	for (;;) {
157 		/* Clear bucket count array */
158 		bzero((char *)c, sizeof(c));
159 
160 		/*
161 		 * Compute number of items that sort to the same bucket
162 		 * for this index.
163 		 */
164 		for (p = bot, i = nmemb; --i >= 0;)
165 			++c[tr[(*p++)[indx]]];
166 
167 		/*
168 		 * Sum the number of characters into c, dividing the temp
169 		 * stack into the right number of buckets for this bucket,
170 		 * this index.  C contains the cumulative total of keys
171 		 * before and included in this bucket, and will later be
172 		 * used as an index to the bucket.  c[NBUCKETS] contains
173 		 * the total number of elements, for determining how many
174 		 * elements the last bucket contains.  At the same time
175 		 * find the largest bucket so it gets pushed first.
176 		 */
177 		for (i = max = t1 = 0, t2 = __rspartition; i <= NBUCKETS; ++i) {
178 			if (c[i] > t2) {
179 				t2 = c[i];
180 				max = i;
181 			}
182 			t1 = c[i] += t1;
183 		}
184 
185 		/*
186 		 * Partition the elements into buckets; c decrements through
187 		 * the bucket, and ends up pointing to the first element of
188 		 * the bucket.
189 		 */
190 		for (i = nmemb; --i >= 0;) {
191 			--p;
192 			l2[--c[tr[(*p)[indx]]]] = *p;
193 		}
194 
195 		/* Copy the partitioned elements back to user stack */
196 		bcopy(l2, bot, nmemb * sizeof(u_char *));
197 
198 		++indx;
199 		/*
200 		 * Sort buckets as necessary; don't sort c[0], it's the
201 		 * EOS character bucket, and nothing can follow EOS.
202 		 */
203 		for (i = max; i; --i) {
204 			if ((nmemb = c[i + 1] - (t1 = c[i])) < 2)
205 				continue;
206 			p = bot + t1;
207 			if (nmemb > __rspartition)
208 				STACKPUSH
209 			else
210 				shellsort(p, indx, nmemb, tr);
211 		}
212 		for (i = max + 1; i < NBUCKETS; ++i) {
213 			if ((nmemb = c[i + 1] - (t1 = c[i])) < 2)
214 				continue;
215 			p = bot + t1;
216 			if (nmemb > __rspartition)
217 				STACKPUSH
218 			else
219 				shellsort(p, indx, nmemb, tr);
220 		}
221 		/* Break out when stack is empty */
222 		STACKPOP
223 	}
224 
225 	free((char *)l2);
226 	free((char *)stack);
227 	return(0);
228 }
229 
230 /*
231  * Shellsort (diminishing increment sort) from Data Structures and
232  * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
233  * see also Knuth Vol. 3, page 84.  The increments are selected from
234  * formula (8), page 95.  Roughly O(N^3/2).
235  */
236 static void
237 shellsort(p, indx, nmemb, tr)
238 	register u_char **p, *tr;
239 	register int indx, nmemb;
240 {
241 	register u_char ch, *s1, *s2;
242 	register int incr, *incrp, t1, t2;
243 
244 	for (incrp = __rsshell_increments; incr = *incrp++;)
245 		for (t1 = incr; t1 < nmemb; ++t1)
246 			for (t2 = t1 - incr; t2 >= 0;) {
247 				s1 = p[t2] + indx;
248 				s2 = p[t2 + incr] + indx;
249 				while ((ch = tr[*s1++]) == tr[*s2] && ch)
250 					++s2;
251 				if (ch > tr[*s2]) {
252 					s1 = p[t2];
253 					p[t2] = p[t2 + incr];
254 					p[t2 + incr] = s1;
255 					t2 -= incr;
256 				} else
257 					break;
258 			}
259 }
260