xref: /original-bsd/lib/libc/stdlib/random.c (revision 4c3b28fe)
1 /*
2  * Copyright (c) 1983 Regents of the University of California.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms are permitted
6  * provided that the above copyright notice and this paragraph are
7  * duplicated in all such forms and that any documentation,
8  * advertising materials, and other materials related to such
9  * distribution and use acknowledge that the software was developed
10  * by the University of California, Berkeley.  The name of the
11  * University may not be used to endorse or promote products derived
12  * from this software without specific prior written permission.
13  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
14  * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
15  * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
16  */
17 
18 #if defined(LIBC_SCCS) && !defined(lint)
19 static char sccsid[] = "@(#)random.c	5.6 (Berkeley) 01/02/90";
20 #endif /* LIBC_SCCS and not lint */
21 
22 #include <stdio.h>
23 
24 /*
25  * random.c:
26  * An improved random number generation package.  In addition to the standard
27  * rand()/srand() like interface, this package also has a special state info
28  * interface.  The initstate() routine is called with a seed, an array of
29  * bytes, and a count of how many bytes are being passed in; this array is then
30  * initialized to contain information for random number generation with that
31  * much state information.  Good sizes for the amount of state information are
32  * 32, 64, 128, and 256 bytes.  The state can be switched by calling the
33  * setstate() routine with the same array as was initiallized with initstate().
34  * By default, the package runs with 128 bytes of state information and
35  * generates far better random numbers than a linear congruential generator.
36  * If the amount of state information is less than 32 bytes, a simple linear
37  * congruential R.N.G. is used.
38  * Internally, the state information is treated as an array of longs; the
39  * zeroeth element of the array is the type of R.N.G. being used (small
40  * integer); the remainder of the array is the state information for the
41  * R.N.G.  Thus, 32 bytes of state information will give 7 longs worth of
42  * state information, which will allow a degree seven polynomial.  (Note: the
43  * zeroeth word of state information also has some other information stored
44  * in it -- see setstate() for details).
45  * The random number generation technique is a linear feedback shift register
46  * approach, employing trinomials (since there are fewer terms to sum up that
47  * way).  In this approach, the least significant bit of all the numbers in
48  * the state table will act as a linear feedback shift register, and will have
49  * period 2^deg - 1 (where deg is the degree of the polynomial being used,
50  * assuming that the polynomial is irreducible and primitive).  The higher
51  * order bits will have longer periods, since their values are also influenced
52  * by pseudo-random carries out of the lower bits.  The total period of the
53  * generator is approximately deg*(2**deg - 1); thus doubling the amount of
54  * state information has a vast influence on the period of the generator.
55  * Note: the deg*(2**deg - 1) is an approximation only good for large deg,
56  * when the period of the shift register is the dominant factor.  With deg
57  * equal to seven, the period is actually much longer than the 7*(2**7 - 1)
58  * predicted by this formula.
59  */
60 
61 
62 
63 /*
64  * For each of the currently supported random number generators, we have a
65  * break value on the amount of state information (you need at least this
66  * many bytes of state info to support this random number generator), a degree
67  * for the polynomial (actually a trinomial) that the R.N.G. is based on, and
68  * the separation between the two lower order coefficients of the trinomial.
69  */
70 
71 #define		TYPE_0		0		/* linear congruential */
72 #define		BREAK_0		8
73 #define		DEG_0		0
74 #define		SEP_0		0
75 
76 #define		TYPE_1		1		/* x**7 + x**3 + 1 */
77 #define		BREAK_1		32
78 #define		DEG_1		7
79 #define		SEP_1		3
80 
81 #define		TYPE_2		2		/* x**15 + x + 1 */
82 #define		BREAK_2		64
83 #define		DEG_2		15
84 #define		SEP_2		1
85 
86 #define		TYPE_3		3		/* x**31 + x**3 + 1 */
87 #define		BREAK_3		128
88 #define		DEG_3		31
89 #define		SEP_3		3
90 
91 #define		TYPE_4		4		/* x**63 + x + 1 */
92 #define		BREAK_4		256
93 #define		DEG_4		63
94 #define		SEP_4		1
95 
96 
97 /*
98  * Array versions of the above information to make code run faster -- relies
99  * on fact that TYPE_i == i.
100  */
101 
102 #define		MAX_TYPES	5		/* max number of types above */
103 
104 static  int		degrees[ MAX_TYPES ]	= { DEG_0, DEG_1, DEG_2,
105 								DEG_3, DEG_4 };
106 
107 static  int		seps[ MAX_TYPES ]	= { SEP_0, SEP_1, SEP_2,
108 								SEP_3, SEP_4 };
109 
110 
111 
112 /*
113  * Initially, everything is set up as if from :
114  *		initstate( 1, &randtbl, 128 );
115  * Note that this initialization takes advantage of the fact that srandom()
116  * advances the front and rear pointers 10*rand_deg times, and hence the
117  * rear pointer which starts at 0 will also end up at zero; thus the zeroeth
118  * element of the state information, which contains info about the current
119  * position of the rear pointer is just
120  *	MAX_TYPES*(rptr - state) + TYPE_3 == TYPE_3.
121  */
122 
123 static  long		randtbl[ DEG_3 + 1 ]	= { TYPE_3,
124 			    0x9a319039, 0x32d9c024, 0x9b663182, 0x5da1f342,
125 			    0xde3b81e0, 0xdf0a6fb5, 0xf103bc02, 0x48f340fb,
126 			    0x7449e56b, 0xbeb1dbb0, 0xab5c5918, 0x946554fd,
127 			    0x8c2e680f, 0xeb3d799f, 0xb11ee0b7, 0x2d436b86,
128 			    0xda672e2a, 0x1588ca88, 0xe369735d, 0x904f35f7,
129 			    0xd7158fd6, 0x6fa6f051, 0x616e6b96, 0xac94efdc,
130 			    0x36413f93, 0xc622c298, 0xf5a42ab8, 0x8a88d77b,
131 					0xf5ad9d0e, 0x8999220b, 0x27fb47b9 };
132 
133 /*
134  * fptr and rptr are two pointers into the state info, a front and a rear
135  * pointer.  These two pointers are always rand_sep places aparts, as they cycle
136  * cyclically through the state information.  (Yes, this does mean we could get
137  * away with just one pointer, but the code for random() is more efficient this
138  * way).  The pointers are left positioned as they would be from the call
139  *			initstate( 1, randtbl, 128 )
140  * (The position of the rear pointer, rptr, is really 0 (as explained above
141  * in the initialization of randtbl) because the state table pointer is set
142  * to point to randtbl[1] (as explained below).
143  */
144 
145 static  long		*fptr			= &randtbl[ SEP_3 + 1 ];
146 static  long		*rptr			= &randtbl[ 1 ];
147 
148 
149 
150 /*
151  * The following things are the pointer to the state information table,
152  * the type of the current generator, the degree of the current polynomial
153  * being used, and the separation between the two pointers.
154  * Note that for efficiency of random(), we remember the first location of
155  * the state information, not the zeroeth.  Hence it is valid to access
156  * state[-1], which is used to store the type of the R.N.G.
157  * Also, we remember the last location, since this is more efficient than
158  * indexing every time to find the address of the last element to see if
159  * the front and rear pointers have wrapped.
160  */
161 
162 static  long		*state			= &randtbl[ 1 ];
163 
164 static  int		rand_type		= TYPE_3;
165 static  int		rand_deg		= DEG_3;
166 static  int		rand_sep		= SEP_3;
167 
168 static  long		*end_ptr		= &randtbl[ DEG_3 + 1 ];
169 
170 
171 
172 /*
173  * srandom:
174  * Initialize the random number generator based on the given seed.  If the
175  * type is the trivial no-state-information type, just remember the seed.
176  * Otherwise, initializes state[] based on the given "seed" via a linear
177  * congruential generator.  Then, the pointers are set to known locations
178  * that are exactly rand_sep places apart.  Lastly, it cycles the state
179  * information a given number of times to get rid of any initial dependencies
180  * introduced by the L.C.R.N.G.
181  * Note that the initialization of randtbl[] for default usage relies on
182  * values produced by this routine.
183  */
184 
185 srandom( x )
186 
187     unsigned		x;
188 {
189     	register  int		i, j;
190 	long random();
191 
192 	if(  rand_type  ==  TYPE_0  )  {
193 	    state[ 0 ] = x;
194 	}
195 	else  {
196 	    j = 1;
197 	    state[ 0 ] = x;
198 	    for( i = 1; i < rand_deg; i++ )  {
199 		state[i] = 1103515245*state[i - 1] + 12345;
200 	    }
201 	    fptr = &state[ rand_sep ];
202 	    rptr = &state[ 0 ];
203 	    for( i = 0; i < 10*rand_deg; i++ )  random();
204 	}
205 }
206 
207 
208 
209 /*
210  * initstate:
211  * Initialize the state information in the given array of n bytes for
212  * future random number generation.  Based on the number of bytes we
213  * are given, and the break values for the different R.N.G.'s, we choose
214  * the best (largest) one we can and set things up for it.  srandom() is
215  * then called to initialize the state information.
216  * Note that on return from srandom(), we set state[-1] to be the type
217  * multiplexed with the current value of the rear pointer; this is so
218  * successive calls to initstate() won't lose this information and will
219  * be able to restart with setstate().
220  * Note: the first thing we do is save the current state, if any, just like
221  * setstate() so that it doesn't matter when initstate is called.
222  * Returns a pointer to the old state.
223  */
224 
225 char  *
226 initstate( seed, arg_state, n )
227 
228     unsigned		seed;			/* seed for R. N. G. */
229     char		*arg_state;		/* pointer to state array */
230     int			n;			/* # bytes of state info */
231 {
232 	register  char		*ostate		= (char *)( &state[ -1 ] );
233 
234 	if(  rand_type  ==  TYPE_0  )  state[ -1 ] = rand_type;
235 	else  state[ -1 ] = MAX_TYPES*(rptr - state) + rand_type;
236 	if(  n  <  BREAK_1  )  {
237 	    if(  n  <  BREAK_0  )  {
238 		fprintf( stderr, "initstate: not enough state (%d bytes); ignored.\n", n );
239 		return 0;
240 	    }
241 	    rand_type = TYPE_0;
242 	    rand_deg = DEG_0;
243 	    rand_sep = SEP_0;
244 	}
245 	else  {
246 	    if(  n  <  BREAK_2  )  {
247 		rand_type = TYPE_1;
248 		rand_deg = DEG_1;
249 		rand_sep = SEP_1;
250 	    }
251 	    else  {
252 		if(  n  <  BREAK_3  )  {
253 		    rand_type = TYPE_2;
254 		    rand_deg = DEG_2;
255 		    rand_sep = SEP_2;
256 		}
257 		else  {
258 		    if(  n  <  BREAK_4  )  {
259 			rand_type = TYPE_3;
260 			rand_deg = DEG_3;
261 			rand_sep = SEP_3;
262 		    }
263 		    else  {
264 			rand_type = TYPE_4;
265 			rand_deg = DEG_4;
266 			rand_sep = SEP_4;
267 		    }
268 		}
269 	    }
270 	}
271 	state = &(  ( (long *)arg_state )[1]  );	/* first location */
272 	end_ptr = &state[ rand_deg ];	/* must set end_ptr before srandom */
273 	srandom( seed );
274 	if(  rand_type  ==  TYPE_0  )  state[ -1 ] = rand_type;
275 	else  state[ -1 ] = MAX_TYPES*(rptr - state) + rand_type;
276 	return( ostate );
277 }
278 
279 
280 
281 /*
282  * setstate:
283  * Restore the state from the given state array.
284  * Note: it is important that we also remember the locations of the pointers
285  * in the current state information, and restore the locations of the pointers
286  * from the old state information.  This is done by multiplexing the pointer
287  * location into the zeroeth word of the state information.
288  * Note that due to the order in which things are done, it is OK to call
289  * setstate() with the same state as the current state.
290  * Returns a pointer to the old state information.
291  */
292 
293 char  *
294 setstate( arg_state )
295 
296     char		*arg_state;
297 {
298 	register  long		*new_state	= (long *)arg_state;
299 	register  int		type		= new_state[0]%MAX_TYPES;
300 	register  int		rear		= new_state[0]/MAX_TYPES;
301 	char			*ostate		= (char *)( &state[ -1 ] );
302 
303 	if(  rand_type  ==  TYPE_0  )  state[ -1 ] = rand_type;
304 	else  state[ -1 ] = MAX_TYPES*(rptr - state) + rand_type;
305 	switch(  type  )  {
306 	    case  TYPE_0:
307 	    case  TYPE_1:
308 	    case  TYPE_2:
309 	    case  TYPE_3:
310 	    case  TYPE_4:
311 		rand_type = type;
312 		rand_deg = degrees[ type ];
313 		rand_sep = seps[ type ];
314 		break;
315 
316 	    default:
317 		fprintf( stderr, "setstate: state info has been munged; not changed.\n" );
318 	}
319 	state = &new_state[ 1 ];
320 	if(  rand_type  !=  TYPE_0  )  {
321 	    rptr = &state[ rear ];
322 	    fptr = &state[ (rear + rand_sep)%rand_deg ];
323 	}
324 	end_ptr = &state[ rand_deg ];		/* set end_ptr too */
325 	return( ostate );
326 }
327 
328 
329 
330 /*
331  * random:
332  * If we are using the trivial TYPE_0 R.N.G., just do the old linear
333  * congruential bit.  Otherwise, we do our fancy trinomial stuff, which is the
334  * same in all ther other cases due to all the global variables that have been
335  * set up.  The basic operation is to add the number at the rear pointer into
336  * the one at the front pointer.  Then both pointers are advanced to the next
337  * location cyclically in the table.  The value returned is the sum generated,
338  * reduced to 31 bits by throwing away the "least random" low bit.
339  * Note: the code takes advantage of the fact that both the front and
340  * rear pointers can't wrap on the same call by not testing the rear
341  * pointer if the front one has wrapped.
342  * Returns a 31-bit random number.
343  */
344 
345 long
346 random()
347 {
348 	long		i;
349 
350 	if(  rand_type  ==  TYPE_0  )  {
351 	    i = state[0] = ( state[0]*1103515245 + 12345 )&0x7fffffff;
352 	}
353 	else  {
354 	    *fptr += *rptr;
355 	    i = (*fptr >> 1)&0x7fffffff;	/* chucking least random bit */
356 	    if(  ++fptr  >=  end_ptr  )  {
357 		fptr = state;
358 		++rptr;
359 	    }
360 	    else  {
361 		if(  ++rptr  >=  end_ptr  )  rptr = state;
362 	    }
363 	}
364 	return( i );
365 }
366 
367