xref: /original-bsd/lib/libc/stdlib/random.c (revision c3e32dec)
1 /*
2  * Copyright (c) 1983, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * %sccs.include.redist.c%
6  */
7 
8 #if defined(LIBC_SCCS) && !defined(lint)
9 static char sccsid[] = "@(#)random.c	8.1 (Berkeley) 06/04/93";
10 #endif /* LIBC_SCCS and not lint */
11 
12 #include <stdio.h>
13 #include <stdlib.h>
14 
15 /*
16  * random.c:
17  *
18  * An improved random number generation package.  In addition to the standard
19  * rand()/srand() like interface, this package also has a special state info
20  * interface.  The initstate() routine is called with a seed, an array of
21  * bytes, and a count of how many bytes are being passed in; this array is
22  * then initialized to contain information for random number generation with
23  * that much state information.  Good sizes for the amount of state
24  * information are 32, 64, 128, and 256 bytes.  The state can be switched by
25  * calling the setstate() routine with the same array as was initiallized
26  * with initstate().  By default, the package runs with 128 bytes of state
27  * information and generates far better random numbers than a linear
28  * congruential generator.  If the amount of state information is less than
29  * 32 bytes, a simple linear congruential R.N.G. is used.
30  *
31  * Internally, the state information is treated as an array of longs; the
32  * zeroeth element of the array is the type of R.N.G. being used (small
33  * integer); the remainder of the array is the state information for the
34  * R.N.G.  Thus, 32 bytes of state information will give 7 longs worth of
35  * state information, which will allow a degree seven polynomial.  (Note:
36  * the zeroeth word of state information also has some other information
37  * stored in it -- see setstate() for details).
38  *
39  * The random number generation technique is a linear feedback shift register
40  * approach, employing trinomials (since there are fewer terms to sum up that
41  * way).  In this approach, the least significant bit of all the numbers in
42  * the state table will act as a linear feedback shift register, and will
43  * have period 2^deg - 1 (where deg is the degree of the polynomial being
44  * used, assuming that the polynomial is irreducible and primitive).  The
45  * higher order bits will have longer periods, since their values are also
46  * influenced by pseudo-random carries out of the lower bits.  The total
47  * period of the generator is approximately deg*(2**deg - 1); thus doubling
48  * the amount of state information has a vast influence on the period of the
49  * generator.  Note: the deg*(2**deg - 1) is an approximation only good for
50  * large deg, when the period of the shift register is the dominant factor.
51  * With deg equal to seven, the period is actually much longer than the
52  * 7*(2**7 - 1) predicted by this formula.
53  */
54 
55 /*
56  * For each of the currently supported random number generators, we have a
57  * break value on the amount of state information (you need at least this
58  * many bytes of state info to support this random number generator), a degree
59  * for the polynomial (actually a trinomial) that the R.N.G. is based on, and
60  * the separation between the two lower order coefficients of the trinomial.
61  */
62 #define	TYPE_0		0		/* linear congruential */
63 #define	BREAK_0		8
64 #define	DEG_0		0
65 #define	SEP_0		0
66 
67 #define	TYPE_1		1		/* x**7 + x**3 + 1 */
68 #define	BREAK_1		32
69 #define	DEG_1		7
70 #define	SEP_1		3
71 
72 #define	TYPE_2		2		/* x**15 + x + 1 */
73 #define	BREAK_2		64
74 #define	DEG_2		15
75 #define	SEP_2		1
76 
77 #define	TYPE_3		3		/* x**31 + x**3 + 1 */
78 #define	BREAK_3		128
79 #define	DEG_3		31
80 #define	SEP_3		3
81 
82 #define	TYPE_4		4		/* x**63 + x + 1 */
83 #define	BREAK_4		256
84 #define	DEG_4		63
85 #define	SEP_4		1
86 
87 /*
88  * Array versions of the above information to make code run faster --
89  * relies on fact that TYPE_i == i.
90  */
91 #define	MAX_TYPES	5		/* max number of types above */
92 
93 static int degrees[MAX_TYPES] =	{ DEG_0, DEG_1, DEG_2, DEG_3, DEG_4 };
94 static int seps [MAX_TYPES] =	{ SEP_0, SEP_1, SEP_2, SEP_3, SEP_4 };
95 
96 /*
97  * Initially, everything is set up as if from:
98  *
99  *	initstate(1, &randtbl, 128);
100  *
101  * Note that this initialization takes advantage of the fact that srandom()
102  * advances the front and rear pointers 10*rand_deg times, and hence the
103  * rear pointer which starts at 0 will also end up at zero; thus the zeroeth
104  * element of the state information, which contains info about the current
105  * position of the rear pointer is just
106  *
107  *	MAX_TYPES * (rptr - state) + TYPE_3 == TYPE_3.
108  */
109 
110 static long randtbl[DEG_3 + 1] = {
111 	TYPE_3,
112 	0x9a319039, 0x32d9c024, 0x9b663182, 0x5da1f342, 0xde3b81e0, 0xdf0a6fb5,
113 	0xf103bc02, 0x48f340fb, 0x7449e56b, 0xbeb1dbb0, 0xab5c5918, 0x946554fd,
114 	0x8c2e680f, 0xeb3d799f, 0xb11ee0b7, 0x2d436b86, 0xda672e2a, 0x1588ca88,
115 	0xe369735d, 0x904f35f7, 0xd7158fd6, 0x6fa6f051, 0x616e6b96, 0xac94efdc,
116 	0x36413f93, 0xc622c298, 0xf5a42ab8, 0x8a88d77b, 0xf5ad9d0e, 0x8999220b,
117 	0x27fb47b9,
118 };
119 
120 /*
121  * fptr and rptr are two pointers into the state info, a front and a rear
122  * pointer.  These two pointers are always rand_sep places aparts, as they
123  * cycle cyclically through the state information.  (Yes, this does mean we
124  * could get away with just one pointer, but the code for random() is more
125  * efficient this way).  The pointers are left positioned as they would be
126  * from the call
127  *
128  *	initstate(1, randtbl, 128);
129  *
130  * (The position of the rear pointer, rptr, is really 0 (as explained above
131  * in the initialization of randtbl) because the state table pointer is set
132  * to point to randtbl[1] (as explained below).
133  */
134 static long *fptr = &randtbl[SEP_3 + 1];
135 static long *rptr = &randtbl[1];
136 
137 /*
138  * The following things are the pointer to the state information table, the
139  * type of the current generator, the degree of the current polynomial being
140  * used, and the separation between the two pointers.  Note that for efficiency
141  * of random(), we remember the first location of the state information, not
142  * the zeroeth.  Hence it is valid to access state[-1], which is used to
143  * store the type of the R.N.G.  Also, we remember the last location, since
144  * this is more efficient than indexing every time to find the address of
145  * the last element to see if the front and rear pointers have wrapped.
146  */
147 static long *state = &randtbl[1];
148 static int rand_type = TYPE_3;
149 static int rand_deg = DEG_3;
150 static int rand_sep = SEP_3;
151 static long *end_ptr = &randtbl[DEG_3 + 1];
152 
153 /*
154  * srandom:
155  *
156  * Initialize the random number generator based on the given seed.  If the
157  * type is the trivial no-state-information type, just remember the seed.
158  * Otherwise, initializes state[] based on the given "seed" via a linear
159  * congruential generator.  Then, the pointers are set to known locations
160  * that are exactly rand_sep places apart.  Lastly, it cycles the state
161  * information a given number of times to get rid of any initial dependencies
162  * introduced by the L.C.R.N.G.  Note that the initialization of randtbl[]
163  * for default usage relies on values produced by this routine.
164  */
165 void
166 srandom(x)
167 	u_int x;
168 {
169 	register int i, j;
170 
171 	if (rand_type == TYPE_0)
172 		state[0] = x;
173 	else {
174 		j = 1;
175 		state[0] = x;
176 		for (i = 1; i < rand_deg; i++)
177 			state[i] = 1103515245 * state[i - 1] + 12345;
178 		fptr = &state[rand_sep];
179 		rptr = &state[0];
180 		for (i = 0; i < 10 * rand_deg; i++)
181 			(void)random();
182 	}
183 }
184 
185 /*
186  * initstate:
187  *
188  * Initialize the state information in the given array of n bytes for future
189  * random number generation.  Based on the number of bytes we are given, and
190  * the break values for the different R.N.G.'s, we choose the best (largest)
191  * one we can and set things up for it.  srandom() is then called to
192  * initialize the state information.
193  *
194  * Note that on return from srandom(), we set state[-1] to be the type
195  * multiplexed with the current value of the rear pointer; this is so
196  * successive calls to initstate() won't lose this information and will be
197  * able to restart with setstate().
198  *
199  * Note: the first thing we do is save the current state, if any, just like
200  * setstate() so that it doesn't matter when initstate is called.
201  *
202  * Returns a pointer to the old state.
203  */
204 char *
205 initstate(seed, arg_state, n)
206 	u_int seed;			/* seed for R.N.G. */
207 	char *arg_state;		/* pointer to state array */
208 	int n;				/* # bytes of state info */
209 {
210 	register char *ostate = (char *)(&state[-1]);
211 
212 	if (rand_type == TYPE_0)
213 		state[-1] = rand_type;
214 	else
215 		state[-1] = MAX_TYPES * (rptr - state) + rand_type;
216 	if (n < BREAK_0) {
217 		(void)fprintf(stderr,
218 		    "random: not enough state (%d bytes); ignored.\n", n);
219 		return(0);
220 	}
221 	if (n < BREAK_1) {
222 		rand_type = TYPE_0;
223 		rand_deg = DEG_0;
224 		rand_sep = SEP_0;
225 	} else if (n < BREAK_2) {
226 		rand_type = TYPE_1;
227 		rand_deg = DEG_1;
228 		rand_sep = SEP_1;
229 	} else if (n < BREAK_3) {
230 		rand_type = TYPE_2;
231 		rand_deg = DEG_2;
232 		rand_sep = SEP_2;
233 	} else if (n < BREAK_4) {
234 		rand_type = TYPE_3;
235 		rand_deg = DEG_3;
236 		rand_sep = SEP_3;
237 	} else {
238 		rand_type = TYPE_4;
239 		rand_deg = DEG_4;
240 		rand_sep = SEP_4;
241 	}
242 	state = &(((long *)arg_state)[1]);	/* first location */
243 	end_ptr = &state[rand_deg];	/* must set end_ptr before srandom */
244 	srandom(seed);
245 	if (rand_type == TYPE_0)
246 		state[-1] = rand_type;
247 	else
248 		state[-1] = MAX_TYPES*(rptr - state) + rand_type;
249 	return(ostate);
250 }
251 
252 /*
253  * setstate:
254  *
255  * Restore the state from the given state array.
256  *
257  * Note: it is important that we also remember the locations of the pointers
258  * in the current state information, and restore the locations of the pointers
259  * from the old state information.  This is done by multiplexing the pointer
260  * location into the zeroeth word of the state information.
261  *
262  * Note that due to the order in which things are done, it is OK to call
263  * setstate() with the same state as the current state.
264  *
265  * Returns a pointer to the old state information.
266  */
267 char *
268 setstate(arg_state)
269 	char *arg_state;
270 {
271 	register long *new_state = (long *)arg_state;
272 	register int type = new_state[0] % MAX_TYPES;
273 	register int rear = new_state[0] / MAX_TYPES;
274 	char *ostate = (char *)(&state[-1]);
275 
276 	if (rand_type == TYPE_0)
277 		state[-1] = rand_type;
278 	else
279 		state[-1] = MAX_TYPES * (rptr - state) + rand_type;
280 	switch(type) {
281 	case TYPE_0:
282 	case TYPE_1:
283 	case TYPE_2:
284 	case TYPE_3:
285 	case TYPE_4:
286 		rand_type = type;
287 		rand_deg = degrees[type];
288 		rand_sep = seps[type];
289 		break;
290 	default:
291 		(void)fprintf(stderr,
292 		    "random: state info corrupted; not changed.\n");
293 	}
294 	state = &new_state[1];
295 	if (rand_type != TYPE_0) {
296 		rptr = &state[rear];
297 		fptr = &state[(rear + rand_sep) % rand_deg];
298 	}
299 	end_ptr = &state[rand_deg];		/* set end_ptr too */
300 	return(ostate);
301 }
302 
303 /*
304  * random:
305  *
306  * If we are using the trivial TYPE_0 R.N.G., just do the old linear
307  * congruential bit.  Otherwise, we do our fancy trinomial stuff, which is
308  * the same in all the other cases due to all the global variables that have
309  * been set up.  The basic operation is to add the number at the rear pointer
310  * into the one at the front pointer.  Then both pointers are advanced to
311  * the next location cyclically in the table.  The value returned is the sum
312  * generated, reduced to 31 bits by throwing away the "least random" low bit.
313  *
314  * Note: the code takes advantage of the fact that both the front and
315  * rear pointers can't wrap on the same call by not testing the rear
316  * pointer if the front one has wrapped.
317  *
318  * Returns a 31-bit random number.
319  */
320 long
321 random()
322 {
323 	long i;
324 
325 	if (rand_type == TYPE_0)
326 		i = state[0] = (state[0] * 1103515245 + 12345) & 0x7fffffff;
327 	else {
328 		*fptr += *rptr;
329 		i = (*fptr >> 1) & 0x7fffffff;	/* chucking least random bit */
330 		if (++fptr >= end_ptr) {
331 			fptr = state;
332 			++rptr;
333 		} else if (++rptr >= end_ptr)
334 			rptr = state;
335 	}
336 	return(i);
337 }
338