xref: /original-bsd/lib/libc/stdlib/random.c (revision d3640572)
1 /*
2  * Copyright (c) 1983 Regents of the University of California.
3  * All rights reserved.  The Berkeley software License Agreement
4  * specifies the terms and conditions for redistribution.
5  */
6 
7 #if defined(LIBC_SCCS) && !defined(lint)
8 static char sccsid[] = "@(#)random.c	5.3 (Berkeley) 04/06/87";
9 #endif LIBC_SCCS and not lint
10 
11 #include	<stdio.h>
12 
13 /*
14  * random.c:
15  * An improved random number generation package.  In addition to the standard
16  * rand()/srand() like interface, this package also has a special state info
17  * interface.  The initstate() routine is called with a seed, an array of
18  * bytes, and a count of how many bytes are being passed in; this array is then
19  * initialized to contain information for random number generation with that
20  * much state information.  Good sizes for the amount of state information are
21  * 32, 64, 128, and 256 bytes.  The state can be switched by calling the
22  * setstate() routine with the same array as was initiallized with initstate().
23  * By default, the package runs with 128 bytes of state information and
24  * generates far better random numbers than a linear congruential generator.
25  * If the amount of state information is less than 32 bytes, a simple linear
26  * congruential R.N.G. is used.
27  * Internally, the state information is treated as an array of longs; the
28  * zeroeth element of the array is the type of R.N.G. being used (small
29  * integer); the remainder of the array is the state information for the
30  * R.N.G.  Thus, 32 bytes of state information will give 7 longs worth of
31  * state information, which will allow a degree seven polynomial.  (Note: the
32  * zeroeth word of state information also has some other information stored
33  * in it -- see setstate() for details).
34  * The random number generation technique is a linear feedback shift register
35  * approach, employing trinomials (since there are fewer terms to sum up that
36  * way).  In this approach, the least significant bit of all the numbers in
37  * the state table will act as a linear feedback shift register, and will have
38  * period 2^deg - 1 (where deg is the degree of the polynomial being used,
39  * assuming that the polynomial is irreducible and primitive).  The higher
40  * order bits will have longer periods, since their values are also influenced
41  * by pseudo-random carries out of the lower bits.  The total period of the
42  * generator is approximately deg*(2**deg - 1); thus doubling the amount of
43  * state information has a vast influence on the period of the generator.
44  * Note: the deg*(2**deg - 1) is an approximation only good for large deg,
45  * when the period of the shift register is the dominant factor.  With deg
46  * equal to seven, the period is actually much longer than the 7*(2**7 - 1)
47  * predicted by this formula.
48  */
49 
50 
51 
52 /*
53  * For each of the currently supported random number generators, we have a
54  * break value on the amount of state information (you need at least this
55  * many bytes of state info to support this random number generator), a degree
56  * for the polynomial (actually a trinomial) that the R.N.G. is based on, and
57  * the separation between the two lower order coefficients of the trinomial.
58  */
59 
60 #define		TYPE_0		0		/* linear congruential */
61 #define		BREAK_0		8
62 #define		DEG_0		0
63 #define		SEP_0		0
64 
65 #define		TYPE_1		1		/* x**7 + x**3 + 1 */
66 #define		BREAK_1		32
67 #define		DEG_1		7
68 #define		SEP_1		3
69 
70 #define		TYPE_2		2		/* x**15 + x + 1 */
71 #define		BREAK_2		64
72 #define		DEG_2		15
73 #define		SEP_2		1
74 
75 #define		TYPE_3		3		/* x**31 + x**3 + 1 */
76 #define		BREAK_3		128
77 #define		DEG_3		31
78 #define		SEP_3		3
79 
80 #define		TYPE_4		4		/* x**63 + x + 1 */
81 #define		BREAK_4		256
82 #define		DEG_4		63
83 #define		SEP_4		1
84 
85 
86 /*
87  * Array versions of the above information to make code run faster -- relies
88  * on fact that TYPE_i == i.
89  */
90 
91 #define		MAX_TYPES	5		/* max number of types above */
92 
93 static  int		degrees[ MAX_TYPES ]	= { DEG_0, DEG_1, DEG_2,
94 								DEG_3, DEG_4 };
95 
96 static  int		seps[ MAX_TYPES ]	= { SEP_0, SEP_1, SEP_2,
97 								SEP_3, SEP_4 };
98 
99 
100 
101 /*
102  * Initially, everything is set up as if from :
103  *		initstate( 1, &randtbl, 128 );
104  * Note that this initialization takes advantage of the fact that srandom()
105  * advances the front and rear pointers 10*rand_deg times, and hence the
106  * rear pointer which starts at 0 will also end up at zero; thus the zeroeth
107  * element of the state information, which contains info about the current
108  * position of the rear pointer is just
109  *	MAX_TYPES*(rptr - state) + TYPE_3 == TYPE_3.
110  */
111 
112 static  long		randtbl[ DEG_3 + 1 ]	= { TYPE_3,
113 			    0x9a319039, 0x32d9c024, 0x9b663182, 0x5da1f342,
114 			    0xde3b81e0, 0xdf0a6fb5, 0xf103bc02, 0x48f340fb,
115 			    0x7449e56b, 0xbeb1dbb0, 0xab5c5918, 0x946554fd,
116 			    0x8c2e680f, 0xeb3d799f, 0xb11ee0b7, 0x2d436b86,
117 			    0xda672e2a, 0x1588ca88, 0xe369735d, 0x904f35f7,
118 			    0xd7158fd6, 0x6fa6f051, 0x616e6b96, 0xac94efdc,
119 			    0x36413f93, 0xc622c298, 0xf5a42ab8, 0x8a88d77b,
120 					0xf5ad9d0e, 0x8999220b, 0x27fb47b9 };
121 
122 /*
123  * fptr and rptr are two pointers into the state info, a front and a rear
124  * pointer.  These two pointers are always rand_sep places aparts, as they cycle
125  * cyclically through the state information.  (Yes, this does mean we could get
126  * away with just one pointer, but the code for random() is more efficient this
127  * way).  The pointers are left positioned as they would be from the call
128  *			initstate( 1, randtbl, 128 )
129  * (The position of the rear pointer, rptr, is really 0 (as explained above
130  * in the initialization of randtbl) because the state table pointer is set
131  * to point to randtbl[1] (as explained below).
132  */
133 
134 static  long		*fptr			= &randtbl[ SEP_3 + 1 ];
135 static  long		*rptr			= &randtbl[ 1 ];
136 
137 
138 
139 /*
140  * The following things are the pointer to the state information table,
141  * the type of the current generator, the degree of the current polynomial
142  * being used, and the separation between the two pointers.
143  * Note that for efficiency of random(), we remember the first location of
144  * the state information, not the zeroeth.  Hence it is valid to access
145  * state[-1], which is used to store the type of the R.N.G.
146  * Also, we remember the last location, since this is more efficient than
147  * indexing every time to find the address of the last element to see if
148  * the front and rear pointers have wrapped.
149  */
150 
151 static  long		*state			= &randtbl[ 1 ];
152 
153 static  int		rand_type		= TYPE_3;
154 static  int		rand_deg		= DEG_3;
155 static  int		rand_sep		= SEP_3;
156 
157 static  long		*end_ptr		= &randtbl[ DEG_3 + 1 ];
158 
159 
160 
161 /*
162  * srandom:
163  * Initialize the random number generator based on the given seed.  If the
164  * type is the trivial no-state-information type, just remember the seed.
165  * Otherwise, initializes state[] based on the given "seed" via a linear
166  * congruential generator.  Then, the pointers are set to known locations
167  * that are exactly rand_sep places apart.  Lastly, it cycles the state
168  * information a given number of times to get rid of any initial dependencies
169  * introduced by the L.C.R.N.G.
170  * Note that the initialization of randtbl[] for default usage relies on
171  * values produced by this routine.
172  */
173 
174 srandom( x )
175 
176     unsigned		x;
177 {
178     	register  int		i, j;
179 
180 	if(  rand_type  ==  TYPE_0  )  {
181 	    state[ 0 ] = x;
182 	}
183 	else  {
184 	    j = 1;
185 	    state[ 0 ] = x;
186 	    for( i = 1; i < rand_deg; i++ )  {
187 		state[i] = 1103515245*state[i - 1] + 12345;
188 	    }
189 	    fptr = &state[ rand_sep ];
190 	    rptr = &state[ 0 ];
191 	    for( i = 0; i < 10*rand_deg; i++ )  random();
192 	}
193 }
194 
195 
196 
197 /*
198  * initstate:
199  * Initialize the state information in the given array of n bytes for
200  * future random number generation.  Based on the number of bytes we
201  * are given, and the break values for the different R.N.G.'s, we choose
202  * the best (largest) one we can and set things up for it.  srandom() is
203  * then called to initialize the state information.
204  * Note that on return from srandom(), we set state[-1] to be the type
205  * multiplexed with the current value of the rear pointer; this is so
206  * successive calls to initstate() won't lose this information and will
207  * be able to restart with setstate().
208  * Note: the first thing we do is save the current state, if any, just like
209  * setstate() so that it doesn't matter when initstate is called.
210  * Returns a pointer to the old state.
211  */
212 
213 char  *
214 initstate( seed, arg_state, n )
215 
216     unsigned		seed;			/* seed for R. N. G. */
217     char		*arg_state;		/* pointer to state array */
218     int			n;			/* # bytes of state info */
219 {
220 	register  char		*ostate		= (char *)( &state[ -1 ] );
221 
222 	if(  rand_type  ==  TYPE_0  )  state[ -1 ] = rand_type;
223 	else  state[ -1 ] = MAX_TYPES*(rptr - state) + rand_type;
224 	if(  n  <  BREAK_1  )  {
225 	    if(  n  <  BREAK_0  )  {
226 		fprintf( stderr, "initstate: not enough state (%d bytes) with which to do jack; ignored.\n", n );
227 		return;
228 	    }
229 	    rand_type = TYPE_0;
230 	    rand_deg = DEG_0;
231 	    rand_sep = SEP_0;
232 	}
233 	else  {
234 	    if(  n  <  BREAK_2  )  {
235 		rand_type = TYPE_1;
236 		rand_deg = DEG_1;
237 		rand_sep = SEP_1;
238 	    }
239 	    else  {
240 		if(  n  <  BREAK_3  )  {
241 		    rand_type = TYPE_2;
242 		    rand_deg = DEG_2;
243 		    rand_sep = SEP_2;
244 		}
245 		else  {
246 		    if(  n  <  BREAK_4  )  {
247 			rand_type = TYPE_3;
248 			rand_deg = DEG_3;
249 			rand_sep = SEP_3;
250 		    }
251 		    else  {
252 			rand_type = TYPE_4;
253 			rand_deg = DEG_4;
254 			rand_sep = SEP_4;
255 		    }
256 		}
257 	    }
258 	}
259 	state = &(  ( (long *)arg_state )[1]  );	/* first location */
260 	end_ptr = &state[ rand_deg ];	/* must set end_ptr before srandom */
261 	srandom( seed );
262 	if(  rand_type  ==  TYPE_0  )  state[ -1 ] = rand_type;
263 	else  state[ -1 ] = MAX_TYPES*(rptr - state) + rand_type;
264 	return( ostate );
265 }
266 
267 
268 
269 /*
270  * setstate:
271  * Restore the state from the given state array.
272  * Note: it is important that we also remember the locations of the pointers
273  * in the current state information, and restore the locations of the pointers
274  * from the old state information.  This is done by multiplexing the pointer
275  * location into the zeroeth word of the state information.
276  * Note that due to the order in which things are done, it is OK to call
277  * setstate() with the same state as the current state.
278  * Returns a pointer to the old state information.
279  */
280 
281 char  *
282 setstate( arg_state )
283 
284     char		*arg_state;
285 {
286 	register  long		*new_state	= (long *)arg_state;
287 	register  int		type		= new_state[0]%MAX_TYPES;
288 	register  int		rear		= new_state[0]/MAX_TYPES;
289 	char			*ostate		= (char *)( &state[ -1 ] );
290 
291 	if(  rand_type  ==  TYPE_0  )  state[ -1 ] = rand_type;
292 	else  state[ -1 ] = MAX_TYPES*(rptr - state) + rand_type;
293 	switch(  type  )  {
294 	    case  TYPE_0:
295 	    case  TYPE_1:
296 	    case  TYPE_2:
297 	    case  TYPE_3:
298 	    case  TYPE_4:
299 		rand_type = type;
300 		rand_deg = degrees[ type ];
301 		rand_sep = seps[ type ];
302 		break;
303 
304 	    default:
305 		fprintf( stderr, "setstate: state info has been munged; not changed.\n" );
306 	}
307 	state = &new_state[ 1 ];
308 	if(  rand_type  !=  TYPE_0  )  {
309 	    rptr = &state[ rear ];
310 	    fptr = &state[ (rear + rand_sep)%rand_deg ];
311 	}
312 	end_ptr = &state[ rand_deg ];		/* set end_ptr too */
313 	return( ostate );
314 }
315 
316 
317 
318 /*
319  * random:
320  * If we are using the trivial TYPE_0 R.N.G., just do the old linear
321  * congruential bit.  Otherwise, we do our fancy trinomial stuff, which is the
322  * same in all ther other cases due to all the global variables that have been
323  * set up.  The basic operation is to add the number at the rear pointer into
324  * the one at the front pointer.  Then both pointers are advanced to the next
325  * location cyclically in the table.  The value returned is the sum generated,
326  * reduced to 31 bits by throwing away the "least random" low bit.
327  * Note: the code takes advantage of the fact that both the front and
328  * rear pointers can't wrap on the same call by not testing the rear
329  * pointer if the front one has wrapped.
330  * Returns a 31-bit random number.
331  */
332 
333 long
334 random()
335 {
336 	long		i;
337 
338 	if(  rand_type  ==  TYPE_0  )  {
339 	    i = state[0] = ( state[0]*1103515245 + 12345 )&0x7fffffff;
340 	}
341 	else  {
342 	    *fptr += *rptr;
343 	    i = (*fptr >> 1)&0x7fffffff;	/* chucking least random bit */
344 	    if(  ++fptr  >=  end_ptr  )  {
345 		fptr = state;
346 		++rptr;
347 	    }
348 	    else  {
349 		if(  ++rptr  >=  end_ptr  )  rptr = state;
350 	    }
351 	}
352 	return( i );
353 }
354 
355