xref: /original-bsd/lib/libc/stdlib/strtod.c (revision 327c59da)
1 #if defined(LIBC_SCCS) && !defined(lint)
2 static char sccsid[] = "@(#)strtod.c	5.2 (Berkeley) 02/20/93";
3 #endif /* LIBC_SCCS and not lint */
4 
5 /****************************************************************
6  *
7  * The author of this software is David M. Gay.
8  *
9  * Copyright (c) 1991 by AT&T.
10  *
11  * Permission to use, copy, modify, and distribute this software for any
12  * purpose without fee is hereby granted, provided that this entire notice
13  * is included in all copies of any software which is or includes a copy
14  * or modification of this software and in all copies of the supporting
15  * documentation for such software.
16  *
17  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
18  * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR AT&T MAKES ANY
19  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
20  * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
21  *
22  ***************************************************************/
23 
24 /* Please send bug reports to
25 	David M. Gay
26 	AT&T Bell Laboratories, Room 2C-463
27 	600 Mountain Avenue
28 	Murray Hill, NJ 07974-2070
29 	U.S.A.
30 	dmg@research.att.com or research!dmg
31  */
32 
33 /* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
34  *
35  * This strtod returns a nearest machine number to the input decimal
36  * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
37  * broken by the IEEE round-even rule.  Otherwise ties are broken by
38  * biased rounding (add half and chop).
39  *
40  * Inspired loosely by William D. Clinger's paper "How to Read Floating
41  * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
42  *
43  * Modifications:
44  *
45  *	1. We only require IEEE, IBM, or VAX double-precision
46  *		arithmetic (not IEEE double-extended).
47  *	2. We get by with floating-point arithmetic in a case that
48  *		Clinger missed -- when we're computing d * 10^n
49  *		for a small integer d and the integer n is not too
50  *		much larger than 22 (the maximum integer k for which
51  *		we can represent 10^k exactly), we may be able to
52  *		compute (d*10^k) * 10^(e-k) with just one roundoff.
53  *	3. Rather than a bit-at-a-time adjustment of the binary
54  *		result in the hard case, we use floating-point
55  *		arithmetic to determine the adjustment to within
56  *		one bit; only in really hard cases do we need to
57  *		compute a second residual.
58  *	4. Because of 3., we don't need a large table of powers of 10
59  *		for ten-to-e (just some small tables, e.g. of 10^k
60  *		for 0 <= k <= 22).
61  */
62 
63 /*
64  * #define IEEE_8087 for IEEE-arithmetic machines where the least
65  *	significant byte has the lowest address.
66  * #define IEEE_MC68k for IEEE-arithmetic machines where the most
67  *	significant byte has the lowest address.
68  * #define Sudden_Underflow for IEEE-format machines without gradual
69  *	underflow (i.e., that flush to zero on underflow).
70  * #define IBM for IBM mainframe-style floating-point arithmetic.
71  * #define VAX for VAX-style floating-point arithmetic.
72  * #define Unsigned_Shifts if >> does treats its left operand as unsigned.
73  * #define No_leftright to omit left-right logic in fast floating-point
74  *	computation of dtoa.
75  * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
76  * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
77  *	that use extended-precision instructions to compute rounded
78  *	products and quotients) with IBM.
79  * #define ROUND_BIASED for IEEE-format with biased rounding.
80  * #define Inaccurate_Divide for IEEE-format with correctly rounded
81  *	products but inaccurate quotients, e.g., for Intel i860.
82  * #define Just_16 to store 16 bits per 32-bit long when doing high-precision
83  *	integer arithmetic.  Whether this speeds things up or slows things
84  *	down depends on the machine and the number being converted.
85  * #define KR_headers for old-style C function headers.
86  * #define Bad_float_h if your system lacks a float.h or if it does not
87  *	define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
88  *	FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
89  */
90 
91 #if defined(i386) || defined(mips) && defined(MIPSEL)
92 #define IEEE_8087
93 #else
94 #define IEEE_MC68k
95 #endif
96 
97 #ifdef DEBUG
98 #include "stdio.h"
99 #define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
100 #endif
101 
102 #ifdef __cplusplus
103 #include "malloc.h"
104 #include "memory.h"
105 #else
106 #ifndef KR_headers
107 #include "stdlib.h"
108 #include "string.h"
109 #else
110 #include "malloc.h"
111 #include "memory.h"
112 #endif
113 #endif
114 
115 #include "errno.h"
116 #ifdef Bad_float_h
117 #undef __STDC__
118 #ifdef IEEE_MC68k
119 #define IEEE_ARITHMETIC
120 #endif
121 #ifdef IEEE_8087
122 #define IEEE_ARITHMETIC
123 #endif
124 #ifdef IEEE_ARITHMETIC
125 #define DBL_DIG 15
126 #define DBL_MAX_10_EXP 308
127 #define DBL_MAX_EXP 1024
128 #define FLT_RADIX 2
129 #define FLT_ROUNDS 1
130 #define DBL_MAX 1.7976931348623157e+308
131 #endif
132 
133 #ifdef IBM
134 #define DBL_DIG 16
135 #define DBL_MAX_10_EXP 75
136 #define DBL_MAX_EXP 63
137 #define FLT_RADIX 16
138 #define FLT_ROUNDS 0
139 #define DBL_MAX 7.2370055773322621e+75
140 #endif
141 
142 #ifdef VAX
143 #define DBL_DIG 16
144 #define DBL_MAX_10_EXP 38
145 #define DBL_MAX_EXP 127
146 #define FLT_RADIX 2
147 #define FLT_ROUNDS 1
148 #define DBL_MAX 1.7014118346046923e+38
149 #endif
150 
151 #ifndef LONG_MAX
152 #define LONG_MAX 2147483647
153 #endif
154 #else
155 #include "float.h"
156 #endif
157 #ifndef __MATH_H__
158 #include "math.h"
159 #endif
160 
161 #ifdef __cplusplus
162 extern "C" {
163 #endif
164 
165 #ifndef CONST
166 #ifdef KR_headers
167 #define CONST /* blank */
168 #else
169 #define CONST const
170 #endif
171 #endif
172 
173 #ifdef Unsigned_Shifts
174 #define Sign_Extend(a,b) if (b < 0) a |= 0xffff0000;
175 #else
176 #define Sign_Extend(a,b) /*no-op*/
177 #endif
178 
179 #if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1
180 Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined.
181 #endif
182 
183 #ifdef IEEE_8087
184 #define word0(x) ((unsigned long *)&x)[1]
185 #define word1(x) ((unsigned long *)&x)[0]
186 #else
187 #define word0(x) ((unsigned long *)&x)[0]
188 #define word1(x) ((unsigned long *)&x)[1]
189 #endif
190 
191 /* The following definition of Storeinc is appropriate for MIPS processors.
192  * An alternative that might be better on some machines is
193  * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
194  */
195 #if defined(IEEE_8087) + defined(VAX)
196 #define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
197 ((unsigned short *)a)[0] = (unsigned short)c, a++)
198 #else
199 #define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
200 ((unsigned short *)a)[1] = (unsigned short)c, a++)
201 #endif
202 
203 /* #define P DBL_MANT_DIG */
204 /* Ten_pmax = floor(P*log(2)/log(5)) */
205 /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
206 /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
207 /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
208 
209 #if defined(IEEE_8087) + defined(IEEE_MC68k)
210 #define Exp_shift  20
211 #define Exp_shift1 20
212 #define Exp_msk1    0x100000
213 #define Exp_msk11   0x100000
214 #define Exp_mask  0x7ff00000
215 #define P 53
216 #define Bias 1023
217 #define IEEE_Arith
218 #define Emin (-1022)
219 #define Exp_1  0x3ff00000
220 #define Exp_11 0x3ff00000
221 #define Ebits 11
222 #define Frac_mask  0xfffff
223 #define Frac_mask1 0xfffff
224 #define Ten_pmax 22
225 #define Bletch 0x10
226 #define Bndry_mask  0xfffff
227 #define Bndry_mask1 0xfffff
228 #define LSB 1
229 #define Sign_bit 0x80000000
230 #define Log2P 1
231 #define Tiny0 0
232 #define Tiny1 1
233 #define Quick_max 14
234 #define Int_max 14
235 #define Infinite(x) (word0(x) == 0x7ff00000) /* sufficient test for here */
236 #else
237 #undef  Sudden_Underflow
238 #define Sudden_Underflow
239 #ifdef IBM
240 #define Exp_shift  24
241 #define Exp_shift1 24
242 #define Exp_msk1   0x1000000
243 #define Exp_msk11  0x1000000
244 #define Exp_mask  0x7f000000
245 #define P 14
246 #define Bias 65
247 #define Exp_1  0x41000000
248 #define Exp_11 0x41000000
249 #define Ebits 8	/* exponent has 7 bits, but 8 is the right value in b2d */
250 #define Frac_mask  0xffffff
251 #define Frac_mask1 0xffffff
252 #define Bletch 4
253 #define Ten_pmax 22
254 #define Bndry_mask  0xefffff
255 #define Bndry_mask1 0xffffff
256 #define LSB 1
257 #define Sign_bit 0x80000000
258 #define Log2P 4
259 #define Tiny0 0x100000
260 #define Tiny1 0
261 #define Quick_max 14
262 #define Int_max 15
263 #else /* VAX */
264 #define Exp_shift  23
265 #define Exp_shift1 7
266 #define Exp_msk1    0x80
267 #define Exp_msk11   0x800000
268 #define Exp_mask  0x7f80
269 #define P 56
270 #define Bias 129
271 #define Exp_1  0x40800000
272 #define Exp_11 0x4080
273 #define Ebits 8
274 #define Frac_mask  0x7fffff
275 #define Frac_mask1 0xffff007f
276 #define Ten_pmax 24
277 #define Bletch 2
278 #define Bndry_mask  0xffff007f
279 #define Bndry_mask1 0xffff007f
280 #define LSB 0x10000
281 #define Sign_bit 0x8000
282 #define Log2P 1
283 #define Tiny0 0x80
284 #define Tiny1 0
285 #define Quick_max 15
286 #define Int_max 15
287 #endif
288 #endif
289 
290 #ifndef IEEE_Arith
291 #define ROUND_BIASED
292 #endif
293 
294 #ifdef RND_PRODQUOT
295 #define rounded_product(a,b) a = rnd_prod(a, b)
296 #define rounded_quotient(a,b) a = rnd_quot(a, b)
297 #ifdef KR_headers
298 extern double rnd_prod(), rnd_quot();
299 #else
300 extern double rnd_prod(double, double), rnd_quot(double, double);
301 #endif
302 #else
303 #define rounded_product(a,b) a *= b
304 #define rounded_quotient(a,b) a /= b
305 #endif
306 
307 #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
308 #define Big1 0xffffffff
309 
310 #ifndef Just_16
311 /* When Pack_32 is not defined, we store 16 bits per 32-bit long.
312  * This makes some inner loops simpler and sometimes saves work
313  * during multiplications, but it often seems to make things slightly
314  * slower.  Hence the default is now to store 32 bits per long.
315  */
316 #ifndef Pack_32
317 #define Pack_32
318 #endif
319 #endif
320 
321 #define Kmax 15
322 
323 #ifdef __cplusplus
324 extern "C" double strtod(const char *s00, char **se);
325 extern "C" char *dtoa(double d, int mode, int ndigits,
326 			int *decpt, int *sign, char **rve);
327 #endif
328 
329  struct
330 Bigint {
331 	struct Bigint *next;
332 	int k, maxwds, sign, wds;
333 	unsigned long x[1];
334 };
335 
336  typedef struct Bigint Bigint;
337 
338  static Bigint *freelist[Kmax+1];
339 
340  static Bigint *
341 Balloc
342 #ifdef KR_headers
343 	(k) int k;
344 #else
345 	(int k)
346 #endif
347 {
348 	int x;
349 	Bigint *rv;
350 
351 	if (rv = freelist[k]) {
352 		freelist[k] = rv->next;
353 	} else {
354 		x = 1 << k;
355 		rv = (Bigint *)malloc(sizeof(Bigint) + (x-1)*sizeof(long));
356 		rv->k = k;
357 		rv->maxwds = x;
358 	}
359 	rv->sign = rv->wds = 0;
360 	return rv;
361 }
362 
363  static void
364 Bfree
365 #ifdef KR_headers
366 	(v) Bigint *v;
367 #else
368 	(Bigint *v)
369 #endif
370 {
371 	if (v) {
372 		v->next = freelist[v->k];
373 		freelist[v->k] = v;
374 	}
375 }
376 
377 #define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \
378 y->wds*sizeof(long) + 2*sizeof(int))
379 
380  static Bigint *
381 multadd
382 #ifdef KR_headers
383 	(b, m, a) Bigint *b; int m, a;
384 #else
385 	(Bigint *b, int m, int a)	/* multiply by m and add a */
386 #endif
387 {
388 	int i, wds;
389 	unsigned long *x, y;
390 #ifdef Pack_32
391 	unsigned long xi, z;
392 #endif
393 	Bigint *b1;
394 
395 	wds = b->wds;
396 	x = b->x;
397 	i = 0;
398 	do {
399 #ifdef Pack_32
400 		xi = *x;
401 		y = (xi & 0xffff) * m + a;
402 		z = (xi >> 16) * m + (y >> 16);
403 		a = (int)(z >> 16);
404 		*x++ = (z << 16) + (y & 0xffff);
405 #else
406 		y = *x * m + a;
407 		a = (int)(y >> 16);
408 		*x++ = y & 0xffff;
409 #endif
410 	} while (++i < wds);
411 	if (a) {
412 		if (wds >= b->maxwds) {
413 			b1 = Balloc(b->k+1);
414 			Bcopy(b1, b);
415 			Bfree(b);
416 			b = b1;
417 			}
418 		b->x[wds++] = a;
419 		b->wds = wds;
420 	}
421 	return b;
422 }
423 
424  static Bigint *
425 s2b
426 #ifdef KR_headers
427 	(s, nd0, nd, y9) CONST char *s; int nd0, nd; unsigned long y9;
428 #else
429 	(CONST char *s, int nd0, int nd, unsigned long y9)
430 #endif
431 {
432 	Bigint *b;
433 	int i, k;
434 	long x, y;
435 
436 	x = (nd + 8) / 9;
437 	for (k = 0, y = 1; x > y; y <<= 1, k++) ;
438 #ifdef Pack_32
439 	b = Balloc(k);
440 	b->x[0] = y9;
441 	b->wds = 1;
442 #else
443 	b = Balloc(k+1);
444 	b->x[0] = y9 & 0xffff;
445 	b->wds = (b->x[1] = y9 >> 16) ? 2 : 1;
446 #endif
447 
448 	i = 9;
449 	if (9 < nd0) {
450 		s += 9;
451 		do
452 			b = multadd(b, 10, *s++ - '0');
453 		while (++i < nd0);
454 		s++;
455 	} else
456 		s += 10;
457 	for (; i < nd; i++)
458 		b = multadd(b, 10, *s++ - '0');
459 	return b;
460 }
461 
462  static int
463 hi0bits
464 #ifdef KR_headers
465 	(x) register unsigned long x;
466 #else
467 	(register unsigned long x)
468 #endif
469 {
470 	register int k = 0;
471 
472 	if (!(x & 0xffff0000)) {
473 		k = 16;
474 		x <<= 16;
475 	}
476 	if (!(x & 0xff000000)) {
477 		k += 8;
478 		x <<= 8;
479 	}
480 	if (!(x & 0xf0000000)) {
481 		k += 4;
482 		x <<= 4;
483 	}
484 	if (!(x & 0xc0000000)) {
485 		k += 2;
486 		x <<= 2;
487 	}
488 	if (!(x & 0x80000000)) {
489 		k++;
490 		if (!(x & 0x40000000))
491 			return 32;
492 	}
493 	return k;
494 }
495 
496  static int
497 lo0bits
498 #ifdef KR_headers
499 	(y) unsigned long *y;
500 #else
501 	(unsigned long *y)
502 #endif
503 {
504 	register int k;
505 	register unsigned long x = *y;
506 
507 	if (x & 7) {
508 		if (x & 1)
509 			return 0;
510 		if (x & 2) {
511 			*y = x >> 1;
512 			return 1;
513 		}
514 		*y = x >> 2;
515 		return 2;
516 	}
517 	k = 0;
518 	if (!(x & 0xffff)) {
519 		k = 16;
520 		x >>= 16;
521 	}
522 	if (!(x & 0xff)) {
523 		k += 8;
524 		x >>= 8;
525 	}
526 	if (!(x & 0xf)) {
527 		k += 4;
528 		x >>= 4;
529 	}
530 	if (!(x & 0x3)) {
531 		k += 2;
532 		x >>= 2;
533 	}
534 	if (!(x & 1)) {
535 		k++;
536 		x >>= 1;
537 		if (!x & 1)
538 			return 32;
539 	}
540 	*y = x;
541 	return k;
542 }
543 
544  static Bigint *
545 i2b
546 #ifdef KR_headers
547 	(i) int i;
548 #else
549 	(int i)
550 #endif
551 {
552 	Bigint *b;
553 
554 	b = Balloc(1);
555 	b->x[0] = i;
556 	b->wds = 1;
557 	return b;
558 	}
559 
560  static Bigint *
561 mult
562 #ifdef KR_headers
563 	(a, b) Bigint *a, *b;
564 #else
565 	(Bigint *a, Bigint *b)
566 #endif
567 {
568 	Bigint *c;
569 	int k, wa, wb, wc;
570 	unsigned long carry, y, z;
571 	unsigned long *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
572 #ifdef Pack_32
573 	unsigned long z2;
574 #endif
575 
576 	if (a->wds < b->wds) {
577 		c = a;
578 		a = b;
579 		b = c;
580 	}
581 	k = a->k;
582 	wa = a->wds;
583 	wb = b->wds;
584 	wc = wa + wb;
585 	if (wc > a->maxwds)
586 		k++;
587 	c = Balloc(k);
588 	for (x = c->x, xa = x + wc; x < xa; x++)
589 		*x = 0;
590 	xa = a->x;
591 	xae = xa + wa;
592 	xb = b->x;
593 	xbe = xb + wb;
594 	xc0 = c->x;
595 #ifdef Pack_32
596 	for (; xb < xbe; xb++, xc0++) {
597 		if (y = *xb & 0xffff) {
598 			x = xa;
599 			xc = xc0;
600 			carry = 0;
601 			do {
602 				z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
603 				carry = z >> 16;
604 				z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
605 				carry = z2 >> 16;
606 				Storeinc(xc, z2, z);
607 			} while (x < xae);
608 			*xc = carry;
609 		}
610 		if (y = *xb >> 16) {
611 			x = xa;
612 			xc = xc0;
613 			carry = 0;
614 			z2 = *xc;
615 			do {
616 				z = (*x & 0xffff) * y + (*xc >> 16) + carry;
617 				carry = z >> 16;
618 				Storeinc(xc, z, z2);
619 				z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
620 				carry = z2 >> 16;
621 			} while (x < xae);
622 			*xc = z2;
623 		}
624 	}
625 #else
626 	for (; xb < xbe; xc0++) {
627 		if (y = *xb++) {
628 			x = xa;
629 			xc = xc0;
630 			carry = 0;
631 			do {
632 				z = *x++ * y + *xc + carry;
633 				carry = z >> 16;
634 				*xc++ = z & 0xffff;
635 			} while (x < xae);
636 			*xc = carry;
637 		}
638 	}
639 #endif
640 	for (xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
641 	c->wds = wc;
642 	return c;
643 }
644 
645  static Bigint *p5s;
646 
647  static Bigint *
648 pow5mult
649 #ifdef KR_headers
650 	(b, k) Bigint *b; int k;
651 #else
652 	(Bigint *b, int k)
653 #endif
654 {
655 	Bigint *b1, *p5, *p51;
656 	int i;
657 	static int p05[3] = { 5, 25, 125 };
658 
659 	if (i = k & 3)
660 		b = multadd(b, p05[i-1], 0);
661 
662 	if (!(k >>= 2))
663 		return b;
664 	if (!(p5 = p5s)) {
665 		/* first time */
666 		p5 = p5s = i2b(625);
667 		p5->next = 0;
668 	}
669 	for (;;) {
670 		if (k & 1) {
671 			b1 = mult(b, p5);
672 			Bfree(b);
673 			b = b1;
674 		}
675 		if (!(k >>= 1))
676 			break;
677 		if (!(p51 = p5->next)) {
678 			p51 = p5->next = mult(p5,p5);
679 			p51->next = 0;
680 		}
681 		p5 = p51;
682 	}
683 	return b;
684 }
685 
686  static Bigint *
687 lshift
688 #ifdef KR_headers
689 	(b, k) Bigint *b; int k;
690 #else
691 	(Bigint *b, int k)
692 #endif
693 {
694 	int i, k1, n, n1;
695 	Bigint *b1;
696 	unsigned long *x, *x1, *xe, z;
697 
698 #ifdef Pack_32
699 	n = k >> 5;
700 #else
701 	n = k >> 4;
702 #endif
703 	k1 = b->k;
704 	n1 = n + b->wds + 1;
705 	for (i = b->maxwds; n1 > i; i <<= 1)
706 		k1++;
707 	b1 = Balloc(k1);
708 	x1 = b1->x;
709 	for (i = 0; i < n; i++)
710 		*x1++ = 0;
711 	x = b->x;
712 	xe = x + b->wds;
713 #ifdef Pack_32
714 	if (k &= 0x1f) {
715 		k1 = 32 - k;
716 		z = 0;
717 		do {
718 			*x1++ = *x << k | z;
719 			z = *x++ >> k1;
720 		} while (x < xe);
721 		if (*x1 = z)
722 			++n1;
723 	}
724 #else
725 	if (k &= 0xf) {
726 		k1 = 16 - k;
727 		z = 0;
728 		do {
729 			*x1++ = *x << k  & 0xffff | z;
730 			z = *x++ >> k1;
731 		} while (x < xe);
732 		if (*x1 = z)
733 			++n1;
734 	}
735 #endif
736 	else
737 		do
738 			*x1++ = *x++;
739 		while (x < xe);
740 	b1->wds = n1 - 1;
741 	Bfree(b);
742 	return b1;
743 }
744 
745  static int
746 cmp
747 #ifdef KR_headers
748 	(a, b) Bigint *a, *b;
749 #else
750 	(Bigint *a, Bigint *b)
751 #endif
752 {
753 	unsigned long *xa, *xa0, *xb, *xb0;
754 	int i, j;
755 
756 	i = a->wds;
757 	j = b->wds;
758 #ifdef DEBUG
759 	if (i > 1 && !a->x[i-1])
760 		Bug("cmp called with a->x[a->wds-1] == 0");
761 	if (j > 1 && !b->x[j-1])
762 		Bug("cmp called with b->x[b->wds-1] == 0");
763 #endif
764 	if (i -= j)
765 		return i;
766 	xa0 = a->x;
767 	xa = xa0 + j;
768 	xb0 = b->x;
769 	xb = xb0 + j;
770 	for (;;) {
771 		if (*--xa != *--xb)
772 			return *xa < *xb ? -1 : 1;
773 		if (xa <= xa0)
774 			break;
775 	}
776 	return 0;
777 }
778 
779  static Bigint *
780 diff
781 #ifdef KR_headers
782 	(a, b) Bigint *a, *b;
783 #else
784 	(Bigint *a, Bigint *b)
785 #endif
786 {
787 	Bigint *c;
788 	int i, wa, wb;
789 	long borrow, y;	/* We need signed shifts here. */
790 	unsigned long *xa, *xae, *xb, *xbe, *xc;
791 #ifdef Pack_32
792 	long z;
793 #endif
794 
795 	i = cmp(a,b);
796 	if (!i) {
797 		c = Balloc(0);
798 		c->wds = 1;
799 		c->x[0] = 0;
800 		return c;
801 	}
802 	if (i < 0) {
803 		c = a;
804 		a = b;
805 		b = c;
806 		i = 1;
807 	} else
808 		i = 0;
809 	c = Balloc(a->k);
810 	c->sign = i;
811 	wa = a->wds;
812 	xa = a->x;
813 	xae = xa + wa;
814 	wb = b->wds;
815 	xb = b->x;
816 	xbe = xb + wb;
817 	xc = c->x;
818 	borrow = 0;
819 #ifdef Pack_32
820 	do {
821 		y = (*xa & 0xffff) - (*xb & 0xffff) + borrow;
822 		borrow = y >> 16;
823 		Sign_Extend(borrow, y);
824 		z = (*xa++ >> 16) - (*xb++ >> 16) + borrow;
825 		borrow = z >> 16;
826 		Sign_Extend(borrow, z);
827 		Storeinc(xc, z, y);
828 	} while (xb < xbe);
829 	while (xa < xae) {
830 		y = (*xa & 0xffff) + borrow;
831 		borrow = y >> 16;
832 		Sign_Extend(borrow, y);
833 		z = (*xa++ >> 16) + borrow;
834 		borrow = z >> 16;
835 		Sign_Extend(borrow, z);
836 		Storeinc(xc, z, y);
837 	}
838 #else
839 	do {
840 		y = *xa++ - *xb++ + borrow;
841 		borrow = y >> 16;
842 		Sign_Extend(borrow, y);
843 		*xc++ = y & 0xffff;
844 	} while (xb < xbe);
845 	while (xa < xae) {
846 		y = *xa++ + borrow;
847 		borrow = y >> 16;
848 		Sign_Extend(borrow, y);
849 		*xc++ = y & 0xffff;
850 	}
851 #endif
852 	while (!*--xc)
853 		wa--;
854 	c->wds = wa;
855 	return c;
856 }
857 
858  static double
859 ulp
860 #ifdef KR_headers
861 	(x) double x;
862 #else
863 	(double x)
864 #endif
865 {
866 	register long L;
867 	double a;
868 
869 	L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
870 #ifndef Sudden_Underflow
871 	if (L > 0) {
872 #endif
873 #ifdef IBM
874 		L |= Exp_msk1 >> 4;
875 #endif
876 		word0(a) = L;
877 		word1(a) = 0;
878 #ifndef Sudden_Underflow
879 	} else {
880 		L = -L >> Exp_shift;
881 		if (L < Exp_shift) {
882 			word0(a) = 0x80000 >> L;
883 			word1(a) = 0;
884 		} else {
885 			word0(a) = 0;
886 			L -= Exp_shift;
887 			word1(a) = L >= 31 ? 1 : 1 << 31 - L;
888 		}
889 	}
890 #endif
891 	return a;
892 }
893 
894  static double
895 b2d
896 #ifdef KR_headers
897 	(a, e) Bigint *a; int *e;
898 #else
899 	(Bigint *a, int *e)
900 #endif
901 {
902 	unsigned long *xa, *xa0, w, y, z;
903 	int k;
904 	double d;
905 #ifdef VAX
906 	unsigned long d0, d1;
907 #else
908 #define d0 word0(d)
909 #define d1 word1(d)
910 #endif
911 
912 	xa0 = a->x;
913 	xa = xa0 + a->wds;
914 	y = *--xa;
915 #ifdef DEBUG
916 	if (!y) Bug("zero y in b2d");
917 #endif
918 	k = hi0bits(y);
919 	*e = 32 - k;
920 #ifdef Pack_32
921 	if (k < Ebits) {
922 		d0 = Exp_1 | y >> Ebits - k;
923 		w = xa > xa0 ? *--xa : 0;
924 		d1 = y << (32-Ebits) + k | w >> Ebits - k;
925 		goto ret_d;
926 		}
927 	z = xa > xa0 ? *--xa : 0;
928 	if (k -= Ebits) {
929 		d0 = Exp_1 | y << k | z >> 32 - k;
930 		y = xa > xa0 ? *--xa : 0;
931 		d1 = z << k | y >> 32 - k;
932 	} else {
933 		d0 = Exp_1 | y;
934 		d1 = z;
935 	}
936 #else
937 	if (k < Ebits + 16) {
938 		z = xa > xa0 ? *--xa : 0;
939 		d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k;
940 		w = xa > xa0 ? *--xa : 0;
941 		y = xa > xa0 ? *--xa : 0;
942 		d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k;
943 		goto ret_d;
944 	}
945 	z = xa > xa0 ? *--xa : 0;
946 	w = xa > xa0 ? *--xa : 0;
947 	k -= Ebits + 16;
948 	d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k;
949 	y = xa > xa0 ? *--xa : 0;
950 	d1 = w << k + 16 | y << k;
951 #endif
952  ret_d:
953 #ifdef VAX
954 	word0(d) = d0 >> 16 | d0 << 16;
955 	word1(d) = d1 >> 16 | d1 << 16;
956 #else
957 #undef d0
958 #undef d1
959 #endif
960 	return d;
961 }
962 
963  static Bigint *
964 d2b
965 #ifdef KR_headers
966 	(d, e, bits) double d; int *e, *bits;
967 #else
968 	(double d, int *e, int *bits)
969 #endif
970 {
971 	Bigint *b;
972 	int de, i, k;
973 	unsigned long *x, y, z;
974 #ifdef VAX
975 	unsigned long d0, d1;
976 	d0 = word0(d) >> 16 | word0(d) << 16;
977 	d1 = word1(d) >> 16 | word1(d) << 16;
978 #else
979 #define d0 word0(d)
980 #define d1 word1(d)
981 #endif
982 
983 #ifdef Pack_32
984 	b = Balloc(1);
985 #else
986 	b = Balloc(2);
987 #endif
988 	x = b->x;
989 
990 	z = d0 & Frac_mask;
991 	d0 &= 0x7fffffff;	/* clear sign bit, which we ignore */
992 #ifdef Sudden_Underflow
993 	de = (int)(d0 >> Exp_shift);
994 #ifndef IBM
995 	z |= Exp_msk11;
996 #endif
997 #else
998 	if (de = (int)(d0 >> Exp_shift))
999 		z |= Exp_msk1;
1000 #endif
1001 #ifdef Pack_32
1002 	if (y = d1) {
1003 		if (k = lo0bits(&y)) {
1004 			x[0] = y | z << 32 - k;
1005 			z >>= k;
1006 			}
1007 		else
1008 			x[0] = y;
1009 		i = b->wds = (x[1] = z) ? 2 : 1;
1010 	} else {
1011 #ifdef DEBUG
1012 		if (!z)
1013 			Bug("Zero passed to d2b");
1014 #endif
1015 		k = lo0bits(&z);
1016 		x[0] = z;
1017 		i = b->wds = 1;
1018 		k += 32;
1019 	}
1020 #else
1021 	if (y = d1) {
1022 		if (k = lo0bits(&y))
1023 			if (k >= 16) {
1024 				x[0] = y | z << 32 - k & 0xffff;
1025 				x[1] = z >> k - 16 & 0xffff;
1026 				x[2] = z >> k;
1027 				i = 2;
1028 			} else {
1029 				x[0] = y & 0xffff;
1030 				x[1] = y >> 16 | z << 16 - k & 0xffff;
1031 				x[2] = z >> k & 0xffff;
1032 				x[3] = z >> k+16;
1033 				i = 3;
1034 			}
1035 		else {
1036 			x[0] = y & 0xffff;
1037 			x[1] = y >> 16;
1038 			x[2] = z & 0xffff;
1039 			x[3] = z >> 16;
1040 			i = 3;
1041 		}
1042 	} else {
1043 #ifdef DEBUG
1044 		if (!z)
1045 			Bug("Zero passed to d2b");
1046 #endif
1047 		k = lo0bits(&z);
1048 		if (k >= 16) {
1049 			x[0] = z;
1050 			i = 0;
1051 		} else {
1052 			x[0] = z & 0xffff;
1053 			x[1] = z >> 16;
1054 			i = 1;
1055 		}
1056 		k += 32;
1057 	}
1058 	while (!x[i])
1059 		--i;
1060 	b->wds = i + 1;
1061 #endif
1062 #ifndef Sudden_Underflow
1063 	if (de) {
1064 #endif
1065 #ifdef IBM
1066 		*e = (de - Bias - (P-1) << 2) + k;
1067 		*bits = 4*P + 8 - k - hi0bits(word0(d) & Frac_mask);
1068 #else
1069 		*e = de - Bias - (P-1) + k;
1070 		*bits = P - k;
1071 #endif
1072 #ifndef Sudden_Underflow
1073 	} else {
1074 		*e = de - Bias - (P-1) + 1 + k;
1075 #ifdef Pack_32
1076 		*bits = 32*i - hi0bits(x[i-1]);
1077 #else
1078 		*bits = (i+2)*16 - hi0bits(x[i]);
1079 #endif
1080 	}
1081 #endif
1082 	return b;
1083 }
1084 #undef d0
1085 #undef d1
1086 
1087  static double
1088 ratio
1089 #ifdef KR_headers
1090 	(a, b) Bigint *a, *b;
1091 #else
1092 	(Bigint *a, Bigint *b)
1093 #endif
1094 {
1095 	double da, db;
1096 	int k, ka, kb;
1097 
1098 	da = b2d(a, &ka);
1099 	db = b2d(b, &kb);
1100 #ifdef Pack_32
1101 	k = ka - kb + 32*(a->wds - b->wds);
1102 #else
1103 	k = ka - kb + 16*(a->wds - b->wds);
1104 #endif
1105 #ifdef IBM
1106 	if (k > 0) {
1107 		word0(da) += (k >> 2)*Exp_msk1;
1108 		if (k &= 3)
1109 			da *= 1 << k;
1110 	} else {
1111 		k = -k;
1112 		word0(db) += (k >> 2)*Exp_msk1;
1113 		if (k &= 3)
1114 			db *= 1 << k;
1115 	}
1116 #else
1117 	if (k > 0)
1118 		word0(da) += k*Exp_msk1;
1119 	else {
1120 		k = -k;
1121 		word0(db) += k*Exp_msk1;
1122 	}
1123 #endif
1124 	return da / db;
1125 }
1126 
1127  static double
1128 tens[] = {
1129 		1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1130 		1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1131 		1e20, 1e21, 1e22
1132 #ifdef VAX
1133 		, 1e23, 1e24
1134 #endif
1135 		};
1136 
1137  static double
1138 #ifdef IEEE_Arith
1139 bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
1140 static double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, 1e-256 };
1141 #define n_bigtens 5
1142 #else
1143 #ifdef IBM
1144 bigtens[] = { 1e16, 1e32, 1e64 };
1145 static double tinytens[] = { 1e-16, 1e-32, 1e-64 };
1146 #define n_bigtens 3
1147 #else
1148 bigtens[] = { 1e16, 1e32 };
1149 static double tinytens[] = { 1e-16, 1e-32 };
1150 #define n_bigtens 2
1151 #endif
1152 #endif
1153 
1154  double
1155 strtod
1156 #ifdef KR_headers
1157 	(s00, se) CONST char *s00; char **se;
1158 #else
1159 	(CONST char *s00, char **se)
1160 #endif
1161 {
1162 	int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign,
1163 		 e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign;
1164 	CONST char *s, *s0, *s1;
1165 	double aadj, aadj1, adj, rv, rv0;
1166 	long L;
1167 	unsigned long y, z;
1168 	Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
1169 	sign = nz0 = nz = 0;
1170 	rv = 0.;
1171 	for (s = s00;;s++) switch(*s) {
1172 		case '-':
1173 			sign = 1;
1174 			/* no break */
1175 		case '+':
1176 			if (*++s)
1177 				goto break2;
1178 			/* no break */
1179 		case 0:
1180 			s = s00;
1181 			goto ret;
1182 		case '\t':
1183 		case '\n':
1184 		case '\v':
1185 		case '\f':
1186 		case '\r':
1187 		case ' ':
1188 			continue;
1189 		default:
1190 			goto break2;
1191 	}
1192  break2:
1193 	if (*s == '0') {
1194 		nz0 = 1;
1195 		while (*++s == '0') ;
1196 		if (!*s)
1197 			goto ret;
1198 	}
1199 	s0 = s;
1200 	y = z = 0;
1201 	for (nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
1202 		if (nd < 9)
1203 			y = 10*y + c - '0';
1204 		else if (nd < 16)
1205 			z = 10*z + c - '0';
1206 	nd0 = nd;
1207 	if (c == '.') {
1208 		c = *++s;
1209 		if (!nd) {
1210 			for (; c == '0'; c = *++s)
1211 				nz++;
1212 			if (c > '0' && c <= '9') {
1213 				s0 = s;
1214 				nf += nz;
1215 				nz = 0;
1216 				goto have_dig;
1217 			}
1218 			goto dig_done;
1219 		}
1220 		for (; c >= '0' && c <= '9'; c = *++s) {
1221  have_dig:
1222 			nz++;
1223 			if (c -= '0') {
1224 				nf += nz;
1225 				for (i = 1; i < nz; i++)
1226 					if (nd++ < 9)
1227 						y *= 10;
1228 					else if (nd <= DBL_DIG + 1)
1229 						z *= 10;
1230 				if (nd++ < 9)
1231 					y = 10*y + c;
1232 				else if (nd <= DBL_DIG + 1)
1233 					z = 10*z + c;
1234 				nz = 0;
1235 			}
1236 		}
1237 	}
1238  dig_done:
1239 	e = 0;
1240 	if (c == 'e' || c == 'E') {
1241 		if (!nd && !nz && !nz0) {
1242 			s = s00;
1243 			goto ret;
1244 		}
1245 		s00 = s;
1246 		esign = 0;
1247 		switch(c = *++s) {
1248 			case '-':
1249 				esign = 1;
1250 			case '+':
1251 				c = *++s;
1252 		}
1253 		if (c >= '0' && c <= '9') {
1254 			while (c == '0')
1255 				c = *++s;
1256 			if (c > '0' && c <= '9') {
1257 				L = c - '0';
1258 				s1 = s;
1259 				while ((c = *++s) >= '0' && c <= '9')
1260 					L = 10*L + c - '0';
1261 				if (s - s1 > 8 || L > 19999)
1262 					/* Avoid confusion from exponents
1263 					 * so large that e might overflow.
1264 					 */
1265 					e = 19999; /* safe for 16 bit ints */
1266 				else
1267 					e = (int)L;
1268 				if (esign)
1269 					e = -e;
1270 			} else
1271 				e = 0;
1272 		} else
1273 			s = s00;
1274 	}
1275 	if (!nd) {
1276 		if (!nz && !nz0)
1277 			s = s00;
1278 		goto ret;
1279 	}
1280 	e1 = e -= nf;
1281 
1282 	/* Now we have nd0 digits, starting at s0, followed by a
1283 	 * decimal point, followed by nd-nd0 digits.  The number we're
1284 	 * after is the integer represented by those digits times
1285 	 * 10**e */
1286 
1287 	if (!nd0)
1288 		nd0 = nd;
1289 	k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
1290 	rv = y;
1291 	if (k > 9)
1292 		rv = tens[k - 9] * rv + z;
1293 	if (nd <= DBL_DIG
1294 #ifndef RND_PRODQUOT
1295 		&& FLT_ROUNDS == 1
1296 #endif
1297 			) {
1298 		if (!e)
1299 			goto ret;
1300 		if (e > 0) {
1301 			if (e <= Ten_pmax) {
1302 #ifdef VAX
1303 				goto vax_ovfl_check;
1304 #else
1305 				/* rv = */ rounded_product(rv, tens[e]);
1306 				goto ret;
1307 #endif
1308 				}
1309 			i = DBL_DIG - nd;
1310 			if (e <= Ten_pmax + i) {
1311 				/* A fancier test would sometimes let us do
1312 				 * this for larger i values.
1313 				 */
1314 				e -= i;
1315 				rv *= tens[i];
1316 #ifdef VAX
1317 				/* VAX exponent range is so narrow we must
1318 				 * worry about overflow here...
1319 				 */
1320  vax_ovfl_check:
1321 				word0(rv) -= P*Exp_msk1;
1322 				/* rv = */ rounded_product(rv, tens[e]);
1323 				if ((word0(rv) & Exp_mask)
1324 				 > Exp_msk1*(DBL_MAX_EXP+Bias-1-P))
1325 					goto ovfl;
1326 				word0(rv) += P*Exp_msk1;
1327 #else
1328 				/* rv = */ rounded_product(rv, tens[e]);
1329 #endif
1330 				goto ret;
1331 			}
1332 		}
1333 #ifndef Inaccurate_Divide
1334 		else if (e >= -Ten_pmax) {
1335 			/* rv = */ rounded_quotient(rv, tens[-e]);
1336 			goto ret;
1337 		}
1338 #endif
1339 	}
1340 	e1 += nd - k;
1341 
1342 	/* Get starting approximation = rv * 10**e1 */
1343 
1344 	if (e1 > 0) {
1345 		if (i = e1 & 15)
1346 			rv *= tens[i];
1347 		if (e1 &= ~15) {
1348 			if (e1 > DBL_MAX_10_EXP) {
1349  ovfl:
1350 				errno = ERANGE;
1351 #ifdef __STDC__
1352 				rv = HUGE_VAL;
1353 #else
1354 				/* Can't trust HUGE_VAL */
1355 #ifdef IEEE_Arith
1356 				word0(rv) = Exp_mask;
1357 				word1(rv) = 0;
1358 #else
1359 				word0(rv) = Big0;
1360 				word1(rv) = Big1;
1361 #endif
1362 #endif
1363 				goto ret;
1364 			}
1365 			if (e1 >>= 4) {
1366 				for (j = 0; e1 > 1; j++, e1 >>= 1)
1367 					if (e1 & 1)
1368 						rv *= bigtens[j];
1369 			/* The last multiplication could overflow. */
1370 				word0(rv) -= P*Exp_msk1;
1371 				rv *= bigtens[j];
1372 				if ((z = word0(rv) & Exp_mask)
1373 				 > Exp_msk1*(DBL_MAX_EXP+Bias-P))
1374 					goto ovfl;
1375 				if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
1376 					/* set to largest number */
1377 					/* (Can't trust DBL_MAX) */
1378 					word0(rv) = Big0;
1379 					word1(rv) = Big1;
1380 					}
1381 				else
1382 					word0(rv) += P*Exp_msk1;
1383 			}
1384 		}
1385 	} else if (e1 < 0) {
1386 		e1 = -e1;
1387 		if (i = e1 & 15)
1388 			rv /= tens[i];
1389 		if (e1 &= ~15) {
1390 			e1 >>= 4;
1391 			for (j = 0; e1 > 1; j++, e1 >>= 1)
1392 				if (e1 & 1)
1393 					rv *= tinytens[j];
1394 			/* The last multiplication could underflow. */
1395 			rv0 = rv;
1396 			rv *= tinytens[j];
1397 			if (!rv) {
1398 				rv = 2.*rv0;
1399 				rv *= tinytens[j];
1400 				if (!rv) {
1401  undfl:
1402 					rv = 0.;
1403 					errno = ERANGE;
1404 					goto ret;
1405 					}
1406 				word0(rv) = Tiny0;
1407 				word1(rv) = Tiny1;
1408 				/* The refinement below will clean
1409 				 * this approximation up.
1410 				 */
1411 			}
1412 		}
1413 	}
1414 
1415 	/* Now the hard part -- adjusting rv to the correct value.*/
1416 
1417 	/* Put digits into bd: true value = bd * 10^e */
1418 
1419 	bd0 = s2b(s0, nd0, nd, y);
1420 
1421 	for (;;) {
1422 		bd = Balloc(bd0->k);
1423 		Bcopy(bd, bd0);
1424 		bb = d2b(rv, &bbe, &bbbits);	/* rv = bb * 2^bbe */
1425 		bs = i2b(1);
1426 
1427 		if (e >= 0) {
1428 			bb2 = bb5 = 0;
1429 			bd2 = bd5 = e;
1430 		} else {
1431 			bb2 = bb5 = -e;
1432 			bd2 = bd5 = 0;
1433 		}
1434 		if (bbe >= 0)
1435 			bb2 += bbe;
1436 		else
1437 			bd2 -= bbe;
1438 		bs2 = bb2;
1439 #ifdef Sudden_Underflow
1440 #ifdef IBM
1441 		j = 1 + 4*P - 3 - bbbits + ((bbe + bbbits - 1) & 3);
1442 #else
1443 		j = P + 1 - bbbits;
1444 #endif
1445 #else
1446 		i = bbe + bbbits - 1;	/* logb(rv) */
1447 		if (i < Emin)	/* denormal */
1448 			j = bbe + (P-Emin);
1449 		else
1450 			j = P + 1 - bbbits;
1451 #endif
1452 		bb2 += j;
1453 		bd2 += j;
1454 		i = bb2 < bd2 ? bb2 : bd2;
1455 		if (i > bs2)
1456 			i = bs2;
1457 		if (i > 0) {
1458 			bb2 -= i;
1459 			bd2 -= i;
1460 			bs2 -= i;
1461 			}
1462 		if (bb5 > 0) {
1463 			bs = pow5mult(bs, bb5);
1464 			bb1 = mult(bs, bb);
1465 			Bfree(bb);
1466 			bb = bb1;
1467 			}
1468 		if (bb2 > 0)
1469 			bb = lshift(bb, bb2);
1470 		if (bd5 > 0)
1471 			bd = pow5mult(bd, bd5);
1472 		if (bd2 > 0)
1473 			bd = lshift(bd, bd2);
1474 		if (bs2 > 0)
1475 			bs = lshift(bs, bs2);
1476 		delta = diff(bb, bd);
1477 		dsign = delta->sign;
1478 		delta->sign = 0;
1479 		i = cmp(delta, bs);
1480 		if (i < 0) {
1481 			/* Error is less than half an ulp -- check for
1482 			 * special case of mantissa a power of two.
1483 			 */
1484 			if (dsign || word1(rv) || word0(rv) & Bndry_mask)
1485 				break;
1486 			delta = lshift(delta,Log2P);
1487 			if (cmp(delta, bs) > 0)
1488 				goto drop_down;
1489 			break;
1490 		}
1491 		if (i == 0) {
1492 			/* exactly half-way between */
1493 			if (dsign) {
1494 				if ((word0(rv) & Bndry_mask1) == Bndry_mask1
1495 				 &&  word1(rv) == 0xffffffff) {
1496 					/*boundary case -- increment exponent*/
1497 					word0(rv) = (word0(rv) & Exp_mask)
1498 						+ Exp_msk1
1499 #ifdef IBM
1500 						| Exp_msk1 >> 4
1501 #endif
1502 						;
1503 					word1(rv) = 0;
1504 					break;
1505 				}
1506 			} else if (!(word0(rv) & Bndry_mask) && !word1(rv)) {
1507  drop_down:
1508 				/* boundary case -- decrement exponent */
1509 #ifdef Sudden_Underflow
1510 				L = word0(rv) & Exp_mask;
1511 #ifdef IBM
1512 				if (L <  Exp_msk1)
1513 #else
1514 				if (L <= Exp_msk1)
1515 #endif
1516 					goto undfl;
1517 				L -= Exp_msk1;
1518 #else
1519 				L = (word0(rv) & Exp_mask) - Exp_msk1;
1520 #endif
1521 				word0(rv) = L | Bndry_mask1;
1522 				word1(rv) = 0xffffffff;
1523 #ifdef IBM
1524 				goto cont;
1525 #else
1526 				break;
1527 #endif
1528 			}
1529 #ifndef ROUND_BIASED
1530 			if (!(word1(rv) & LSB))
1531 				break;
1532 #endif
1533 			if (dsign)
1534 				rv += ulp(rv);
1535 #ifndef ROUND_BIASED
1536 			else {
1537 				rv -= ulp(rv);
1538 #ifndef Sudden_Underflow
1539 				if (!rv)
1540 					goto undfl;
1541 #endif
1542 			}
1543 #endif
1544 			break;
1545 		}
1546 		if ((aadj = ratio(delta, bs)) <= 2.) {
1547 			if (dsign)
1548 				aadj = aadj1 = 1.;
1549 			else if (word1(rv) || word0(rv) & Bndry_mask) {
1550 #ifndef Sudden_Underflow
1551 				if (word1(rv) == Tiny1 && !word0(rv))
1552 					goto undfl;
1553 #endif
1554 				aadj = 1.;
1555 				aadj1 = -1.;
1556 			} else {
1557 				/* special case -- power of FLT_RADIX to be */
1558 				/* rounded down... */
1559 
1560 				if (aadj < 2./FLT_RADIX)
1561 					aadj = 1./FLT_RADIX;
1562 				else
1563 					aadj *= 0.5;
1564 				aadj1 = -aadj;
1565 			}
1566 		} else {
1567 			aadj *= 0.5;
1568 			aadj1 = dsign ? aadj : -aadj;
1569 #ifdef Check_FLT_ROUNDS
1570 			switch(FLT_ROUNDS) {
1571 				case 2: /* towards +infinity */
1572 					aadj1 -= 0.5;
1573 					break;
1574 				case 0: /* towards 0 */
1575 				case 3: /* towards -infinity */
1576 					aadj1 += 0.5;
1577 			}
1578 #else
1579 			if (FLT_ROUNDS == 0)
1580 				aadj1 += 0.5;
1581 #endif
1582 		}
1583 		y = word0(rv) & Exp_mask;
1584 
1585 		/* Check for overflow */
1586 
1587 		if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
1588 			rv0 = rv;
1589 			word0(rv) -= P*Exp_msk1;
1590 			adj = aadj1 * ulp(rv);
1591 			rv += adj;
1592 			if ((word0(rv) & Exp_mask) >=
1593 					Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
1594 				if (word0(rv0) == Big0 && word1(rv0) == Big1)
1595 					goto ovfl;
1596 				word0(rv) = Big0;
1597 				word1(rv) = Big1;
1598 				goto cont;
1599 			} else
1600 				word0(rv) += P*Exp_msk1;
1601 		} else {
1602 #ifdef Sudden_Underflow
1603 			if ((word0(rv) & Exp_mask) <= P*Exp_msk1) {
1604 				rv0 = rv;
1605 				word0(rv) += P*Exp_msk1;
1606 				adj = aadj1 * ulp(rv);
1607 				rv += adj;
1608 #ifdef IBM
1609 				if ((word0(rv) & Exp_mask) <  P*Exp_msk1)
1610 #else
1611 				if ((word0(rv) & Exp_mask) <= P*Exp_msk1)
1612 #endif
1613 				{
1614 					if (word0(rv0) == Tiny0
1615 					 && word1(rv0) == Tiny1)
1616 						goto undfl;
1617 					word0(rv) = Tiny0;
1618 					word1(rv) = Tiny1;
1619 					goto cont;
1620 				} else
1621 					word0(rv) -= P*Exp_msk1;
1622 			} else {
1623 				adj = aadj1 * ulp(rv);
1624 				rv += adj;
1625 			}
1626 #else
1627 			/* Compute adj so that the IEEE rounding rules will
1628 			 * correctly round rv + adj in some half-way cases.
1629 			 * If rv * ulp(rv) is denormalized (i.e.,
1630 			 * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
1631 			 * trouble from bits lost to denormalization;
1632 			 * example: 1.2e-307 .
1633 			 */
1634 			if (y <= (P-1)*Exp_msk1 && aadj >= 1.) {
1635 				aadj1 = (double)(int)(aadj + 0.5);
1636 				if (!dsign)
1637 					aadj1 = -aadj1;
1638 			}
1639 			adj = aadj1 * ulp(rv);
1640 			rv += adj;
1641 #endif
1642 		}
1643 		z = word0(rv) & Exp_mask;
1644 		if (y == z) {
1645 			/* Can we stop now? */
1646 			L = aadj;
1647 			aadj -= L;
1648 			/* The tolerances below are conservative. */
1649 			if (dsign || word1(rv) || word0(rv) & Bndry_mask) {
1650 				if (aadj < .4999999 || aadj > .5000001)
1651 					break;
1652 			} else if (aadj < .4999999/FLT_RADIX)
1653 				break;
1654 		}
1655  cont:
1656 		Bfree(bb);
1657 		Bfree(bd);
1658 		Bfree(bs);
1659 		Bfree(delta);
1660 	}
1661 	Bfree(bb);
1662 	Bfree(bd);
1663 	Bfree(bs);
1664 	Bfree(bd0);
1665 	Bfree(delta);
1666  ret:
1667 	if (se)
1668 		*se = (char *)s;
1669 	return sign ? -rv : rv;
1670 }
1671 
1672  static int
1673 quorem
1674 #ifdef KR_headers
1675 	(b, S) Bigint *b, *S;
1676 #else
1677 	(Bigint *b, Bigint *S)
1678 #endif
1679 {
1680 	int n;
1681 	long borrow, y;
1682 	unsigned long carry, q, ys;
1683 	unsigned long *bx, *bxe, *sx, *sxe;
1684 #ifdef Pack_32
1685 	long z;
1686 	unsigned long si, zs;
1687 #endif
1688 
1689 	n = S->wds;
1690 #ifdef DEBUG
1691 	/*debug*/ if (b->wds > n)
1692 	/*debug*/	Bug("oversize b in quorem");
1693 #endif
1694 	if (b->wds < n)
1695 		return 0;
1696 	sx = S->x;
1697 	sxe = sx + --n;
1698 	bx = b->x;
1699 	bxe = bx + n;
1700 	q = *bxe / (*sxe + 1);	/* ensure q <= true quotient */
1701 #ifdef DEBUG
1702 	/*debug*/ if (q > 9)
1703 	/*debug*/	Bug("oversized quotient in quorem");
1704 #endif
1705 	if (q) {
1706 		borrow = 0;
1707 		carry = 0;
1708 		do {
1709 #ifdef Pack_32
1710 			si = *sx++;
1711 			ys = (si & 0xffff) * q + carry;
1712 			zs = (si >> 16) * q + (ys >> 16);
1713 			carry = zs >> 16;
1714 			y = (*bx & 0xffff) - (ys & 0xffff) + borrow;
1715 			borrow = y >> 16;
1716 			Sign_Extend(borrow, y);
1717 			z = (*bx >> 16) - (zs & 0xffff) + borrow;
1718 			borrow = z >> 16;
1719 			Sign_Extend(borrow, z);
1720 			Storeinc(bx, z, y);
1721 #else
1722 			ys = *sx++ * q + carry;
1723 			carry = ys >> 16;
1724 			y = *bx - (ys & 0xffff) + borrow;
1725 			borrow = y >> 16;
1726 			Sign_Extend(borrow, y);
1727 			*bx++ = y & 0xffff;
1728 #endif
1729 		} while (sx <= sxe);
1730 		if (!*bxe) {
1731 			bx = b->x;
1732 			while (--bxe > bx && !*bxe)
1733 				--n;
1734 			b->wds = n;
1735 		}
1736 	}
1737 	if (cmp(b, S) >= 0) {
1738 		q++;
1739 		borrow = 0;
1740 		carry = 0;
1741 		bx = b->x;
1742 		sx = S->x;
1743 		do {
1744 #ifdef Pack_32
1745 			si = *sx++;
1746 			ys = (si & 0xffff) + carry;
1747 			zs = (si >> 16) + (ys >> 16);
1748 			carry = zs >> 16;
1749 			y = (*bx & 0xffff) - (ys & 0xffff) + borrow;
1750 			borrow = y >> 16;
1751 			Sign_Extend(borrow, y);
1752 			z = (*bx >> 16) - (zs & 0xffff) + borrow;
1753 			borrow = z >> 16;
1754 			Sign_Extend(borrow, z);
1755 			Storeinc(bx, z, y);
1756 #else
1757 			ys = *sx++ + carry;
1758 			carry = ys >> 16;
1759 			y = *bx - (ys & 0xffff) + borrow;
1760 			borrow = y >> 16;
1761 			Sign_Extend(borrow, y);
1762 			*bx++ = y & 0xffff;
1763 #endif
1764 		} while (sx <= sxe);
1765 		bx = b->x;
1766 		bxe = bx + n;
1767 		if (!*bxe) {
1768 			while (--bxe > bx && !*bxe)
1769 				--n;
1770 			b->wds = n;
1771 		}
1772 	}
1773 	return q;
1774 }
1775 
1776 /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
1777  *
1778  * Inspired by "How to Print Floating-Point Numbers Accurately" by
1779  * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101].
1780  *
1781  * Modifications:
1782  *	1. Rather than iterating, we use a simple numeric overestimate
1783  *	   to determine k = floor(log10(d)).  We scale relevant
1784  *	   quantities using O(log2(k)) rather than O(k) multiplications.
1785  *	2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
1786  *	   try to generate digits strictly left to right.  Instead, we
1787  *	   compute with fewer bits and propagate the carry if necessary
1788  *	   when rounding the final digit up.  This is often faster.
1789  *	3. Under the assumption that input will be rounded nearest,
1790  *	   mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
1791  *	   That is, we allow equality in stopping tests when the
1792  *	   round-nearest rule will give the same floating-point value
1793  *	   as would satisfaction of the stopping test with strict
1794  *	   inequality.
1795  *	4. We remove common factors of powers of 2 from relevant
1796  *	   quantities.
1797  *	5. When converting floating-point integers less than 1e16,
1798  *	   we use floating-point arithmetic rather than resorting
1799  *	   to multiple-precision integers.
1800  *	6. When asked to produce fewer than 15 digits, we first try
1801  *	   to get by with floating-point arithmetic; we resort to
1802  *	   multiple-precision integer arithmetic only if we cannot
1803  *	   guarantee that the floating-point calculation has given
1804  *	   the correctly rounded result.  For k requested digits and
1805  *	   "uniformly" distributed input, the probability is
1806  *	   something like 10^(k-15) that we must resort to the long
1807  *	   calculation.
1808  */
1809 
1810 char *
1811 __dtoa
1812 #ifdef KR_headers
1813 	(d, mode, ndigits, decpt, sign, rve)
1814 	double d; int mode, ndigits, *decpt, *sign; char **rve;
1815 #else
1816 	(double d, int mode, int ndigits, int *decpt, int *sign, char **rve)
1817 #endif
1818 {
1819  /*	Arguments ndigits, decpt, sign are similar to those
1820 	of ecvt and fcvt; trailing zeros are suppressed from
1821 	the returned string.  If not null, *rve is set to point
1822 	to the end of the return value.  If d is +-Infinity or NaN,
1823 	then *decpt is set to 9999.
1824 
1825 	mode:
1826 		0 ==> shortest string that yields d when read in
1827 			and rounded to nearest.
1828 		1 ==> like 0, but with Steele & White stopping rule;
1829 			e.g. with IEEE P754 arithmetic , mode 0 gives
1830 			1e23 whereas mode 1 gives 9.999999999999999e22.
1831 		2 ==> max(1,ndigits) significant digits.  This gives a
1832 			return value similar to that of ecvt, except
1833 			that trailing zeros are suppressed.
1834 		3 ==> through ndigits past the decimal point.  This
1835 			gives a return value similar to that from fcvt,
1836 			except that trailing zeros are suppressed, and
1837 			ndigits can be negative.
1838 		4-9 should give the same return values as 2-3, i.e.,
1839 			4 <= mode <= 9 ==> same return as mode
1840 			2 + (mode & 1).  These modes are mainly for
1841 			debugging; often they run slower but sometimes
1842 			faster than modes 2-3.
1843 		4,5,8,9 ==> left-to-right digit generation.
1844 		6-9 ==> don't try fast floating-point estimate
1845 			(if applicable).
1846 
1847 		Values of mode other than 0-9 are treated as mode 0.
1848 
1849 		Sufficient space is allocated to the return value
1850 		to hold the suppressed trailing zeros.
1851 	*/
1852 
1853 	int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,
1854 		j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
1855 		spec_case, try_quick;
1856 	long L;
1857 #ifndef Sudden_Underflow
1858 	int denorm;
1859 	unsigned long x;
1860 #endif
1861 	Bigint *b, *b1, *delta, *mlo, *mhi, *S;
1862 	double d2, ds, eps;
1863 	char *s, *s0;
1864 	static Bigint *result;
1865 	static int result_k;
1866 
1867 	if (result) {
1868 		result->k = result_k;
1869 		result->maxwds = 1 << result_k;
1870 		Bfree(result);
1871 		result = 0;
1872 	}
1873 
1874 	if (word0(d) & Sign_bit) {
1875 		/* set sign for everything, including 0's and NaNs */
1876 		*sign = 1;
1877 		word0(d) &= ~Sign_bit;	/* clear sign bit */
1878 	}
1879 	else
1880 		*sign = 0;
1881 
1882 #if defined(IEEE_Arith) + defined(VAX)
1883 #ifdef IEEE_Arith
1884 	if ((word0(d) & Exp_mask) == Exp_mask)
1885 #else
1886 	if (word0(d)  == 0x8000)
1887 #endif
1888 	{
1889 		/* Infinity or NaN */
1890 		*decpt = 9999;
1891 		s =
1892 #ifdef IEEE_Arith
1893 			!word1(d) && !(word0(d) & 0xfffff) ? "Infinity" :
1894 #endif
1895 				"NaN";
1896 		if (rve)
1897 			*rve =
1898 #ifdef IEEE_Arith
1899 				s[3] ? s + 8 :
1900 #endif
1901 						s + 3;
1902 		return s;
1903 	}
1904 #endif
1905 #ifdef IBM
1906 	d += 0; /* normalize */
1907 #endif
1908 	if (!d) {
1909 		*decpt = 1;
1910 		s = "0";
1911 		if (rve)
1912 			*rve = s + 1;
1913 		return s;
1914 	}
1915 
1916 	b = d2b(d, &be, &bbits);
1917 #ifdef Sudden_Underflow
1918 	i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
1919 #else
1920 	if (i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1))) {
1921 #endif
1922 		d2 = d;
1923 		word0(d2) &= Frac_mask1;
1924 		word0(d2) |= Exp_11;
1925 #ifdef IBM
1926 		if (j = 11 - hi0bits(word0(d2) & Frac_mask))
1927 			d2 /= 1 << j;
1928 #endif
1929 
1930 		/* log(x)	~=~ log(1.5) + (x-1.5)/1.5
1931 		 * log10(x)	 =  log(x) / log(10)
1932 		 *		~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
1933 		 * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
1934 		 *
1935 		 * This suggests computing an approximation k to log10(d) by
1936 		 *
1937 		 * k = (i - Bias)*0.301029995663981
1938 		 *	+ ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
1939 		 *
1940 		 * We want k to be too large rather than too small.
1941 		 * The error in the first-order Taylor series approximation
1942 		 * is in our favor, so we just round up the constant enough
1943 		 * to compensate for any error in the multiplication of
1944 		 * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
1945 		 * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
1946 		 * adding 1e-13 to the constant term more than suffices.
1947 		 * Hence we adjust the constant term to 0.1760912590558.
1948 		 * (We could get a more accurate k by invoking log10,
1949 		 *  but this is probably not worthwhile.)
1950 		 */
1951 
1952 		i -= Bias;
1953 #ifdef IBM
1954 		i <<= 2;
1955 		i += j;
1956 #endif
1957 #ifndef Sudden_Underflow
1958 		denorm = 0;
1959 	} else {
1960 		/* d is denormalized */
1961 
1962 		i = bbits + be + (Bias + (P-1) - 1);
1963 		x = i > 32  ? word0(d) << 64 - i | word1(d) >> i - 32
1964 			    : word1(d) << 32 - i;
1965 		d2 = x;
1966 		word0(d2) -= 31*Exp_msk1; /* adjust exponent */
1967 		i -= (Bias + (P-1) - 1) + 1;
1968 		denorm = 1;
1969 	}
1970 #endif
1971 	ds = (d2-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
1972 	k = (int)ds;
1973 	if (ds < 0. && ds != k)
1974 		k--;	/* want k = floor(ds) */
1975 	k_check = 1;
1976 	if (k >= 0 && k <= Ten_pmax) {
1977 		if (d < tens[k])
1978 			k--;
1979 		k_check = 0;
1980 	}
1981 	j = bbits - i - 1;
1982 	if (j >= 0) {
1983 		b2 = 0;
1984 		s2 = j;
1985 	} else {
1986 		b2 = -j;
1987 		s2 = 0;
1988 	}
1989 	if (k >= 0) {
1990 		b5 = 0;
1991 		s5 = k;
1992 		s2 += k;
1993 	} else {
1994 		b2 -= k;
1995 		b5 = -k;
1996 		s5 = 0;
1997 	}
1998 	if (mode < 0 || mode > 9)
1999 		mode = 0;
2000 	try_quick = 1;
2001 	if (mode > 5) {
2002 		mode -= 4;
2003 		try_quick = 0;
2004 	}
2005 	leftright = 1;
2006 	switch(mode) {
2007 		case 0:
2008 		case 1:
2009 			ilim = ilim1 = -1;
2010 			i = 18;
2011 			ndigits = 0;
2012 			break;
2013 		case 2:
2014 			leftright = 0;
2015 			/* no break */
2016 		case 4:
2017 			if (ndigits <= 0)
2018 				ndigits = 1;
2019 			ilim = ilim1 = i = ndigits;
2020 			break;
2021 		case 3:
2022 			leftright = 0;
2023 			/* no break */
2024 		case 5:
2025 			i = ndigits + k + 1;
2026 			ilim = i;
2027 			ilim1 = i - 1;
2028 			if (i <= 0)
2029 				i = 1;
2030 	}
2031 	j = sizeof(unsigned long);
2032 	for (result_k = 0; sizeof(Bigint) - sizeof(unsigned long) + j < i;
2033 		j <<= 1) result_k++;
2034 	result = Balloc(result_k);
2035 	s = s0 = (char *)result;
2036 
2037 	if (ilim >= 0 && ilim <= Quick_max && try_quick) {
2038 
2039 		/* Try to get by with floating-point arithmetic. */
2040 
2041 		i = 0;
2042 		d2 = d;
2043 		k0 = k;
2044 		ilim0 = ilim;
2045 		ieps = 2; /* conservative */
2046 		if (k > 0) {
2047 			ds = tens[k&0xf];
2048 			j = k >> 4;
2049 			if (j & Bletch) {
2050 				/* prevent overflows */
2051 				j &= Bletch - 1;
2052 				d /= bigtens[n_bigtens-1];
2053 				ieps++;
2054 			}
2055 			for (; j; j >>= 1, i++)
2056 				if (j & 1) {
2057 					ieps++;
2058 					ds *= bigtens[i];
2059 				}
2060 			d /= ds;
2061 		} else if (j1 = -k) {
2062 			d *= tens[j1 & 0xf];
2063 			for (j = j1 >> 4; j; j >>= 1, i++)
2064 				if (j & 1) {
2065 					ieps++;
2066 					d *= bigtens[i];
2067 				}
2068 		}
2069 		if (k_check && d < 1. && ilim > 0) {
2070 			if (ilim1 <= 0)
2071 				goto fast_failed;
2072 			ilim = ilim1;
2073 			k--;
2074 			d *= 10.;
2075 			ieps++;
2076 		}
2077 		eps = ieps*d + 7.;
2078 		word0(eps) -= (P-1)*Exp_msk1;
2079 		if (ilim == 0) {
2080 			S = mhi = 0;
2081 			d -= 5.;
2082 			if (d > eps)
2083 				goto one_digit;
2084 			if (d < -eps)
2085 				goto no_digits;
2086 			goto fast_failed;
2087 		}
2088 #ifndef No_leftright
2089 		if (leftright) {
2090 			/* Use Steele & White method of only
2091 			 * generating digits needed.
2092 			 */
2093 			eps = 0.5/tens[ilim-1] - eps;
2094 			for (i = 0;;) {
2095 				L = d;
2096 				d -= L;
2097 				*s++ = '0' + (int)L;
2098 				if (d < eps)
2099 					goto ret1;
2100 				if (1. - d < eps)
2101 					goto bump_up;
2102 				if (++i >= ilim)
2103 					break;
2104 				eps *= 10.;
2105 				d *= 10.;
2106 			}
2107 		} else {
2108 #endif
2109 			/* Generate ilim digits, then fix them up. */
2110 			eps *= tens[ilim-1];
2111 			for (i = 1;; i++, d *= 10.) {
2112 				L = d;
2113 				d -= L;
2114 				*s++ = '0' + (int)L;
2115 				if (i == ilim) {
2116 					if (d > 0.5 + eps)
2117 						goto bump_up;
2118 					else if (d < 0.5 - eps) {
2119 						while (*--s == '0');
2120 						s++;
2121 						goto ret1;
2122 					}
2123 					break;
2124 				}
2125 			}
2126 #ifndef No_leftright
2127 		}
2128 #endif
2129  fast_failed:
2130 		s = s0;
2131 		d = d2;
2132 		k = k0;
2133 		ilim = ilim0;
2134 	}
2135 
2136 	/* Do we have a "small" integer? */
2137 
2138 	if (be >= 0 && k <= Int_max) {
2139 		/* Yes. */
2140 		ds = tens[k];
2141 		if (ndigits < 0 && ilim <= 0) {
2142 			S = mhi = 0;
2143 			if (ilim < 0 || d <= 5*ds)
2144 				goto no_digits;
2145 			goto one_digit;
2146 		}
2147 		for (i = 1;; i++) {
2148 			L = d / ds;
2149 			d -= L*ds;
2150 #ifdef Check_FLT_ROUNDS
2151 			/* If FLT_ROUNDS == 2, L will usually be high by 1 */
2152 			if (d < 0) {
2153 				L--;
2154 				d += ds;
2155 			}
2156 #endif
2157 			*s++ = '0' + (int)L;
2158 			if (i == ilim) {
2159 				d += d;
2160 				if (d > ds || d == ds && L & 1) {
2161  bump_up:
2162 					while (*--s == '9')
2163 						if (s == s0) {
2164 							k++;
2165 							*s = '0';
2166 							break;
2167 						}
2168 					++*s++;
2169 				}
2170 				break;
2171 			}
2172 			if (!(d *= 10.))
2173 				break;
2174 		}
2175 		goto ret1;
2176 	}
2177 
2178 	m2 = b2;
2179 	m5 = b5;
2180 	mhi = mlo = 0;
2181 	if (leftright) {
2182 		if (mode < 2) {
2183 			i =
2184 #ifndef Sudden_Underflow
2185 				denorm ? be + (Bias + (P-1) - 1 + 1) :
2186 #endif
2187 #ifdef IBM
2188 				1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3);
2189 #else
2190 				1 + P - bbits;
2191 #endif
2192 		} else {
2193 			j = ilim - 1;
2194 			if (m5 >= j)
2195 				m5 -= j;
2196 			else {
2197 				s5 += j -= m5;
2198 				b5 += j;
2199 				m5 = 0;
2200 			}
2201 			if ((i = ilim) < 0) {
2202 				m2 -= i;
2203 				i = 0;
2204 			}
2205 		}
2206 		b2 += i;
2207 		s2 += i;
2208 		mhi = i2b(1);
2209 	}
2210 	if (m2 > 0 && s2 > 0) {
2211 		i = m2 < s2 ? m2 : s2;
2212 		b2 -= i;
2213 		m2 -= i;
2214 		s2 -= i;
2215 	}
2216 	if (b5 > 0) {
2217 		if (leftright) {
2218 			if (m5 > 0) {
2219 				mhi = pow5mult(mhi, m5);
2220 				b1 = mult(mhi, b);
2221 				Bfree(b);
2222 				b = b1;
2223 				}
2224 			if (j = b5 - m5)
2225 				b = pow5mult(b, j);
2226 		} else
2227 			b = pow5mult(b, b5);
2228 	}
2229 	S = i2b(1);
2230 	if (s5 > 0)
2231 		S = pow5mult(S, s5);
2232 
2233 	/* Check for special case that d is a normalized power of 2. */
2234 
2235 	if (mode < 2) {
2236 		if (!word1(d) && !(word0(d) & Bndry_mask)
2237 #ifndef Sudden_Underflow
2238 		 && word0(d) & Exp_mask
2239 #endif
2240 				) {
2241 			/* The special case */
2242 			b2 += Log2P;
2243 			s2 += Log2P;
2244 			spec_case = 1;
2245 		} else
2246 			spec_case = 0;
2247 	}
2248 
2249 	/* Arrange for convenient computation of quotients:
2250 	 * shift left if necessary so divisor has 4 leading 0 bits.
2251 	 *
2252 	 * Perhaps we should just compute leading 28 bits of S once
2253 	 * and for all and pass them and a shift to quorem, so it
2254 	 * can do shifts and ors to compute the numerator for q.
2255 	 */
2256 #ifdef Pack_32
2257 	if (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f)
2258 		i = 32 - i;
2259 #else
2260 	if (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0xf)
2261 		i = 16 - i;
2262 #endif
2263 	if (i > 4) {
2264 		i -= 4;
2265 		b2 += i;
2266 		m2 += i;
2267 		s2 += i;
2268 	} else if (i < 4) {
2269 		i += 28;
2270 		b2 += i;
2271 		m2 += i;
2272 		s2 += i;
2273 	}
2274 	if (b2 > 0)
2275 		b = lshift(b, b2);
2276 	if (s2 > 0)
2277 		S = lshift(S, s2);
2278 	if (k_check) {
2279 		if (cmp(b,S) < 0) {
2280 			k--;
2281 			b = multadd(b, 10, 0);	/* we botched the k estimate */
2282 			if (leftright)
2283 				mhi = multadd(mhi, 10, 0);
2284 			ilim = ilim1;
2285 		}
2286 	}
2287 	if (ilim <= 0 && mode > 2) {
2288 		if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) {
2289 			/* no digits, fcvt style */
2290  no_digits:
2291 			k = -1 - ndigits;
2292 			goto ret;
2293 		}
2294  one_digit:
2295 		*s++ = '1';
2296 		k++;
2297 		goto ret;
2298 	}
2299 	if (leftright) {
2300 		if (m2 > 0)
2301 			mhi = lshift(mhi, m2);
2302 
2303 		/* Compute mlo -- check for special case
2304 		 * that d is a normalized power of 2.
2305 		 */
2306 
2307 		mlo = mhi;
2308 		if (spec_case) {
2309 			mhi = Balloc(mhi->k);
2310 			Bcopy(mhi, mlo);
2311 			mhi = lshift(mhi, Log2P);
2312 		}
2313 
2314 		for (i = 1;;i++) {
2315 			dig = quorem(b,S) + '0';
2316 			/* Do we yet have the shortest decimal string
2317 			 * that will round to d?
2318 			 */
2319 			j = cmp(b, mlo);
2320 			delta = diff(S, mhi);
2321 			j1 = delta->sign ? 1 : cmp(b, delta);
2322 			Bfree(delta);
2323 #ifndef ROUND_BIASED
2324 			if (j1 == 0 && !mode && !(word1(d) & 1)) {
2325 				if (dig == '9')
2326 					goto round_9_up;
2327 				if (j > 0)
2328 					dig++;
2329 				*s++ = dig;
2330 				goto ret;
2331 			}
2332 #endif
2333 			if (j < 0 || j == 0 && !mode
2334 #ifndef ROUND_BIASED
2335 							&& !(word1(d) & 1)
2336 #endif
2337 					) {
2338 				if (j1 > 0) {
2339 					b = lshift(b, 1);
2340 					j1 = cmp(b, S);
2341 					if ((j1 > 0 || j1 == 0 && dig & 1)
2342 					&& dig++ == '9')
2343 						goto round_9_up;
2344 				}
2345 				*s++ = dig;
2346 				goto ret;
2347 			}
2348 			if (j1 > 0) {
2349 				if (dig == '9') { /* possible if i == 1 */
2350  round_9_up:
2351 					*s++ = '9';
2352 					goto roundoff;
2353 				}
2354 				*s++ = dig + 1;
2355 				goto ret;
2356 			}
2357 			*s++ = dig;
2358 			if (i == ilim)
2359 				break;
2360 			b = multadd(b, 10, 0);
2361 			if (mlo == mhi)
2362 				mlo = mhi = multadd(mhi, 10, 0);
2363 			else {
2364 				mlo = multadd(mlo, 10, 0);
2365 				mhi = multadd(mhi, 10, 0);
2366 			}
2367 		}
2368 	} else
2369 		for (i = 1;; i++) {
2370 			*s++ = dig = quorem(b,S) + '0';
2371 			if (i >= ilim)
2372 				break;
2373 			b = multadd(b, 10, 0);
2374 		}
2375 
2376 	/* Round off last digit */
2377 
2378 	b = lshift(b, 1);
2379 	j = cmp(b, S);
2380 	if (j > 0 || j == 0 && dig & 1) {
2381  roundoff:
2382 		while (*--s == '9')
2383 			if (s == s0) {
2384 				k++;
2385 				*s++ = '1';
2386 				goto ret;
2387 			}
2388 		++*s++;
2389 	} else {
2390 		while (*--s == '0');
2391 		s++;
2392 	}
2393  ret:
2394 	Bfree(S);
2395 	if (mhi) {
2396 		if (mlo && mlo != mhi)
2397 			Bfree(mlo);
2398 		Bfree(mhi);
2399 	}
2400  ret1:
2401 	Bfree(b);
2402 	if (s == s0) {	/* don't return empty string */
2403 		*s++ = '0';
2404 		k = 0;
2405 	}
2406 	*s = 0;
2407 	*decpt = k + 1;
2408 	if (rve)
2409 		*rve = s;
2410 	return s0;
2411 	}
2412 #ifdef __cplusplus
2413 }
2414 #endif
2415