xref: /original-bsd/lib/libc/stdlib/strtod.c (revision c3e32dec)
1 /*-
2  * Copyright (c) 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * %sccs.include.redist.c%
6  */
7 
8 #if defined(LIBC_SCCS) && !defined(lint)
9 static char sccsid[] = "@(#)strtod.c	8.1 (Berkeley) 06/04/93";
10 #endif /* LIBC_SCCS and not lint */
11 
12 /****************************************************************
13  *
14  * The author of this software is David M. Gay.
15  *
16  * Copyright (c) 1991 by AT&T.
17  *
18  * Permission to use, copy, modify, and distribute this software for any
19  * purpose without fee is hereby granted, provided that this entire notice
20  * is included in all copies of any software which is or includes a copy
21  * or modification of this software and in all copies of the supporting
22  * documentation for such software.
23  *
24  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
25  * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR AT&T MAKES ANY
26  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
27  * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
28  *
29  ***************************************************************/
30 
31 /* Please send bug reports to
32 	David M. Gay
33 	AT&T Bell Laboratories, Room 2C-463
34 	600 Mountain Avenue
35 	Murray Hill, NJ 07974-2070
36 	U.S.A.
37 	dmg@research.att.com or research!dmg
38  */
39 
40 /* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
41  *
42  * This strtod returns a nearest machine number to the input decimal
43  * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
44  * broken by the IEEE round-even rule.  Otherwise ties are broken by
45  * biased rounding (add half and chop).
46  *
47  * Inspired loosely by William D. Clinger's paper "How to Read Floating
48  * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
49  *
50  * Modifications:
51  *
52  *	1. We only require IEEE, IBM, or VAX double-precision
53  *		arithmetic (not IEEE double-extended).
54  *	2. We get by with floating-point arithmetic in a case that
55  *		Clinger missed -- when we're computing d * 10^n
56  *		for a small integer d and the integer n is not too
57  *		much larger than 22 (the maximum integer k for which
58  *		we can represent 10^k exactly), we may be able to
59  *		compute (d*10^k) * 10^(e-k) with just one roundoff.
60  *	3. Rather than a bit-at-a-time adjustment of the binary
61  *		result in the hard case, we use floating-point
62  *		arithmetic to determine the adjustment to within
63  *		one bit; only in really hard cases do we need to
64  *		compute a second residual.
65  *	4. Because of 3., we don't need a large table of powers of 10
66  *		for ten-to-e (just some small tables, e.g. of 10^k
67  *		for 0 <= k <= 22).
68  */
69 
70 /*
71  * #define IEEE_8087 for IEEE-arithmetic machines where the least
72  *	significant byte has the lowest address.
73  * #define IEEE_MC68k for IEEE-arithmetic machines where the most
74  *	significant byte has the lowest address.
75  * #define Sudden_Underflow for IEEE-format machines without gradual
76  *	underflow (i.e., that flush to zero on underflow).
77  * #define IBM for IBM mainframe-style floating-point arithmetic.
78  * #define VAX for VAX-style floating-point arithmetic.
79  * #define Unsigned_Shifts if >> does treats its left operand as unsigned.
80  * #define No_leftright to omit left-right logic in fast floating-point
81  *	computation of dtoa.
82  * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
83  * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
84  *	that use extended-precision instructions to compute rounded
85  *	products and quotients) with IBM.
86  * #define ROUND_BIASED for IEEE-format with biased rounding.
87  * #define Inaccurate_Divide for IEEE-format with correctly rounded
88  *	products but inaccurate quotients, e.g., for Intel i860.
89  * #define Just_16 to store 16 bits per 32-bit long when doing high-precision
90  *	integer arithmetic.  Whether this speeds things up or slows things
91  *	down depends on the machine and the number being converted.
92  * #define KR_headers for old-style C function headers.
93  * #define Bad_float_h if your system lacks a float.h or if it does not
94  *	define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
95  *	FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
96  */
97 
98 #if defined(i386) || defined(mips) && defined(MIPSEL)
99 #define IEEE_8087
100 #else
101 #define IEEE_MC68k
102 #endif
103 
104 #ifdef DEBUG
105 #include "stdio.h"
106 #define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
107 #endif
108 
109 #ifdef __cplusplus
110 #include "malloc.h"
111 #include "memory.h"
112 #else
113 #ifndef KR_headers
114 #include "stdlib.h"
115 #include "string.h"
116 #else
117 #include "malloc.h"
118 #include "memory.h"
119 #endif
120 #endif
121 
122 #include "errno.h"
123 #ifdef Bad_float_h
124 #undef __STDC__
125 #ifdef IEEE_MC68k
126 #define IEEE_ARITHMETIC
127 #endif
128 #ifdef IEEE_8087
129 #define IEEE_ARITHMETIC
130 #endif
131 #ifdef IEEE_ARITHMETIC
132 #define DBL_DIG 15
133 #define DBL_MAX_10_EXP 308
134 #define DBL_MAX_EXP 1024
135 #define FLT_RADIX 2
136 #define FLT_ROUNDS 1
137 #define DBL_MAX 1.7976931348623157e+308
138 #endif
139 
140 #ifdef IBM
141 #define DBL_DIG 16
142 #define DBL_MAX_10_EXP 75
143 #define DBL_MAX_EXP 63
144 #define FLT_RADIX 16
145 #define FLT_ROUNDS 0
146 #define DBL_MAX 7.2370055773322621e+75
147 #endif
148 
149 #ifdef VAX
150 #define DBL_DIG 16
151 #define DBL_MAX_10_EXP 38
152 #define DBL_MAX_EXP 127
153 #define FLT_RADIX 2
154 #define FLT_ROUNDS 1
155 #define DBL_MAX 1.7014118346046923e+38
156 #endif
157 
158 #ifndef LONG_MAX
159 #define LONG_MAX 2147483647
160 #endif
161 #else
162 #include "float.h"
163 #endif
164 #ifndef __MATH_H__
165 #include "math.h"
166 #endif
167 
168 #ifdef __cplusplus
169 extern "C" {
170 #endif
171 
172 #ifndef CONST
173 #ifdef KR_headers
174 #define CONST /* blank */
175 #else
176 #define CONST const
177 #endif
178 #endif
179 
180 #ifdef Unsigned_Shifts
181 #define Sign_Extend(a,b) if (b < 0) a |= 0xffff0000;
182 #else
183 #define Sign_Extend(a,b) /*no-op*/
184 #endif
185 
186 #if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1
187 Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined.
188 #endif
189 
190 #ifdef IEEE_8087
191 #define word0(x) ((unsigned long *)&x)[1]
192 #define word1(x) ((unsigned long *)&x)[0]
193 #else
194 #define word0(x) ((unsigned long *)&x)[0]
195 #define word1(x) ((unsigned long *)&x)[1]
196 #endif
197 
198 /* The following definition of Storeinc is appropriate for MIPS processors.
199  * An alternative that might be better on some machines is
200  * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
201  */
202 #if defined(IEEE_8087) + defined(VAX)
203 #define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
204 ((unsigned short *)a)[0] = (unsigned short)c, a++)
205 #else
206 #define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
207 ((unsigned short *)a)[1] = (unsigned short)c, a++)
208 #endif
209 
210 /* #define P DBL_MANT_DIG */
211 /* Ten_pmax = floor(P*log(2)/log(5)) */
212 /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
213 /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
214 /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
215 
216 #if defined(IEEE_8087) + defined(IEEE_MC68k)
217 #define Exp_shift  20
218 #define Exp_shift1 20
219 #define Exp_msk1    0x100000
220 #define Exp_msk11   0x100000
221 #define Exp_mask  0x7ff00000
222 #define P 53
223 #define Bias 1023
224 #define IEEE_Arith
225 #define Emin (-1022)
226 #define Exp_1  0x3ff00000
227 #define Exp_11 0x3ff00000
228 #define Ebits 11
229 #define Frac_mask  0xfffff
230 #define Frac_mask1 0xfffff
231 #define Ten_pmax 22
232 #define Bletch 0x10
233 #define Bndry_mask  0xfffff
234 #define Bndry_mask1 0xfffff
235 #define LSB 1
236 #define Sign_bit 0x80000000
237 #define Log2P 1
238 #define Tiny0 0
239 #define Tiny1 1
240 #define Quick_max 14
241 #define Int_max 14
242 #define Infinite(x) (word0(x) == 0x7ff00000) /* sufficient test for here */
243 #else
244 #undef  Sudden_Underflow
245 #define Sudden_Underflow
246 #ifdef IBM
247 #define Exp_shift  24
248 #define Exp_shift1 24
249 #define Exp_msk1   0x1000000
250 #define Exp_msk11  0x1000000
251 #define Exp_mask  0x7f000000
252 #define P 14
253 #define Bias 65
254 #define Exp_1  0x41000000
255 #define Exp_11 0x41000000
256 #define Ebits 8	/* exponent has 7 bits, but 8 is the right value in b2d */
257 #define Frac_mask  0xffffff
258 #define Frac_mask1 0xffffff
259 #define Bletch 4
260 #define Ten_pmax 22
261 #define Bndry_mask  0xefffff
262 #define Bndry_mask1 0xffffff
263 #define LSB 1
264 #define Sign_bit 0x80000000
265 #define Log2P 4
266 #define Tiny0 0x100000
267 #define Tiny1 0
268 #define Quick_max 14
269 #define Int_max 15
270 #else /* VAX */
271 #define Exp_shift  23
272 #define Exp_shift1 7
273 #define Exp_msk1    0x80
274 #define Exp_msk11   0x800000
275 #define Exp_mask  0x7f80
276 #define P 56
277 #define Bias 129
278 #define Exp_1  0x40800000
279 #define Exp_11 0x4080
280 #define Ebits 8
281 #define Frac_mask  0x7fffff
282 #define Frac_mask1 0xffff007f
283 #define Ten_pmax 24
284 #define Bletch 2
285 #define Bndry_mask  0xffff007f
286 #define Bndry_mask1 0xffff007f
287 #define LSB 0x10000
288 #define Sign_bit 0x8000
289 #define Log2P 1
290 #define Tiny0 0x80
291 #define Tiny1 0
292 #define Quick_max 15
293 #define Int_max 15
294 #endif
295 #endif
296 
297 #ifndef IEEE_Arith
298 #define ROUND_BIASED
299 #endif
300 
301 #ifdef RND_PRODQUOT
302 #define rounded_product(a,b) a = rnd_prod(a, b)
303 #define rounded_quotient(a,b) a = rnd_quot(a, b)
304 #ifdef KR_headers
305 extern double rnd_prod(), rnd_quot();
306 #else
307 extern double rnd_prod(double, double), rnd_quot(double, double);
308 #endif
309 #else
310 #define rounded_product(a,b) a *= b
311 #define rounded_quotient(a,b) a /= b
312 #endif
313 
314 #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
315 #define Big1 0xffffffff
316 
317 #ifndef Just_16
318 /* When Pack_32 is not defined, we store 16 bits per 32-bit long.
319  * This makes some inner loops simpler and sometimes saves work
320  * during multiplications, but it often seems to make things slightly
321  * slower.  Hence the default is now to store 32 bits per long.
322  */
323 #ifndef Pack_32
324 #define Pack_32
325 #endif
326 #endif
327 
328 #define Kmax 15
329 
330 #ifdef __cplusplus
331 extern "C" double strtod(const char *s00, char **se);
332 extern "C" char *dtoa(double d, int mode, int ndigits,
333 			int *decpt, int *sign, char **rve);
334 #endif
335 
336  struct
337 Bigint {
338 	struct Bigint *next;
339 	int k, maxwds, sign, wds;
340 	unsigned long x[1];
341 };
342 
343  typedef struct Bigint Bigint;
344 
345  static Bigint *freelist[Kmax+1];
346 
347  static Bigint *
348 Balloc
349 #ifdef KR_headers
350 	(k) int k;
351 #else
352 	(int k)
353 #endif
354 {
355 	int x;
356 	Bigint *rv;
357 
358 	if (rv = freelist[k]) {
359 		freelist[k] = rv->next;
360 	} else {
361 		x = 1 << k;
362 		rv = (Bigint *)malloc(sizeof(Bigint) + (x-1)*sizeof(long));
363 		rv->k = k;
364 		rv->maxwds = x;
365 	}
366 	rv->sign = rv->wds = 0;
367 	return rv;
368 }
369 
370  static void
371 Bfree
372 #ifdef KR_headers
373 	(v) Bigint *v;
374 #else
375 	(Bigint *v)
376 #endif
377 {
378 	if (v) {
379 		v->next = freelist[v->k];
380 		freelist[v->k] = v;
381 	}
382 }
383 
384 #define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \
385 y->wds*sizeof(long) + 2*sizeof(int))
386 
387  static Bigint *
388 multadd
389 #ifdef KR_headers
390 	(b, m, a) Bigint *b; int m, a;
391 #else
392 	(Bigint *b, int m, int a)	/* multiply by m and add a */
393 #endif
394 {
395 	int i, wds;
396 	unsigned long *x, y;
397 #ifdef Pack_32
398 	unsigned long xi, z;
399 #endif
400 	Bigint *b1;
401 
402 	wds = b->wds;
403 	x = b->x;
404 	i = 0;
405 	do {
406 #ifdef Pack_32
407 		xi = *x;
408 		y = (xi & 0xffff) * m + a;
409 		z = (xi >> 16) * m + (y >> 16);
410 		a = (int)(z >> 16);
411 		*x++ = (z << 16) + (y & 0xffff);
412 #else
413 		y = *x * m + a;
414 		a = (int)(y >> 16);
415 		*x++ = y & 0xffff;
416 #endif
417 	} while (++i < wds);
418 	if (a) {
419 		if (wds >= b->maxwds) {
420 			b1 = Balloc(b->k+1);
421 			Bcopy(b1, b);
422 			Bfree(b);
423 			b = b1;
424 			}
425 		b->x[wds++] = a;
426 		b->wds = wds;
427 	}
428 	return b;
429 }
430 
431  static Bigint *
432 s2b
433 #ifdef KR_headers
434 	(s, nd0, nd, y9) CONST char *s; int nd0, nd; unsigned long y9;
435 #else
436 	(CONST char *s, int nd0, int nd, unsigned long y9)
437 #endif
438 {
439 	Bigint *b;
440 	int i, k;
441 	long x, y;
442 
443 	x = (nd + 8) / 9;
444 	for (k = 0, y = 1; x > y; y <<= 1, k++) ;
445 #ifdef Pack_32
446 	b = Balloc(k);
447 	b->x[0] = y9;
448 	b->wds = 1;
449 #else
450 	b = Balloc(k+1);
451 	b->x[0] = y9 & 0xffff;
452 	b->wds = (b->x[1] = y9 >> 16) ? 2 : 1;
453 #endif
454 
455 	i = 9;
456 	if (9 < nd0) {
457 		s += 9;
458 		do
459 			b = multadd(b, 10, *s++ - '0');
460 		while (++i < nd0);
461 		s++;
462 	} else
463 		s += 10;
464 	for (; i < nd; i++)
465 		b = multadd(b, 10, *s++ - '0');
466 	return b;
467 }
468 
469  static int
470 hi0bits
471 #ifdef KR_headers
472 	(x) register unsigned long x;
473 #else
474 	(register unsigned long x)
475 #endif
476 {
477 	register int k = 0;
478 
479 	if (!(x & 0xffff0000)) {
480 		k = 16;
481 		x <<= 16;
482 	}
483 	if (!(x & 0xff000000)) {
484 		k += 8;
485 		x <<= 8;
486 	}
487 	if (!(x & 0xf0000000)) {
488 		k += 4;
489 		x <<= 4;
490 	}
491 	if (!(x & 0xc0000000)) {
492 		k += 2;
493 		x <<= 2;
494 	}
495 	if (!(x & 0x80000000)) {
496 		k++;
497 		if (!(x & 0x40000000))
498 			return 32;
499 	}
500 	return k;
501 }
502 
503  static int
504 lo0bits
505 #ifdef KR_headers
506 	(y) unsigned long *y;
507 #else
508 	(unsigned long *y)
509 #endif
510 {
511 	register int k;
512 	register unsigned long x = *y;
513 
514 	if (x & 7) {
515 		if (x & 1)
516 			return 0;
517 		if (x & 2) {
518 			*y = x >> 1;
519 			return 1;
520 		}
521 		*y = x >> 2;
522 		return 2;
523 	}
524 	k = 0;
525 	if (!(x & 0xffff)) {
526 		k = 16;
527 		x >>= 16;
528 	}
529 	if (!(x & 0xff)) {
530 		k += 8;
531 		x >>= 8;
532 	}
533 	if (!(x & 0xf)) {
534 		k += 4;
535 		x >>= 4;
536 	}
537 	if (!(x & 0x3)) {
538 		k += 2;
539 		x >>= 2;
540 	}
541 	if (!(x & 1)) {
542 		k++;
543 		x >>= 1;
544 		if (!x & 1)
545 			return 32;
546 	}
547 	*y = x;
548 	return k;
549 }
550 
551  static Bigint *
552 i2b
553 #ifdef KR_headers
554 	(i) int i;
555 #else
556 	(int i)
557 #endif
558 {
559 	Bigint *b;
560 
561 	b = Balloc(1);
562 	b->x[0] = i;
563 	b->wds = 1;
564 	return b;
565 	}
566 
567  static Bigint *
568 mult
569 #ifdef KR_headers
570 	(a, b) Bigint *a, *b;
571 #else
572 	(Bigint *a, Bigint *b)
573 #endif
574 {
575 	Bigint *c;
576 	int k, wa, wb, wc;
577 	unsigned long carry, y, z;
578 	unsigned long *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
579 #ifdef Pack_32
580 	unsigned long z2;
581 #endif
582 
583 	if (a->wds < b->wds) {
584 		c = a;
585 		a = b;
586 		b = c;
587 	}
588 	k = a->k;
589 	wa = a->wds;
590 	wb = b->wds;
591 	wc = wa + wb;
592 	if (wc > a->maxwds)
593 		k++;
594 	c = Balloc(k);
595 	for (x = c->x, xa = x + wc; x < xa; x++)
596 		*x = 0;
597 	xa = a->x;
598 	xae = xa + wa;
599 	xb = b->x;
600 	xbe = xb + wb;
601 	xc0 = c->x;
602 #ifdef Pack_32
603 	for (; xb < xbe; xb++, xc0++) {
604 		if (y = *xb & 0xffff) {
605 			x = xa;
606 			xc = xc0;
607 			carry = 0;
608 			do {
609 				z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
610 				carry = z >> 16;
611 				z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
612 				carry = z2 >> 16;
613 				Storeinc(xc, z2, z);
614 			} while (x < xae);
615 			*xc = carry;
616 		}
617 		if (y = *xb >> 16) {
618 			x = xa;
619 			xc = xc0;
620 			carry = 0;
621 			z2 = *xc;
622 			do {
623 				z = (*x & 0xffff) * y + (*xc >> 16) + carry;
624 				carry = z >> 16;
625 				Storeinc(xc, z, z2);
626 				z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
627 				carry = z2 >> 16;
628 			} while (x < xae);
629 			*xc = z2;
630 		}
631 	}
632 #else
633 	for (; xb < xbe; xc0++) {
634 		if (y = *xb++) {
635 			x = xa;
636 			xc = xc0;
637 			carry = 0;
638 			do {
639 				z = *x++ * y + *xc + carry;
640 				carry = z >> 16;
641 				*xc++ = z & 0xffff;
642 			} while (x < xae);
643 			*xc = carry;
644 		}
645 	}
646 #endif
647 	for (xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
648 	c->wds = wc;
649 	return c;
650 }
651 
652  static Bigint *p5s;
653 
654  static Bigint *
655 pow5mult
656 #ifdef KR_headers
657 	(b, k) Bigint *b; int k;
658 #else
659 	(Bigint *b, int k)
660 #endif
661 {
662 	Bigint *b1, *p5, *p51;
663 	int i;
664 	static int p05[3] = { 5, 25, 125 };
665 
666 	if (i = k & 3)
667 		b = multadd(b, p05[i-1], 0);
668 
669 	if (!(k >>= 2))
670 		return b;
671 	if (!(p5 = p5s)) {
672 		/* first time */
673 		p5 = p5s = i2b(625);
674 		p5->next = 0;
675 	}
676 	for (;;) {
677 		if (k & 1) {
678 			b1 = mult(b, p5);
679 			Bfree(b);
680 			b = b1;
681 		}
682 		if (!(k >>= 1))
683 			break;
684 		if (!(p51 = p5->next)) {
685 			p51 = p5->next = mult(p5,p5);
686 			p51->next = 0;
687 		}
688 		p5 = p51;
689 	}
690 	return b;
691 }
692 
693  static Bigint *
694 lshift
695 #ifdef KR_headers
696 	(b, k) Bigint *b; int k;
697 #else
698 	(Bigint *b, int k)
699 #endif
700 {
701 	int i, k1, n, n1;
702 	Bigint *b1;
703 	unsigned long *x, *x1, *xe, z;
704 
705 #ifdef Pack_32
706 	n = k >> 5;
707 #else
708 	n = k >> 4;
709 #endif
710 	k1 = b->k;
711 	n1 = n + b->wds + 1;
712 	for (i = b->maxwds; n1 > i; i <<= 1)
713 		k1++;
714 	b1 = Balloc(k1);
715 	x1 = b1->x;
716 	for (i = 0; i < n; i++)
717 		*x1++ = 0;
718 	x = b->x;
719 	xe = x + b->wds;
720 #ifdef Pack_32
721 	if (k &= 0x1f) {
722 		k1 = 32 - k;
723 		z = 0;
724 		do {
725 			*x1++ = *x << k | z;
726 			z = *x++ >> k1;
727 		} while (x < xe);
728 		if (*x1 = z)
729 			++n1;
730 	}
731 #else
732 	if (k &= 0xf) {
733 		k1 = 16 - k;
734 		z = 0;
735 		do {
736 			*x1++ = *x << k  & 0xffff | z;
737 			z = *x++ >> k1;
738 		} while (x < xe);
739 		if (*x1 = z)
740 			++n1;
741 	}
742 #endif
743 	else
744 		do
745 			*x1++ = *x++;
746 		while (x < xe);
747 	b1->wds = n1 - 1;
748 	Bfree(b);
749 	return b1;
750 }
751 
752  static int
753 cmp
754 #ifdef KR_headers
755 	(a, b) Bigint *a, *b;
756 #else
757 	(Bigint *a, Bigint *b)
758 #endif
759 {
760 	unsigned long *xa, *xa0, *xb, *xb0;
761 	int i, j;
762 
763 	i = a->wds;
764 	j = b->wds;
765 #ifdef DEBUG
766 	if (i > 1 && !a->x[i-1])
767 		Bug("cmp called with a->x[a->wds-1] == 0");
768 	if (j > 1 && !b->x[j-1])
769 		Bug("cmp called with b->x[b->wds-1] == 0");
770 #endif
771 	if (i -= j)
772 		return i;
773 	xa0 = a->x;
774 	xa = xa0 + j;
775 	xb0 = b->x;
776 	xb = xb0 + j;
777 	for (;;) {
778 		if (*--xa != *--xb)
779 			return *xa < *xb ? -1 : 1;
780 		if (xa <= xa0)
781 			break;
782 	}
783 	return 0;
784 }
785 
786  static Bigint *
787 diff
788 #ifdef KR_headers
789 	(a, b) Bigint *a, *b;
790 #else
791 	(Bigint *a, Bigint *b)
792 #endif
793 {
794 	Bigint *c;
795 	int i, wa, wb;
796 	long borrow, y;	/* We need signed shifts here. */
797 	unsigned long *xa, *xae, *xb, *xbe, *xc;
798 #ifdef Pack_32
799 	long z;
800 #endif
801 
802 	i = cmp(a,b);
803 	if (!i) {
804 		c = Balloc(0);
805 		c->wds = 1;
806 		c->x[0] = 0;
807 		return c;
808 	}
809 	if (i < 0) {
810 		c = a;
811 		a = b;
812 		b = c;
813 		i = 1;
814 	} else
815 		i = 0;
816 	c = Balloc(a->k);
817 	c->sign = i;
818 	wa = a->wds;
819 	xa = a->x;
820 	xae = xa + wa;
821 	wb = b->wds;
822 	xb = b->x;
823 	xbe = xb + wb;
824 	xc = c->x;
825 	borrow = 0;
826 #ifdef Pack_32
827 	do {
828 		y = (*xa & 0xffff) - (*xb & 0xffff) + borrow;
829 		borrow = y >> 16;
830 		Sign_Extend(borrow, y);
831 		z = (*xa++ >> 16) - (*xb++ >> 16) + borrow;
832 		borrow = z >> 16;
833 		Sign_Extend(borrow, z);
834 		Storeinc(xc, z, y);
835 	} while (xb < xbe);
836 	while (xa < xae) {
837 		y = (*xa & 0xffff) + borrow;
838 		borrow = y >> 16;
839 		Sign_Extend(borrow, y);
840 		z = (*xa++ >> 16) + borrow;
841 		borrow = z >> 16;
842 		Sign_Extend(borrow, z);
843 		Storeinc(xc, z, y);
844 	}
845 #else
846 	do {
847 		y = *xa++ - *xb++ + borrow;
848 		borrow = y >> 16;
849 		Sign_Extend(borrow, y);
850 		*xc++ = y & 0xffff;
851 	} while (xb < xbe);
852 	while (xa < xae) {
853 		y = *xa++ + borrow;
854 		borrow = y >> 16;
855 		Sign_Extend(borrow, y);
856 		*xc++ = y & 0xffff;
857 	}
858 #endif
859 	while (!*--xc)
860 		wa--;
861 	c->wds = wa;
862 	return c;
863 }
864 
865  static double
866 ulp
867 #ifdef KR_headers
868 	(x) double x;
869 #else
870 	(double x)
871 #endif
872 {
873 	register long L;
874 	double a;
875 
876 	L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
877 #ifndef Sudden_Underflow
878 	if (L > 0) {
879 #endif
880 #ifdef IBM
881 		L |= Exp_msk1 >> 4;
882 #endif
883 		word0(a) = L;
884 		word1(a) = 0;
885 #ifndef Sudden_Underflow
886 	} else {
887 		L = -L >> Exp_shift;
888 		if (L < Exp_shift) {
889 			word0(a) = 0x80000 >> L;
890 			word1(a) = 0;
891 		} else {
892 			word0(a) = 0;
893 			L -= Exp_shift;
894 			word1(a) = L >= 31 ? 1 : 1 << 31 - L;
895 		}
896 	}
897 #endif
898 	return a;
899 }
900 
901  static double
902 b2d
903 #ifdef KR_headers
904 	(a, e) Bigint *a; int *e;
905 #else
906 	(Bigint *a, int *e)
907 #endif
908 {
909 	unsigned long *xa, *xa0, w, y, z;
910 	int k;
911 	double d;
912 #ifdef VAX
913 	unsigned long d0, d1;
914 #else
915 #define d0 word0(d)
916 #define d1 word1(d)
917 #endif
918 
919 	xa0 = a->x;
920 	xa = xa0 + a->wds;
921 	y = *--xa;
922 #ifdef DEBUG
923 	if (!y) Bug("zero y in b2d");
924 #endif
925 	k = hi0bits(y);
926 	*e = 32 - k;
927 #ifdef Pack_32
928 	if (k < Ebits) {
929 		d0 = Exp_1 | y >> Ebits - k;
930 		w = xa > xa0 ? *--xa : 0;
931 		d1 = y << (32-Ebits) + k | w >> Ebits - k;
932 		goto ret_d;
933 		}
934 	z = xa > xa0 ? *--xa : 0;
935 	if (k -= Ebits) {
936 		d0 = Exp_1 | y << k | z >> 32 - k;
937 		y = xa > xa0 ? *--xa : 0;
938 		d1 = z << k | y >> 32 - k;
939 	} else {
940 		d0 = Exp_1 | y;
941 		d1 = z;
942 	}
943 #else
944 	if (k < Ebits + 16) {
945 		z = xa > xa0 ? *--xa : 0;
946 		d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k;
947 		w = xa > xa0 ? *--xa : 0;
948 		y = xa > xa0 ? *--xa : 0;
949 		d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k;
950 		goto ret_d;
951 	}
952 	z = xa > xa0 ? *--xa : 0;
953 	w = xa > xa0 ? *--xa : 0;
954 	k -= Ebits + 16;
955 	d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k;
956 	y = xa > xa0 ? *--xa : 0;
957 	d1 = w << k + 16 | y << k;
958 #endif
959  ret_d:
960 #ifdef VAX
961 	word0(d) = d0 >> 16 | d0 << 16;
962 	word1(d) = d1 >> 16 | d1 << 16;
963 #else
964 #undef d0
965 #undef d1
966 #endif
967 	return d;
968 }
969 
970  static Bigint *
971 d2b
972 #ifdef KR_headers
973 	(d, e, bits) double d; int *e, *bits;
974 #else
975 	(double d, int *e, int *bits)
976 #endif
977 {
978 	Bigint *b;
979 	int de, i, k;
980 	unsigned long *x, y, z;
981 #ifdef VAX
982 	unsigned long d0, d1;
983 	d0 = word0(d) >> 16 | word0(d) << 16;
984 	d1 = word1(d) >> 16 | word1(d) << 16;
985 #else
986 #define d0 word0(d)
987 #define d1 word1(d)
988 #endif
989 
990 #ifdef Pack_32
991 	b = Balloc(1);
992 #else
993 	b = Balloc(2);
994 #endif
995 	x = b->x;
996 
997 	z = d0 & Frac_mask;
998 	d0 &= 0x7fffffff;	/* clear sign bit, which we ignore */
999 #ifdef Sudden_Underflow
1000 	de = (int)(d0 >> Exp_shift);
1001 #ifndef IBM
1002 	z |= Exp_msk11;
1003 #endif
1004 #else
1005 	if (de = (int)(d0 >> Exp_shift))
1006 		z |= Exp_msk1;
1007 #endif
1008 #ifdef Pack_32
1009 	if (y = d1) {
1010 		if (k = lo0bits(&y)) {
1011 			x[0] = y | z << 32 - k;
1012 			z >>= k;
1013 			}
1014 		else
1015 			x[0] = y;
1016 		i = b->wds = (x[1] = z) ? 2 : 1;
1017 	} else {
1018 #ifdef DEBUG
1019 		if (!z)
1020 			Bug("Zero passed to d2b");
1021 #endif
1022 		k = lo0bits(&z);
1023 		x[0] = z;
1024 		i = b->wds = 1;
1025 		k += 32;
1026 	}
1027 #else
1028 	if (y = d1) {
1029 		if (k = lo0bits(&y))
1030 			if (k >= 16) {
1031 				x[0] = y | z << 32 - k & 0xffff;
1032 				x[1] = z >> k - 16 & 0xffff;
1033 				x[2] = z >> k;
1034 				i = 2;
1035 			} else {
1036 				x[0] = y & 0xffff;
1037 				x[1] = y >> 16 | z << 16 - k & 0xffff;
1038 				x[2] = z >> k & 0xffff;
1039 				x[3] = z >> k+16;
1040 				i = 3;
1041 			}
1042 		else {
1043 			x[0] = y & 0xffff;
1044 			x[1] = y >> 16;
1045 			x[2] = z & 0xffff;
1046 			x[3] = z >> 16;
1047 			i = 3;
1048 		}
1049 	} else {
1050 #ifdef DEBUG
1051 		if (!z)
1052 			Bug("Zero passed to d2b");
1053 #endif
1054 		k = lo0bits(&z);
1055 		if (k >= 16) {
1056 			x[0] = z;
1057 			i = 0;
1058 		} else {
1059 			x[0] = z & 0xffff;
1060 			x[1] = z >> 16;
1061 			i = 1;
1062 		}
1063 		k += 32;
1064 	}
1065 	while (!x[i])
1066 		--i;
1067 	b->wds = i + 1;
1068 #endif
1069 #ifndef Sudden_Underflow
1070 	if (de) {
1071 #endif
1072 #ifdef IBM
1073 		*e = (de - Bias - (P-1) << 2) + k;
1074 		*bits = 4*P + 8 - k - hi0bits(word0(d) & Frac_mask);
1075 #else
1076 		*e = de - Bias - (P-1) + k;
1077 		*bits = P - k;
1078 #endif
1079 #ifndef Sudden_Underflow
1080 	} else {
1081 		*e = de - Bias - (P-1) + 1 + k;
1082 #ifdef Pack_32
1083 		*bits = 32*i - hi0bits(x[i-1]);
1084 #else
1085 		*bits = (i+2)*16 - hi0bits(x[i]);
1086 #endif
1087 	}
1088 #endif
1089 	return b;
1090 }
1091 #undef d0
1092 #undef d1
1093 
1094  static double
1095 ratio
1096 #ifdef KR_headers
1097 	(a, b) Bigint *a, *b;
1098 #else
1099 	(Bigint *a, Bigint *b)
1100 #endif
1101 {
1102 	double da, db;
1103 	int k, ka, kb;
1104 
1105 	da = b2d(a, &ka);
1106 	db = b2d(b, &kb);
1107 #ifdef Pack_32
1108 	k = ka - kb + 32*(a->wds - b->wds);
1109 #else
1110 	k = ka - kb + 16*(a->wds - b->wds);
1111 #endif
1112 #ifdef IBM
1113 	if (k > 0) {
1114 		word0(da) += (k >> 2)*Exp_msk1;
1115 		if (k &= 3)
1116 			da *= 1 << k;
1117 	} else {
1118 		k = -k;
1119 		word0(db) += (k >> 2)*Exp_msk1;
1120 		if (k &= 3)
1121 			db *= 1 << k;
1122 	}
1123 #else
1124 	if (k > 0)
1125 		word0(da) += k*Exp_msk1;
1126 	else {
1127 		k = -k;
1128 		word0(db) += k*Exp_msk1;
1129 	}
1130 #endif
1131 	return da / db;
1132 }
1133 
1134  static double
1135 tens[] = {
1136 		1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1137 		1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1138 		1e20, 1e21, 1e22
1139 #ifdef VAX
1140 		, 1e23, 1e24
1141 #endif
1142 		};
1143 
1144  static double
1145 #ifdef IEEE_Arith
1146 bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
1147 static double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, 1e-256 };
1148 #define n_bigtens 5
1149 #else
1150 #ifdef IBM
1151 bigtens[] = { 1e16, 1e32, 1e64 };
1152 static double tinytens[] = { 1e-16, 1e-32, 1e-64 };
1153 #define n_bigtens 3
1154 #else
1155 bigtens[] = { 1e16, 1e32 };
1156 static double tinytens[] = { 1e-16, 1e-32 };
1157 #define n_bigtens 2
1158 #endif
1159 #endif
1160 
1161  double
1162 strtod
1163 #ifdef KR_headers
1164 	(s00, se) CONST char *s00; char **se;
1165 #else
1166 	(CONST char *s00, char **se)
1167 #endif
1168 {
1169 	int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign,
1170 		 e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign;
1171 	CONST char *s, *s0, *s1;
1172 	double aadj, aadj1, adj, rv, rv0;
1173 	long L;
1174 	unsigned long y, z;
1175 	Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
1176 	sign = nz0 = nz = 0;
1177 	rv = 0.;
1178 	for (s = s00;;s++) switch(*s) {
1179 		case '-':
1180 			sign = 1;
1181 			/* no break */
1182 		case '+':
1183 			if (*++s)
1184 				goto break2;
1185 			/* no break */
1186 		case 0:
1187 			s = s00;
1188 			goto ret;
1189 		case '\t':
1190 		case '\n':
1191 		case '\v':
1192 		case '\f':
1193 		case '\r':
1194 		case ' ':
1195 			continue;
1196 		default:
1197 			goto break2;
1198 	}
1199  break2:
1200 	if (*s == '0') {
1201 		nz0 = 1;
1202 		while (*++s == '0') ;
1203 		if (!*s)
1204 			goto ret;
1205 	}
1206 	s0 = s;
1207 	y = z = 0;
1208 	for (nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
1209 		if (nd < 9)
1210 			y = 10*y + c - '0';
1211 		else if (nd < 16)
1212 			z = 10*z + c - '0';
1213 	nd0 = nd;
1214 	if (c == '.') {
1215 		c = *++s;
1216 		if (!nd) {
1217 			for (; c == '0'; c = *++s)
1218 				nz++;
1219 			if (c > '0' && c <= '9') {
1220 				s0 = s;
1221 				nf += nz;
1222 				nz = 0;
1223 				goto have_dig;
1224 			}
1225 			goto dig_done;
1226 		}
1227 		for (; c >= '0' && c <= '9'; c = *++s) {
1228  have_dig:
1229 			nz++;
1230 			if (c -= '0') {
1231 				nf += nz;
1232 				for (i = 1; i < nz; i++)
1233 					if (nd++ < 9)
1234 						y *= 10;
1235 					else if (nd <= DBL_DIG + 1)
1236 						z *= 10;
1237 				if (nd++ < 9)
1238 					y = 10*y + c;
1239 				else if (nd <= DBL_DIG + 1)
1240 					z = 10*z + c;
1241 				nz = 0;
1242 			}
1243 		}
1244 	}
1245  dig_done:
1246 	e = 0;
1247 	if (c == 'e' || c == 'E') {
1248 		if (!nd && !nz && !nz0) {
1249 			s = s00;
1250 			goto ret;
1251 		}
1252 		s00 = s;
1253 		esign = 0;
1254 		switch(c = *++s) {
1255 			case '-':
1256 				esign = 1;
1257 			case '+':
1258 				c = *++s;
1259 		}
1260 		if (c >= '0' && c <= '9') {
1261 			while (c == '0')
1262 				c = *++s;
1263 			if (c > '0' && c <= '9') {
1264 				L = c - '0';
1265 				s1 = s;
1266 				while ((c = *++s) >= '0' && c <= '9')
1267 					L = 10*L + c - '0';
1268 				if (s - s1 > 8 || L > 19999)
1269 					/* Avoid confusion from exponents
1270 					 * so large that e might overflow.
1271 					 */
1272 					e = 19999; /* safe for 16 bit ints */
1273 				else
1274 					e = (int)L;
1275 				if (esign)
1276 					e = -e;
1277 			} else
1278 				e = 0;
1279 		} else
1280 			s = s00;
1281 	}
1282 	if (!nd) {
1283 		if (!nz && !nz0)
1284 			s = s00;
1285 		goto ret;
1286 	}
1287 	e1 = e -= nf;
1288 
1289 	/* Now we have nd0 digits, starting at s0, followed by a
1290 	 * decimal point, followed by nd-nd0 digits.  The number we're
1291 	 * after is the integer represented by those digits times
1292 	 * 10**e */
1293 
1294 	if (!nd0)
1295 		nd0 = nd;
1296 	k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
1297 	rv = y;
1298 	if (k > 9)
1299 		rv = tens[k - 9] * rv + z;
1300 	if (nd <= DBL_DIG
1301 #ifndef RND_PRODQUOT
1302 		&& FLT_ROUNDS == 1
1303 #endif
1304 			) {
1305 		if (!e)
1306 			goto ret;
1307 		if (e > 0) {
1308 			if (e <= Ten_pmax) {
1309 #ifdef VAX
1310 				goto vax_ovfl_check;
1311 #else
1312 				/* rv = */ rounded_product(rv, tens[e]);
1313 				goto ret;
1314 #endif
1315 				}
1316 			i = DBL_DIG - nd;
1317 			if (e <= Ten_pmax + i) {
1318 				/* A fancier test would sometimes let us do
1319 				 * this for larger i values.
1320 				 */
1321 				e -= i;
1322 				rv *= tens[i];
1323 #ifdef VAX
1324 				/* VAX exponent range is so narrow we must
1325 				 * worry about overflow here...
1326 				 */
1327  vax_ovfl_check:
1328 				word0(rv) -= P*Exp_msk1;
1329 				/* rv = */ rounded_product(rv, tens[e]);
1330 				if ((word0(rv) & Exp_mask)
1331 				 > Exp_msk1*(DBL_MAX_EXP+Bias-1-P))
1332 					goto ovfl;
1333 				word0(rv) += P*Exp_msk1;
1334 #else
1335 				/* rv = */ rounded_product(rv, tens[e]);
1336 #endif
1337 				goto ret;
1338 			}
1339 		}
1340 #ifndef Inaccurate_Divide
1341 		else if (e >= -Ten_pmax) {
1342 			/* rv = */ rounded_quotient(rv, tens[-e]);
1343 			goto ret;
1344 		}
1345 #endif
1346 	}
1347 	e1 += nd - k;
1348 
1349 	/* Get starting approximation = rv * 10**e1 */
1350 
1351 	if (e1 > 0) {
1352 		if (i = e1 & 15)
1353 			rv *= tens[i];
1354 		if (e1 &= ~15) {
1355 			if (e1 > DBL_MAX_10_EXP) {
1356  ovfl:
1357 				errno = ERANGE;
1358 #ifdef __STDC__
1359 				rv = HUGE_VAL;
1360 #else
1361 				/* Can't trust HUGE_VAL */
1362 #ifdef IEEE_Arith
1363 				word0(rv) = Exp_mask;
1364 				word1(rv) = 0;
1365 #else
1366 				word0(rv) = Big0;
1367 				word1(rv) = Big1;
1368 #endif
1369 #endif
1370 				goto ret;
1371 			}
1372 			if (e1 >>= 4) {
1373 				for (j = 0; e1 > 1; j++, e1 >>= 1)
1374 					if (e1 & 1)
1375 						rv *= bigtens[j];
1376 			/* The last multiplication could overflow. */
1377 				word0(rv) -= P*Exp_msk1;
1378 				rv *= bigtens[j];
1379 				if ((z = word0(rv) & Exp_mask)
1380 				 > Exp_msk1*(DBL_MAX_EXP+Bias-P))
1381 					goto ovfl;
1382 				if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
1383 					/* set to largest number */
1384 					/* (Can't trust DBL_MAX) */
1385 					word0(rv) = Big0;
1386 					word1(rv) = Big1;
1387 					}
1388 				else
1389 					word0(rv) += P*Exp_msk1;
1390 			}
1391 		}
1392 	} else if (e1 < 0) {
1393 		e1 = -e1;
1394 		if (i = e1 & 15)
1395 			rv /= tens[i];
1396 		if (e1 &= ~15) {
1397 			e1 >>= 4;
1398 			for (j = 0; e1 > 1; j++, e1 >>= 1)
1399 				if (e1 & 1)
1400 					rv *= tinytens[j];
1401 			/* The last multiplication could underflow. */
1402 			rv0 = rv;
1403 			rv *= tinytens[j];
1404 			if (!rv) {
1405 				rv = 2.*rv0;
1406 				rv *= tinytens[j];
1407 				if (!rv) {
1408  undfl:
1409 					rv = 0.;
1410 					errno = ERANGE;
1411 					goto ret;
1412 					}
1413 				word0(rv) = Tiny0;
1414 				word1(rv) = Tiny1;
1415 				/* The refinement below will clean
1416 				 * this approximation up.
1417 				 */
1418 			}
1419 		}
1420 	}
1421 
1422 	/* Now the hard part -- adjusting rv to the correct value.*/
1423 
1424 	/* Put digits into bd: true value = bd * 10^e */
1425 
1426 	bd0 = s2b(s0, nd0, nd, y);
1427 
1428 	for (;;) {
1429 		bd = Balloc(bd0->k);
1430 		Bcopy(bd, bd0);
1431 		bb = d2b(rv, &bbe, &bbbits);	/* rv = bb * 2^bbe */
1432 		bs = i2b(1);
1433 
1434 		if (e >= 0) {
1435 			bb2 = bb5 = 0;
1436 			bd2 = bd5 = e;
1437 		} else {
1438 			bb2 = bb5 = -e;
1439 			bd2 = bd5 = 0;
1440 		}
1441 		if (bbe >= 0)
1442 			bb2 += bbe;
1443 		else
1444 			bd2 -= bbe;
1445 		bs2 = bb2;
1446 #ifdef Sudden_Underflow
1447 #ifdef IBM
1448 		j = 1 + 4*P - 3 - bbbits + ((bbe + bbbits - 1) & 3);
1449 #else
1450 		j = P + 1 - bbbits;
1451 #endif
1452 #else
1453 		i = bbe + bbbits - 1;	/* logb(rv) */
1454 		if (i < Emin)	/* denormal */
1455 			j = bbe + (P-Emin);
1456 		else
1457 			j = P + 1 - bbbits;
1458 #endif
1459 		bb2 += j;
1460 		bd2 += j;
1461 		i = bb2 < bd2 ? bb2 : bd2;
1462 		if (i > bs2)
1463 			i = bs2;
1464 		if (i > 0) {
1465 			bb2 -= i;
1466 			bd2 -= i;
1467 			bs2 -= i;
1468 			}
1469 		if (bb5 > 0) {
1470 			bs = pow5mult(bs, bb5);
1471 			bb1 = mult(bs, bb);
1472 			Bfree(bb);
1473 			bb = bb1;
1474 			}
1475 		if (bb2 > 0)
1476 			bb = lshift(bb, bb2);
1477 		if (bd5 > 0)
1478 			bd = pow5mult(bd, bd5);
1479 		if (bd2 > 0)
1480 			bd = lshift(bd, bd2);
1481 		if (bs2 > 0)
1482 			bs = lshift(bs, bs2);
1483 		delta = diff(bb, bd);
1484 		dsign = delta->sign;
1485 		delta->sign = 0;
1486 		i = cmp(delta, bs);
1487 		if (i < 0) {
1488 			/* Error is less than half an ulp -- check for
1489 			 * special case of mantissa a power of two.
1490 			 */
1491 			if (dsign || word1(rv) || word0(rv) & Bndry_mask)
1492 				break;
1493 			delta = lshift(delta,Log2P);
1494 			if (cmp(delta, bs) > 0)
1495 				goto drop_down;
1496 			break;
1497 		}
1498 		if (i == 0) {
1499 			/* exactly half-way between */
1500 			if (dsign) {
1501 				if ((word0(rv) & Bndry_mask1) == Bndry_mask1
1502 				 &&  word1(rv) == 0xffffffff) {
1503 					/*boundary case -- increment exponent*/
1504 					word0(rv) = (word0(rv) & Exp_mask)
1505 						+ Exp_msk1
1506 #ifdef IBM
1507 						| Exp_msk1 >> 4
1508 #endif
1509 						;
1510 					word1(rv) = 0;
1511 					break;
1512 				}
1513 			} else if (!(word0(rv) & Bndry_mask) && !word1(rv)) {
1514  drop_down:
1515 				/* boundary case -- decrement exponent */
1516 #ifdef Sudden_Underflow
1517 				L = word0(rv) & Exp_mask;
1518 #ifdef IBM
1519 				if (L <  Exp_msk1)
1520 #else
1521 				if (L <= Exp_msk1)
1522 #endif
1523 					goto undfl;
1524 				L -= Exp_msk1;
1525 #else
1526 				L = (word0(rv) & Exp_mask) - Exp_msk1;
1527 #endif
1528 				word0(rv) = L | Bndry_mask1;
1529 				word1(rv) = 0xffffffff;
1530 #ifdef IBM
1531 				goto cont;
1532 #else
1533 				break;
1534 #endif
1535 			}
1536 #ifndef ROUND_BIASED
1537 			if (!(word1(rv) & LSB))
1538 				break;
1539 #endif
1540 			if (dsign)
1541 				rv += ulp(rv);
1542 #ifndef ROUND_BIASED
1543 			else {
1544 				rv -= ulp(rv);
1545 #ifndef Sudden_Underflow
1546 				if (!rv)
1547 					goto undfl;
1548 #endif
1549 			}
1550 #endif
1551 			break;
1552 		}
1553 		if ((aadj = ratio(delta, bs)) <= 2.) {
1554 			if (dsign)
1555 				aadj = aadj1 = 1.;
1556 			else if (word1(rv) || word0(rv) & Bndry_mask) {
1557 #ifndef Sudden_Underflow
1558 				if (word1(rv) == Tiny1 && !word0(rv))
1559 					goto undfl;
1560 #endif
1561 				aadj = 1.;
1562 				aadj1 = -1.;
1563 			} else {
1564 				/* special case -- power of FLT_RADIX to be */
1565 				/* rounded down... */
1566 
1567 				if (aadj < 2./FLT_RADIX)
1568 					aadj = 1./FLT_RADIX;
1569 				else
1570 					aadj *= 0.5;
1571 				aadj1 = -aadj;
1572 			}
1573 		} else {
1574 			aadj *= 0.5;
1575 			aadj1 = dsign ? aadj : -aadj;
1576 #ifdef Check_FLT_ROUNDS
1577 			switch(FLT_ROUNDS) {
1578 				case 2: /* towards +infinity */
1579 					aadj1 -= 0.5;
1580 					break;
1581 				case 0: /* towards 0 */
1582 				case 3: /* towards -infinity */
1583 					aadj1 += 0.5;
1584 			}
1585 #else
1586 			if (FLT_ROUNDS == 0)
1587 				aadj1 += 0.5;
1588 #endif
1589 		}
1590 		y = word0(rv) & Exp_mask;
1591 
1592 		/* Check for overflow */
1593 
1594 		if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
1595 			rv0 = rv;
1596 			word0(rv) -= P*Exp_msk1;
1597 			adj = aadj1 * ulp(rv);
1598 			rv += adj;
1599 			if ((word0(rv) & Exp_mask) >=
1600 					Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
1601 				if (word0(rv0) == Big0 && word1(rv0) == Big1)
1602 					goto ovfl;
1603 				word0(rv) = Big0;
1604 				word1(rv) = Big1;
1605 				goto cont;
1606 			} else
1607 				word0(rv) += P*Exp_msk1;
1608 		} else {
1609 #ifdef Sudden_Underflow
1610 			if ((word0(rv) & Exp_mask) <= P*Exp_msk1) {
1611 				rv0 = rv;
1612 				word0(rv) += P*Exp_msk1;
1613 				adj = aadj1 * ulp(rv);
1614 				rv += adj;
1615 #ifdef IBM
1616 				if ((word0(rv) & Exp_mask) <  P*Exp_msk1)
1617 #else
1618 				if ((word0(rv) & Exp_mask) <= P*Exp_msk1)
1619 #endif
1620 				{
1621 					if (word0(rv0) == Tiny0
1622 					 && word1(rv0) == Tiny1)
1623 						goto undfl;
1624 					word0(rv) = Tiny0;
1625 					word1(rv) = Tiny1;
1626 					goto cont;
1627 				} else
1628 					word0(rv) -= P*Exp_msk1;
1629 			} else {
1630 				adj = aadj1 * ulp(rv);
1631 				rv += adj;
1632 			}
1633 #else
1634 			/* Compute adj so that the IEEE rounding rules will
1635 			 * correctly round rv + adj in some half-way cases.
1636 			 * If rv * ulp(rv) is denormalized (i.e.,
1637 			 * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
1638 			 * trouble from bits lost to denormalization;
1639 			 * example: 1.2e-307 .
1640 			 */
1641 			if (y <= (P-1)*Exp_msk1 && aadj >= 1.) {
1642 				aadj1 = (double)(int)(aadj + 0.5);
1643 				if (!dsign)
1644 					aadj1 = -aadj1;
1645 			}
1646 			adj = aadj1 * ulp(rv);
1647 			rv += adj;
1648 #endif
1649 		}
1650 		z = word0(rv) & Exp_mask;
1651 		if (y == z) {
1652 			/* Can we stop now? */
1653 			L = aadj;
1654 			aadj -= L;
1655 			/* The tolerances below are conservative. */
1656 			if (dsign || word1(rv) || word0(rv) & Bndry_mask) {
1657 				if (aadj < .4999999 || aadj > .5000001)
1658 					break;
1659 			} else if (aadj < .4999999/FLT_RADIX)
1660 				break;
1661 		}
1662  cont:
1663 		Bfree(bb);
1664 		Bfree(bd);
1665 		Bfree(bs);
1666 		Bfree(delta);
1667 	}
1668 	Bfree(bb);
1669 	Bfree(bd);
1670 	Bfree(bs);
1671 	Bfree(bd0);
1672 	Bfree(delta);
1673  ret:
1674 	if (se)
1675 		*se = (char *)s;
1676 	return sign ? -rv : rv;
1677 }
1678 
1679  static int
1680 quorem
1681 #ifdef KR_headers
1682 	(b, S) Bigint *b, *S;
1683 #else
1684 	(Bigint *b, Bigint *S)
1685 #endif
1686 {
1687 	int n;
1688 	long borrow, y;
1689 	unsigned long carry, q, ys;
1690 	unsigned long *bx, *bxe, *sx, *sxe;
1691 #ifdef Pack_32
1692 	long z;
1693 	unsigned long si, zs;
1694 #endif
1695 
1696 	n = S->wds;
1697 #ifdef DEBUG
1698 	/*debug*/ if (b->wds > n)
1699 	/*debug*/	Bug("oversize b in quorem");
1700 #endif
1701 	if (b->wds < n)
1702 		return 0;
1703 	sx = S->x;
1704 	sxe = sx + --n;
1705 	bx = b->x;
1706 	bxe = bx + n;
1707 	q = *bxe / (*sxe + 1);	/* ensure q <= true quotient */
1708 #ifdef DEBUG
1709 	/*debug*/ if (q > 9)
1710 	/*debug*/	Bug("oversized quotient in quorem");
1711 #endif
1712 	if (q) {
1713 		borrow = 0;
1714 		carry = 0;
1715 		do {
1716 #ifdef Pack_32
1717 			si = *sx++;
1718 			ys = (si & 0xffff) * q + carry;
1719 			zs = (si >> 16) * q + (ys >> 16);
1720 			carry = zs >> 16;
1721 			y = (*bx & 0xffff) - (ys & 0xffff) + borrow;
1722 			borrow = y >> 16;
1723 			Sign_Extend(borrow, y);
1724 			z = (*bx >> 16) - (zs & 0xffff) + borrow;
1725 			borrow = z >> 16;
1726 			Sign_Extend(borrow, z);
1727 			Storeinc(bx, z, y);
1728 #else
1729 			ys = *sx++ * q + carry;
1730 			carry = ys >> 16;
1731 			y = *bx - (ys & 0xffff) + borrow;
1732 			borrow = y >> 16;
1733 			Sign_Extend(borrow, y);
1734 			*bx++ = y & 0xffff;
1735 #endif
1736 		} while (sx <= sxe);
1737 		if (!*bxe) {
1738 			bx = b->x;
1739 			while (--bxe > bx && !*bxe)
1740 				--n;
1741 			b->wds = n;
1742 		}
1743 	}
1744 	if (cmp(b, S) >= 0) {
1745 		q++;
1746 		borrow = 0;
1747 		carry = 0;
1748 		bx = b->x;
1749 		sx = S->x;
1750 		do {
1751 #ifdef Pack_32
1752 			si = *sx++;
1753 			ys = (si & 0xffff) + carry;
1754 			zs = (si >> 16) + (ys >> 16);
1755 			carry = zs >> 16;
1756 			y = (*bx & 0xffff) - (ys & 0xffff) + borrow;
1757 			borrow = y >> 16;
1758 			Sign_Extend(borrow, y);
1759 			z = (*bx >> 16) - (zs & 0xffff) + borrow;
1760 			borrow = z >> 16;
1761 			Sign_Extend(borrow, z);
1762 			Storeinc(bx, z, y);
1763 #else
1764 			ys = *sx++ + carry;
1765 			carry = ys >> 16;
1766 			y = *bx - (ys & 0xffff) + borrow;
1767 			borrow = y >> 16;
1768 			Sign_Extend(borrow, y);
1769 			*bx++ = y & 0xffff;
1770 #endif
1771 		} while (sx <= sxe);
1772 		bx = b->x;
1773 		bxe = bx + n;
1774 		if (!*bxe) {
1775 			while (--bxe > bx && !*bxe)
1776 				--n;
1777 			b->wds = n;
1778 		}
1779 	}
1780 	return q;
1781 }
1782 
1783 /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
1784  *
1785  * Inspired by "How to Print Floating-Point Numbers Accurately" by
1786  * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101].
1787  *
1788  * Modifications:
1789  *	1. Rather than iterating, we use a simple numeric overestimate
1790  *	   to determine k = floor(log10(d)).  We scale relevant
1791  *	   quantities using O(log2(k)) rather than O(k) multiplications.
1792  *	2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
1793  *	   try to generate digits strictly left to right.  Instead, we
1794  *	   compute with fewer bits and propagate the carry if necessary
1795  *	   when rounding the final digit up.  This is often faster.
1796  *	3. Under the assumption that input will be rounded nearest,
1797  *	   mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
1798  *	   That is, we allow equality in stopping tests when the
1799  *	   round-nearest rule will give the same floating-point value
1800  *	   as would satisfaction of the stopping test with strict
1801  *	   inequality.
1802  *	4. We remove common factors of powers of 2 from relevant
1803  *	   quantities.
1804  *	5. When converting floating-point integers less than 1e16,
1805  *	   we use floating-point arithmetic rather than resorting
1806  *	   to multiple-precision integers.
1807  *	6. When asked to produce fewer than 15 digits, we first try
1808  *	   to get by with floating-point arithmetic; we resort to
1809  *	   multiple-precision integer arithmetic only if we cannot
1810  *	   guarantee that the floating-point calculation has given
1811  *	   the correctly rounded result.  For k requested digits and
1812  *	   "uniformly" distributed input, the probability is
1813  *	   something like 10^(k-15) that we must resort to the long
1814  *	   calculation.
1815  */
1816 
1817 char *
1818 __dtoa
1819 #ifdef KR_headers
1820 	(d, mode, ndigits, decpt, sign, rve)
1821 	double d; int mode, ndigits, *decpt, *sign; char **rve;
1822 #else
1823 	(double d, int mode, int ndigits, int *decpt, int *sign, char **rve)
1824 #endif
1825 {
1826  /*	Arguments ndigits, decpt, sign are similar to those
1827 	of ecvt and fcvt; trailing zeros are suppressed from
1828 	the returned string.  If not null, *rve is set to point
1829 	to the end of the return value.  If d is +-Infinity or NaN,
1830 	then *decpt is set to 9999.
1831 
1832 	mode:
1833 		0 ==> shortest string that yields d when read in
1834 			and rounded to nearest.
1835 		1 ==> like 0, but with Steele & White stopping rule;
1836 			e.g. with IEEE P754 arithmetic , mode 0 gives
1837 			1e23 whereas mode 1 gives 9.999999999999999e22.
1838 		2 ==> max(1,ndigits) significant digits.  This gives a
1839 			return value similar to that of ecvt, except
1840 			that trailing zeros are suppressed.
1841 		3 ==> through ndigits past the decimal point.  This
1842 			gives a return value similar to that from fcvt,
1843 			except that trailing zeros are suppressed, and
1844 			ndigits can be negative.
1845 		4-9 should give the same return values as 2-3, i.e.,
1846 			4 <= mode <= 9 ==> same return as mode
1847 			2 + (mode & 1).  These modes are mainly for
1848 			debugging; often they run slower but sometimes
1849 			faster than modes 2-3.
1850 		4,5,8,9 ==> left-to-right digit generation.
1851 		6-9 ==> don't try fast floating-point estimate
1852 			(if applicable).
1853 
1854 		Values of mode other than 0-9 are treated as mode 0.
1855 
1856 		Sufficient space is allocated to the return value
1857 		to hold the suppressed trailing zeros.
1858 	*/
1859 
1860 	int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,
1861 		j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
1862 		spec_case, try_quick;
1863 	long L;
1864 #ifndef Sudden_Underflow
1865 	int denorm;
1866 	unsigned long x;
1867 #endif
1868 	Bigint *b, *b1, *delta, *mlo, *mhi, *S;
1869 	double d2, ds, eps;
1870 	char *s, *s0;
1871 	static Bigint *result;
1872 	static int result_k;
1873 
1874 	if (result) {
1875 		result->k = result_k;
1876 		result->maxwds = 1 << result_k;
1877 		Bfree(result);
1878 		result = 0;
1879 	}
1880 
1881 	if (word0(d) & Sign_bit) {
1882 		/* set sign for everything, including 0's and NaNs */
1883 		*sign = 1;
1884 		word0(d) &= ~Sign_bit;	/* clear sign bit */
1885 	}
1886 	else
1887 		*sign = 0;
1888 
1889 #if defined(IEEE_Arith) + defined(VAX)
1890 #ifdef IEEE_Arith
1891 	if ((word0(d) & Exp_mask) == Exp_mask)
1892 #else
1893 	if (word0(d)  == 0x8000)
1894 #endif
1895 	{
1896 		/* Infinity or NaN */
1897 		*decpt = 9999;
1898 		s =
1899 #ifdef IEEE_Arith
1900 			!word1(d) && !(word0(d) & 0xfffff) ? "Infinity" :
1901 #endif
1902 				"NaN";
1903 		if (rve)
1904 			*rve =
1905 #ifdef IEEE_Arith
1906 				s[3] ? s + 8 :
1907 #endif
1908 						s + 3;
1909 		return s;
1910 	}
1911 #endif
1912 #ifdef IBM
1913 	d += 0; /* normalize */
1914 #endif
1915 	if (!d) {
1916 		*decpt = 1;
1917 		s = "0";
1918 		if (rve)
1919 			*rve = s + 1;
1920 		return s;
1921 	}
1922 
1923 	b = d2b(d, &be, &bbits);
1924 #ifdef Sudden_Underflow
1925 	i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
1926 #else
1927 	if (i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1))) {
1928 #endif
1929 		d2 = d;
1930 		word0(d2) &= Frac_mask1;
1931 		word0(d2) |= Exp_11;
1932 #ifdef IBM
1933 		if (j = 11 - hi0bits(word0(d2) & Frac_mask))
1934 			d2 /= 1 << j;
1935 #endif
1936 
1937 		/* log(x)	~=~ log(1.5) + (x-1.5)/1.5
1938 		 * log10(x)	 =  log(x) / log(10)
1939 		 *		~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
1940 		 * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
1941 		 *
1942 		 * This suggests computing an approximation k to log10(d) by
1943 		 *
1944 		 * k = (i - Bias)*0.301029995663981
1945 		 *	+ ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
1946 		 *
1947 		 * We want k to be too large rather than too small.
1948 		 * The error in the first-order Taylor series approximation
1949 		 * is in our favor, so we just round up the constant enough
1950 		 * to compensate for any error in the multiplication of
1951 		 * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
1952 		 * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
1953 		 * adding 1e-13 to the constant term more than suffices.
1954 		 * Hence we adjust the constant term to 0.1760912590558.
1955 		 * (We could get a more accurate k by invoking log10,
1956 		 *  but this is probably not worthwhile.)
1957 		 */
1958 
1959 		i -= Bias;
1960 #ifdef IBM
1961 		i <<= 2;
1962 		i += j;
1963 #endif
1964 #ifndef Sudden_Underflow
1965 		denorm = 0;
1966 	} else {
1967 		/* d is denormalized */
1968 
1969 		i = bbits + be + (Bias + (P-1) - 1);
1970 		x = i > 32  ? word0(d) << 64 - i | word1(d) >> i - 32
1971 			    : word1(d) << 32 - i;
1972 		d2 = x;
1973 		word0(d2) -= 31*Exp_msk1; /* adjust exponent */
1974 		i -= (Bias + (P-1) - 1) + 1;
1975 		denorm = 1;
1976 	}
1977 #endif
1978 	ds = (d2-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
1979 	k = (int)ds;
1980 	if (ds < 0. && ds != k)
1981 		k--;	/* want k = floor(ds) */
1982 	k_check = 1;
1983 	if (k >= 0 && k <= Ten_pmax) {
1984 		if (d < tens[k])
1985 			k--;
1986 		k_check = 0;
1987 	}
1988 	j = bbits - i - 1;
1989 	if (j >= 0) {
1990 		b2 = 0;
1991 		s2 = j;
1992 	} else {
1993 		b2 = -j;
1994 		s2 = 0;
1995 	}
1996 	if (k >= 0) {
1997 		b5 = 0;
1998 		s5 = k;
1999 		s2 += k;
2000 	} else {
2001 		b2 -= k;
2002 		b5 = -k;
2003 		s5 = 0;
2004 	}
2005 	if (mode < 0 || mode > 9)
2006 		mode = 0;
2007 	try_quick = 1;
2008 	if (mode > 5) {
2009 		mode -= 4;
2010 		try_quick = 0;
2011 	}
2012 	leftright = 1;
2013 	switch(mode) {
2014 		case 0:
2015 		case 1:
2016 			ilim = ilim1 = -1;
2017 			i = 18;
2018 			ndigits = 0;
2019 			break;
2020 		case 2:
2021 			leftright = 0;
2022 			/* no break */
2023 		case 4:
2024 			if (ndigits <= 0)
2025 				ndigits = 1;
2026 			ilim = ilim1 = i = ndigits;
2027 			break;
2028 		case 3:
2029 			leftright = 0;
2030 			/* no break */
2031 		case 5:
2032 			i = ndigits + k + 1;
2033 			ilim = i;
2034 			ilim1 = i - 1;
2035 			if (i <= 0)
2036 				i = 1;
2037 	}
2038 	j = sizeof(unsigned long);
2039 	for (result_k = 0; sizeof(Bigint) - sizeof(unsigned long) + j < i;
2040 		j <<= 1) result_k++;
2041 	result = Balloc(result_k);
2042 	s = s0 = (char *)result;
2043 
2044 	if (ilim >= 0 && ilim <= Quick_max && try_quick) {
2045 
2046 		/* Try to get by with floating-point arithmetic. */
2047 
2048 		i = 0;
2049 		d2 = d;
2050 		k0 = k;
2051 		ilim0 = ilim;
2052 		ieps = 2; /* conservative */
2053 		if (k > 0) {
2054 			ds = tens[k&0xf];
2055 			j = k >> 4;
2056 			if (j & Bletch) {
2057 				/* prevent overflows */
2058 				j &= Bletch - 1;
2059 				d /= bigtens[n_bigtens-1];
2060 				ieps++;
2061 			}
2062 			for (; j; j >>= 1, i++)
2063 				if (j & 1) {
2064 					ieps++;
2065 					ds *= bigtens[i];
2066 				}
2067 			d /= ds;
2068 		} else if (j1 = -k) {
2069 			d *= tens[j1 & 0xf];
2070 			for (j = j1 >> 4; j; j >>= 1, i++)
2071 				if (j & 1) {
2072 					ieps++;
2073 					d *= bigtens[i];
2074 				}
2075 		}
2076 		if (k_check && d < 1. && ilim > 0) {
2077 			if (ilim1 <= 0)
2078 				goto fast_failed;
2079 			ilim = ilim1;
2080 			k--;
2081 			d *= 10.;
2082 			ieps++;
2083 		}
2084 		eps = ieps*d + 7.;
2085 		word0(eps) -= (P-1)*Exp_msk1;
2086 		if (ilim == 0) {
2087 			S = mhi = 0;
2088 			d -= 5.;
2089 			if (d > eps)
2090 				goto one_digit;
2091 			if (d < -eps)
2092 				goto no_digits;
2093 			goto fast_failed;
2094 		}
2095 #ifndef No_leftright
2096 		if (leftright) {
2097 			/* Use Steele & White method of only
2098 			 * generating digits needed.
2099 			 */
2100 			eps = 0.5/tens[ilim-1] - eps;
2101 			for (i = 0;;) {
2102 				L = d;
2103 				d -= L;
2104 				*s++ = '0' + (int)L;
2105 				if (d < eps)
2106 					goto ret1;
2107 				if (1. - d < eps)
2108 					goto bump_up;
2109 				if (++i >= ilim)
2110 					break;
2111 				eps *= 10.;
2112 				d *= 10.;
2113 			}
2114 		} else {
2115 #endif
2116 			/* Generate ilim digits, then fix them up. */
2117 			eps *= tens[ilim-1];
2118 			for (i = 1;; i++, d *= 10.) {
2119 				L = d;
2120 				d -= L;
2121 				*s++ = '0' + (int)L;
2122 				if (i == ilim) {
2123 					if (d > 0.5 + eps)
2124 						goto bump_up;
2125 					else if (d < 0.5 - eps) {
2126 						while (*--s == '0');
2127 						s++;
2128 						goto ret1;
2129 					}
2130 					break;
2131 				}
2132 			}
2133 #ifndef No_leftright
2134 		}
2135 #endif
2136  fast_failed:
2137 		s = s0;
2138 		d = d2;
2139 		k = k0;
2140 		ilim = ilim0;
2141 	}
2142 
2143 	/* Do we have a "small" integer? */
2144 
2145 	if (be >= 0 && k <= Int_max) {
2146 		/* Yes. */
2147 		ds = tens[k];
2148 		if (ndigits < 0 && ilim <= 0) {
2149 			S = mhi = 0;
2150 			if (ilim < 0 || d <= 5*ds)
2151 				goto no_digits;
2152 			goto one_digit;
2153 		}
2154 		for (i = 1;; i++) {
2155 			L = d / ds;
2156 			d -= L*ds;
2157 #ifdef Check_FLT_ROUNDS
2158 			/* If FLT_ROUNDS == 2, L will usually be high by 1 */
2159 			if (d < 0) {
2160 				L--;
2161 				d += ds;
2162 			}
2163 #endif
2164 			*s++ = '0' + (int)L;
2165 			if (i == ilim) {
2166 				d += d;
2167 				if (d > ds || d == ds && L & 1) {
2168  bump_up:
2169 					while (*--s == '9')
2170 						if (s == s0) {
2171 							k++;
2172 							*s = '0';
2173 							break;
2174 						}
2175 					++*s++;
2176 				}
2177 				break;
2178 			}
2179 			if (!(d *= 10.))
2180 				break;
2181 		}
2182 		goto ret1;
2183 	}
2184 
2185 	m2 = b2;
2186 	m5 = b5;
2187 	mhi = mlo = 0;
2188 	if (leftright) {
2189 		if (mode < 2) {
2190 			i =
2191 #ifndef Sudden_Underflow
2192 				denorm ? be + (Bias + (P-1) - 1 + 1) :
2193 #endif
2194 #ifdef IBM
2195 				1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3);
2196 #else
2197 				1 + P - bbits;
2198 #endif
2199 		} else {
2200 			j = ilim - 1;
2201 			if (m5 >= j)
2202 				m5 -= j;
2203 			else {
2204 				s5 += j -= m5;
2205 				b5 += j;
2206 				m5 = 0;
2207 			}
2208 			if ((i = ilim) < 0) {
2209 				m2 -= i;
2210 				i = 0;
2211 			}
2212 		}
2213 		b2 += i;
2214 		s2 += i;
2215 		mhi = i2b(1);
2216 	}
2217 	if (m2 > 0 && s2 > 0) {
2218 		i = m2 < s2 ? m2 : s2;
2219 		b2 -= i;
2220 		m2 -= i;
2221 		s2 -= i;
2222 	}
2223 	if (b5 > 0) {
2224 		if (leftright) {
2225 			if (m5 > 0) {
2226 				mhi = pow5mult(mhi, m5);
2227 				b1 = mult(mhi, b);
2228 				Bfree(b);
2229 				b = b1;
2230 				}
2231 			if (j = b5 - m5)
2232 				b = pow5mult(b, j);
2233 		} else
2234 			b = pow5mult(b, b5);
2235 	}
2236 	S = i2b(1);
2237 	if (s5 > 0)
2238 		S = pow5mult(S, s5);
2239 
2240 	/* Check for special case that d is a normalized power of 2. */
2241 
2242 	if (mode < 2) {
2243 		if (!word1(d) && !(word0(d) & Bndry_mask)
2244 #ifndef Sudden_Underflow
2245 		 && word0(d) & Exp_mask
2246 #endif
2247 				) {
2248 			/* The special case */
2249 			b2 += Log2P;
2250 			s2 += Log2P;
2251 			spec_case = 1;
2252 		} else
2253 			spec_case = 0;
2254 	}
2255 
2256 	/* Arrange for convenient computation of quotients:
2257 	 * shift left if necessary so divisor has 4 leading 0 bits.
2258 	 *
2259 	 * Perhaps we should just compute leading 28 bits of S once
2260 	 * and for all and pass them and a shift to quorem, so it
2261 	 * can do shifts and ors to compute the numerator for q.
2262 	 */
2263 #ifdef Pack_32
2264 	if (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f)
2265 		i = 32 - i;
2266 #else
2267 	if (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0xf)
2268 		i = 16 - i;
2269 #endif
2270 	if (i > 4) {
2271 		i -= 4;
2272 		b2 += i;
2273 		m2 += i;
2274 		s2 += i;
2275 	} else if (i < 4) {
2276 		i += 28;
2277 		b2 += i;
2278 		m2 += i;
2279 		s2 += i;
2280 	}
2281 	if (b2 > 0)
2282 		b = lshift(b, b2);
2283 	if (s2 > 0)
2284 		S = lshift(S, s2);
2285 	if (k_check) {
2286 		if (cmp(b,S) < 0) {
2287 			k--;
2288 			b = multadd(b, 10, 0);	/* we botched the k estimate */
2289 			if (leftright)
2290 				mhi = multadd(mhi, 10, 0);
2291 			ilim = ilim1;
2292 		}
2293 	}
2294 	if (ilim <= 0 && mode > 2) {
2295 		if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) {
2296 			/* no digits, fcvt style */
2297  no_digits:
2298 			k = -1 - ndigits;
2299 			goto ret;
2300 		}
2301  one_digit:
2302 		*s++ = '1';
2303 		k++;
2304 		goto ret;
2305 	}
2306 	if (leftright) {
2307 		if (m2 > 0)
2308 			mhi = lshift(mhi, m2);
2309 
2310 		/* Compute mlo -- check for special case
2311 		 * that d is a normalized power of 2.
2312 		 */
2313 
2314 		mlo = mhi;
2315 		if (spec_case) {
2316 			mhi = Balloc(mhi->k);
2317 			Bcopy(mhi, mlo);
2318 			mhi = lshift(mhi, Log2P);
2319 		}
2320 
2321 		for (i = 1;;i++) {
2322 			dig = quorem(b,S) + '0';
2323 			/* Do we yet have the shortest decimal string
2324 			 * that will round to d?
2325 			 */
2326 			j = cmp(b, mlo);
2327 			delta = diff(S, mhi);
2328 			j1 = delta->sign ? 1 : cmp(b, delta);
2329 			Bfree(delta);
2330 #ifndef ROUND_BIASED
2331 			if (j1 == 0 && !mode && !(word1(d) & 1)) {
2332 				if (dig == '9')
2333 					goto round_9_up;
2334 				if (j > 0)
2335 					dig++;
2336 				*s++ = dig;
2337 				goto ret;
2338 			}
2339 #endif
2340 			if (j < 0 || j == 0 && !mode
2341 #ifndef ROUND_BIASED
2342 							&& !(word1(d) & 1)
2343 #endif
2344 					) {
2345 				if (j1 > 0) {
2346 					b = lshift(b, 1);
2347 					j1 = cmp(b, S);
2348 					if ((j1 > 0 || j1 == 0 && dig & 1)
2349 					&& dig++ == '9')
2350 						goto round_9_up;
2351 				}
2352 				*s++ = dig;
2353 				goto ret;
2354 			}
2355 			if (j1 > 0) {
2356 				if (dig == '9') { /* possible if i == 1 */
2357  round_9_up:
2358 					*s++ = '9';
2359 					goto roundoff;
2360 				}
2361 				*s++ = dig + 1;
2362 				goto ret;
2363 			}
2364 			*s++ = dig;
2365 			if (i == ilim)
2366 				break;
2367 			b = multadd(b, 10, 0);
2368 			if (mlo == mhi)
2369 				mlo = mhi = multadd(mhi, 10, 0);
2370 			else {
2371 				mlo = multadd(mlo, 10, 0);
2372 				mhi = multadd(mhi, 10, 0);
2373 			}
2374 		}
2375 	} else
2376 		for (i = 1;; i++) {
2377 			*s++ = dig = quorem(b,S) + '0';
2378 			if (i >= ilim)
2379 				break;
2380 			b = multadd(b, 10, 0);
2381 		}
2382 
2383 	/* Round off last digit */
2384 
2385 	b = lshift(b, 1);
2386 	j = cmp(b, S);
2387 	if (j > 0 || j == 0 && dig & 1) {
2388  roundoff:
2389 		while (*--s == '9')
2390 			if (s == s0) {
2391 				k++;
2392 				*s++ = '1';
2393 				goto ret;
2394 			}
2395 		++*s++;
2396 	} else {
2397 		while (*--s == '0');
2398 		s++;
2399 	}
2400  ret:
2401 	Bfree(S);
2402 	if (mhi) {
2403 		if (mlo && mlo != mhi)
2404 			Bfree(mlo);
2405 		Bfree(mhi);
2406 	}
2407  ret1:
2408 	Bfree(b);
2409 	if (s == s0) {	/* don't return empty string */
2410 		*s++ = '0';
2411 		k = 0;
2412 	}
2413 	*s = 0;
2414 	*decpt = k + 1;
2415 	if (rve)
2416 		*rve = s;
2417 	return s0;
2418 	}
2419 #ifdef __cplusplus
2420 }
2421 #endif
2422