xref: /original-bsd/lib/libc/stdlib/strtod.c (revision cf2124ff)
1 #if defined(LIBC_SCCS) && !defined(lint)
2 static char sccsid[] = "@(#)strtod.c	5.1 (Berkeley) 11/13/92";
3 #endif /* LIBC_SCCS and not lint */
4 
5 /****************************************************************
6  *
7  * The author of this software is David M. Gay.
8  *
9  * Copyright (c) 1991 by AT&T.
10  *
11  * Permission to use, copy, modify, and distribute this software for any
12  * purpose without fee is hereby granted, provided that this entire notice
13  * is included in all copies of any software which is or includes a copy
14  * or modification of this software and in all copies of the supporting
15  * documentation for such software.
16  *
17  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
18  * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR AT&T MAKES ANY
19  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
20  * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
21  *
22  ***************************************************************/
23 
24 /* Please send bug reports to
25 	David M. Gay
26 	AT&T Bell Laboratories, Room 2C-463
27 	600 Mountain Avenue
28 	Murray Hill, NJ 07974-2070
29 	U.S.A.
30 	dmg@research.att.com or research!dmg
31  */
32 
33 /* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
34  *
35  * This strtod returns a nearest machine number to the input decimal
36  * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
37  * broken by the IEEE round-even rule.  Otherwise ties are broken by
38  * biased rounding (add half and chop).
39  *
40  * Inspired loosely by William D. Clinger's paper "How to Read Floating
41  * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
42  *
43  * Modifications:
44  *
45  *	1. We only require IEEE, IBM, or VAX double-precision
46  *		arithmetic (not IEEE double-extended).
47  *	2. We get by with floating-point arithmetic in a case that
48  *		Clinger missed -- when we're computing d * 10^n
49  *		for a small integer d and the integer n is not too
50  *		much larger than 22 (the maximum integer k for which
51  *		we can represent 10^k exactly), we may be able to
52  *		compute (d*10^k) * 10^(e-k) with just one roundoff.
53  *	3. Rather than a bit-at-a-time adjustment of the binary
54  *		result in the hard case, we use floating-point
55  *		arithmetic to determine the adjustment to within
56  *		one bit; only in really hard cases do we need to
57  *		compute a second residual.
58  *	4. Because of 3., we don't need a large table of powers of 10
59  *		for ten-to-e (just some small tables, e.g. of 10^k
60  *		for 0 <= k <= 22).
61  */
62 
63 /*
64  * #define IEEE_8087 for IEEE-arithmetic machines where the least
65  *	significant byte has the lowest address.
66  * #define IEEE_MC68k for IEEE-arithmetic machines where the most
67  *	significant byte has the lowest address.
68  * #define Sudden_Underflow for IEEE-format machines without gradual
69  *	underflow (i.e., that flush to zero on underflow).
70  * #define IBM for IBM mainframe-style floating-point arithmetic.
71  * #define VAX for VAX-style floating-point arithmetic.
72  * #define Unsigned_Shifts if >> does treats its left operand as unsigned.
73  * #define No_leftright to omit left-right logic in fast floating-point
74  *	computation of dtoa.
75  * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
76  * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
77  *	that use extended-precision instructions to compute rounded
78  *	products and quotients) with IBM.
79  * #define ROUND_BIASED for IEEE-format with biased rounding.
80  * #define Inaccurate_Divide for IEEE-format with correctly rounded
81  *	products but inaccurate quotients, e.g., for Intel i860.
82  * #define Just_16 to store 16 bits per 32-bit long when doing high-precision
83  *	integer arithmetic.  Whether this speeds things up or slows things
84  *	down depends on the machine and the number being converted.
85  * #define KR_headers for old-style C function headers.
86  * #define Bad_float_h if your system lacks a float.h or if it does not
87  *	define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
88  *	FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
89  */
90 
91 #define IEEE_MC68k
92 
93 #ifdef DEBUG
94 #include "stdio.h"
95 #define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
96 #endif
97 
98 #ifdef __cplusplus
99 #include "malloc.h"
100 #include "memory.h"
101 #else
102 #ifndef KR_headers
103 #include "stdlib.h"
104 #include "string.h"
105 #else
106 #include "malloc.h"
107 #include "memory.h"
108 #endif
109 #endif
110 
111 #include "errno.h"
112 #ifdef Bad_float_h
113 #undef __STDC__
114 #ifdef IEEE_MC68k
115 #define IEEE_ARITHMETIC
116 #endif
117 #ifdef IEEE_8087
118 #define IEEE_ARITHMETIC
119 #endif
120 #ifdef IEEE_ARITHMETIC
121 #define DBL_DIG 15
122 #define DBL_MAX_10_EXP 308
123 #define DBL_MAX_EXP 1024
124 #define FLT_RADIX 2
125 #define FLT_ROUNDS 1
126 #define DBL_MAX 1.7976931348623157e+308
127 #endif
128 
129 #ifdef IBM
130 #define DBL_DIG 16
131 #define DBL_MAX_10_EXP 75
132 #define DBL_MAX_EXP 63
133 #define FLT_RADIX 16
134 #define FLT_ROUNDS 0
135 #define DBL_MAX 7.2370055773322621e+75
136 #endif
137 
138 #ifdef VAX
139 #define DBL_DIG 16
140 #define DBL_MAX_10_EXP 38
141 #define DBL_MAX_EXP 127
142 #define FLT_RADIX 2
143 #define FLT_ROUNDS 1
144 #define DBL_MAX 1.7014118346046923e+38
145 #endif
146 
147 #ifndef LONG_MAX
148 #define LONG_MAX 2147483647
149 #endif
150 #else
151 #include "float.h"
152 #endif
153 #ifndef __MATH_H__
154 #include "math.h"
155 #endif
156 
157 #ifdef __cplusplus
158 extern "C" {
159 #endif
160 
161 #ifndef CONST
162 #ifdef KR_headers
163 #define CONST /* blank */
164 #else
165 #define CONST const
166 #endif
167 #endif
168 
169 #ifdef Unsigned_Shifts
170 #define Sign_Extend(a,b) if (b < 0) a |= 0xffff0000;
171 #else
172 #define Sign_Extend(a,b) /*no-op*/
173 #endif
174 
175 #if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1
176 Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined.
177 #endif
178 
179 #ifdef IEEE_8087
180 #define word0(x) ((unsigned long *)&x)[1]
181 #define word1(x) ((unsigned long *)&x)[0]
182 #else
183 #define word0(x) ((unsigned long *)&x)[0]
184 #define word1(x) ((unsigned long *)&x)[1]
185 #endif
186 
187 /* The following definition of Storeinc is appropriate for MIPS processors.
188  * An alternative that might be better on some machines is
189  * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
190  */
191 #if defined(IEEE_8087) + defined(VAX)
192 #define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
193 ((unsigned short *)a)[0] = (unsigned short)c, a++)
194 #else
195 #define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
196 ((unsigned short *)a)[1] = (unsigned short)c, a++)
197 #endif
198 
199 /* #define P DBL_MANT_DIG */
200 /* Ten_pmax = floor(P*log(2)/log(5)) */
201 /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
202 /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
203 /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
204 
205 #if defined(IEEE_8087) + defined(IEEE_MC68k)
206 #define Exp_shift  20
207 #define Exp_shift1 20
208 #define Exp_msk1    0x100000
209 #define Exp_msk11   0x100000
210 #define Exp_mask  0x7ff00000
211 #define P 53
212 #define Bias 1023
213 #define IEEE_Arith
214 #define Emin (-1022)
215 #define Exp_1  0x3ff00000
216 #define Exp_11 0x3ff00000
217 #define Ebits 11
218 #define Frac_mask  0xfffff
219 #define Frac_mask1 0xfffff
220 #define Ten_pmax 22
221 #define Bletch 0x10
222 #define Bndry_mask  0xfffff
223 #define Bndry_mask1 0xfffff
224 #define LSB 1
225 #define Sign_bit 0x80000000
226 #define Log2P 1
227 #define Tiny0 0
228 #define Tiny1 1
229 #define Quick_max 14
230 #define Int_max 14
231 #define Infinite(x) (word0(x) == 0x7ff00000) /* sufficient test for here */
232 #else
233 #undef  Sudden_Underflow
234 #define Sudden_Underflow
235 #ifdef IBM
236 #define Exp_shift  24
237 #define Exp_shift1 24
238 #define Exp_msk1   0x1000000
239 #define Exp_msk11  0x1000000
240 #define Exp_mask  0x7f000000
241 #define P 14
242 #define Bias 65
243 #define Exp_1  0x41000000
244 #define Exp_11 0x41000000
245 #define Ebits 8	/* exponent has 7 bits, but 8 is the right value in b2d */
246 #define Frac_mask  0xffffff
247 #define Frac_mask1 0xffffff
248 #define Bletch 4
249 #define Ten_pmax 22
250 #define Bndry_mask  0xefffff
251 #define Bndry_mask1 0xffffff
252 #define LSB 1
253 #define Sign_bit 0x80000000
254 #define Log2P 4
255 #define Tiny0 0x100000
256 #define Tiny1 0
257 #define Quick_max 14
258 #define Int_max 15
259 #else /* VAX */
260 #define Exp_shift  23
261 #define Exp_shift1 7
262 #define Exp_msk1    0x80
263 #define Exp_msk11   0x800000
264 #define Exp_mask  0x7f80
265 #define P 56
266 #define Bias 129
267 #define Exp_1  0x40800000
268 #define Exp_11 0x4080
269 #define Ebits 8
270 #define Frac_mask  0x7fffff
271 #define Frac_mask1 0xffff007f
272 #define Ten_pmax 24
273 #define Bletch 2
274 #define Bndry_mask  0xffff007f
275 #define Bndry_mask1 0xffff007f
276 #define LSB 0x10000
277 #define Sign_bit 0x8000
278 #define Log2P 1
279 #define Tiny0 0x80
280 #define Tiny1 0
281 #define Quick_max 15
282 #define Int_max 15
283 #endif
284 #endif
285 
286 #ifndef IEEE_Arith
287 #define ROUND_BIASED
288 #endif
289 
290 #ifdef RND_PRODQUOT
291 #define rounded_product(a,b) a = rnd_prod(a, b)
292 #define rounded_quotient(a,b) a = rnd_quot(a, b)
293 #ifdef KR_headers
294 extern double rnd_prod(), rnd_quot();
295 #else
296 extern double rnd_prod(double, double), rnd_quot(double, double);
297 #endif
298 #else
299 #define rounded_product(a,b) a *= b
300 #define rounded_quotient(a,b) a /= b
301 #endif
302 
303 #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
304 #define Big1 0xffffffff
305 
306 #ifndef Just_16
307 /* When Pack_32 is not defined, we store 16 bits per 32-bit long.
308  * This makes some inner loops simpler and sometimes saves work
309  * during multiplications, but it often seems to make things slightly
310  * slower.  Hence the default is now to store 32 bits per long.
311  */
312 #ifndef Pack_32
313 #define Pack_32
314 #endif
315 #endif
316 
317 #define Kmax 15
318 
319 #ifdef __cplusplus
320 extern "C" double strtod(const char *s00, char **se);
321 extern "C" char *dtoa(double d, int mode, int ndigits,
322 			int *decpt, int *sign, char **rve);
323 #endif
324 
325  struct
326 Bigint {
327 	struct Bigint *next;
328 	int k, maxwds, sign, wds;
329 	unsigned long x[1];
330 };
331 
332  typedef struct Bigint Bigint;
333 
334  static Bigint *freelist[Kmax+1];
335 
336  static Bigint *
337 Balloc
338 #ifdef KR_headers
339 	(k) int k;
340 #else
341 	(int k)
342 #endif
343 {
344 	int x;
345 	Bigint *rv;
346 
347 	if (rv = freelist[k]) {
348 		freelist[k] = rv->next;
349 	} else {
350 		x = 1 << k;
351 		rv = (Bigint *)malloc(sizeof(Bigint) + (x-1)*sizeof(long));
352 		rv->k = k;
353 		rv->maxwds = x;
354 	}
355 	rv->sign = rv->wds = 0;
356 	return rv;
357 }
358 
359  static void
360 Bfree
361 #ifdef KR_headers
362 	(v) Bigint *v;
363 #else
364 	(Bigint *v)
365 #endif
366 {
367 	if (v) {
368 		v->next = freelist[v->k];
369 		freelist[v->k] = v;
370 	}
371 }
372 
373 #define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \
374 y->wds*sizeof(long) + 2*sizeof(int))
375 
376  static Bigint *
377 multadd
378 #ifdef KR_headers
379 	(b, m, a) Bigint *b; int m, a;
380 #else
381 	(Bigint *b, int m, int a)	/* multiply by m and add a */
382 #endif
383 {
384 	int i, wds;
385 	unsigned long *x, y;
386 #ifdef Pack_32
387 	unsigned long xi, z;
388 #endif
389 	Bigint *b1;
390 
391 	wds = b->wds;
392 	x = b->x;
393 	i = 0;
394 	do {
395 #ifdef Pack_32
396 		xi = *x;
397 		y = (xi & 0xffff) * m + a;
398 		z = (xi >> 16) * m + (y >> 16);
399 		a = (int)(z >> 16);
400 		*x++ = (z << 16) + (y & 0xffff);
401 #else
402 		y = *x * m + a;
403 		a = (int)(y >> 16);
404 		*x++ = y & 0xffff;
405 #endif
406 	} while (++i < wds);
407 	if (a) {
408 		if (wds >= b->maxwds) {
409 			b1 = Balloc(b->k+1);
410 			Bcopy(b1, b);
411 			Bfree(b);
412 			b = b1;
413 			}
414 		b->x[wds++] = a;
415 		b->wds = wds;
416 	}
417 	return b;
418 }
419 
420  static Bigint *
421 s2b
422 #ifdef KR_headers
423 	(s, nd0, nd, y9) CONST char *s; int nd0, nd; unsigned long y9;
424 #else
425 	(CONST char *s, int nd0, int nd, unsigned long y9)
426 #endif
427 {
428 	Bigint *b;
429 	int i, k;
430 	long x, y;
431 
432 	x = (nd + 8) / 9;
433 	for (k = 0, y = 1; x > y; y <<= 1, k++) ;
434 #ifdef Pack_32
435 	b = Balloc(k);
436 	b->x[0] = y9;
437 	b->wds = 1;
438 #else
439 	b = Balloc(k+1);
440 	b->x[0] = y9 & 0xffff;
441 	b->wds = (b->x[1] = y9 >> 16) ? 2 : 1;
442 #endif
443 
444 	i = 9;
445 	if (9 < nd0) {
446 		s += 9;
447 		do
448 			b = multadd(b, 10, *s++ - '0');
449 		while (++i < nd0);
450 		s++;
451 	} else
452 		s += 10;
453 	for (; i < nd; i++)
454 		b = multadd(b, 10, *s++ - '0');
455 	return b;
456 }
457 
458  static int
459 hi0bits
460 #ifdef KR_headers
461 	(x) register unsigned long x;
462 #else
463 	(register unsigned long x)
464 #endif
465 {
466 	register int k = 0;
467 
468 	if (!(x & 0xffff0000)) {
469 		k = 16;
470 		x <<= 16;
471 	}
472 	if (!(x & 0xff000000)) {
473 		k += 8;
474 		x <<= 8;
475 	}
476 	if (!(x & 0xf0000000)) {
477 		k += 4;
478 		x <<= 4;
479 	}
480 	if (!(x & 0xc0000000)) {
481 		k += 2;
482 		x <<= 2;
483 	}
484 	if (!(x & 0x80000000)) {
485 		k++;
486 		if (!(x & 0x40000000))
487 			return 32;
488 	}
489 	return k;
490 }
491 
492  static int
493 lo0bits
494 #ifdef KR_headers
495 	(y) unsigned long *y;
496 #else
497 	(unsigned long *y)
498 #endif
499 {
500 	register int k;
501 	register unsigned long x = *y;
502 
503 	if (x & 7) {
504 		if (x & 1)
505 			return 0;
506 		if (x & 2) {
507 			*y = x >> 1;
508 			return 1;
509 		}
510 		*y = x >> 2;
511 		return 2;
512 	}
513 	k = 0;
514 	if (!(x & 0xffff)) {
515 		k = 16;
516 		x >>= 16;
517 	}
518 	if (!(x & 0xff)) {
519 		k += 8;
520 		x >>= 8;
521 	}
522 	if (!(x & 0xf)) {
523 		k += 4;
524 		x >>= 4;
525 	}
526 	if (!(x & 0x3)) {
527 		k += 2;
528 		x >>= 2;
529 	}
530 	if (!(x & 1)) {
531 		k++;
532 		x >>= 1;
533 		if (!x & 1)
534 			return 32;
535 	}
536 	*y = x;
537 	return k;
538 }
539 
540  static Bigint *
541 i2b
542 #ifdef KR_headers
543 	(i) int i;
544 #else
545 	(int i)
546 #endif
547 {
548 	Bigint *b;
549 
550 	b = Balloc(1);
551 	b->x[0] = i;
552 	b->wds = 1;
553 	return b;
554 	}
555 
556  static Bigint *
557 mult
558 #ifdef KR_headers
559 	(a, b) Bigint *a, *b;
560 #else
561 	(Bigint *a, Bigint *b)
562 #endif
563 {
564 	Bigint *c;
565 	int k, wa, wb, wc;
566 	unsigned long carry, y, z;
567 	unsigned long *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
568 #ifdef Pack_32
569 	unsigned long z2;
570 #endif
571 
572 	if (a->wds < b->wds) {
573 		c = a;
574 		a = b;
575 		b = c;
576 	}
577 	k = a->k;
578 	wa = a->wds;
579 	wb = b->wds;
580 	wc = wa + wb;
581 	if (wc > a->maxwds)
582 		k++;
583 	c = Balloc(k);
584 	for (x = c->x, xa = x + wc; x < xa; x++)
585 		*x = 0;
586 	xa = a->x;
587 	xae = xa + wa;
588 	xb = b->x;
589 	xbe = xb + wb;
590 	xc0 = c->x;
591 #ifdef Pack_32
592 	for (; xb < xbe; xb++, xc0++) {
593 		if (y = *xb & 0xffff) {
594 			x = xa;
595 			xc = xc0;
596 			carry = 0;
597 			do {
598 				z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
599 				carry = z >> 16;
600 				z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
601 				carry = z2 >> 16;
602 				Storeinc(xc, z2, z);
603 			} while (x < xae);
604 			*xc = carry;
605 		}
606 		if (y = *xb >> 16) {
607 			x = xa;
608 			xc = xc0;
609 			carry = 0;
610 			z2 = *xc;
611 			do {
612 				z = (*x & 0xffff) * y + (*xc >> 16) + carry;
613 				carry = z >> 16;
614 				Storeinc(xc, z, z2);
615 				z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
616 				carry = z2 >> 16;
617 			} while (x < xae);
618 			*xc = z2;
619 		}
620 	}
621 #else
622 	for (; xb < xbe; xc0++) {
623 		if (y = *xb++) {
624 			x = xa;
625 			xc = xc0;
626 			carry = 0;
627 			do {
628 				z = *x++ * y + *xc + carry;
629 				carry = z >> 16;
630 				*xc++ = z & 0xffff;
631 			} while (x < xae);
632 			*xc = carry;
633 		}
634 	}
635 #endif
636 	for (xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
637 	c->wds = wc;
638 	return c;
639 }
640 
641  static Bigint *p5s;
642 
643  static Bigint *
644 pow5mult
645 #ifdef KR_headers
646 	(b, k) Bigint *b; int k;
647 #else
648 	(Bigint *b, int k)
649 #endif
650 {
651 	Bigint *b1, *p5, *p51;
652 	int i;
653 	static int p05[3] = { 5, 25, 125 };
654 
655 	if (i = k & 3)
656 		b = multadd(b, p05[i-1], 0);
657 
658 	if (!(k >>= 2))
659 		return b;
660 	if (!(p5 = p5s)) {
661 		/* first time */
662 		p5 = p5s = i2b(625);
663 		p5->next = 0;
664 	}
665 	for (;;) {
666 		if (k & 1) {
667 			b1 = mult(b, p5);
668 			Bfree(b);
669 			b = b1;
670 		}
671 		if (!(k >>= 1))
672 			break;
673 		if (!(p51 = p5->next)) {
674 			p51 = p5->next = mult(p5,p5);
675 			p51->next = 0;
676 		}
677 		p5 = p51;
678 	}
679 	return b;
680 }
681 
682  static Bigint *
683 lshift
684 #ifdef KR_headers
685 	(b, k) Bigint *b; int k;
686 #else
687 	(Bigint *b, int k)
688 #endif
689 {
690 	int i, k1, n, n1;
691 	Bigint *b1;
692 	unsigned long *x, *x1, *xe, z;
693 
694 #ifdef Pack_32
695 	n = k >> 5;
696 #else
697 	n = k >> 4;
698 #endif
699 	k1 = b->k;
700 	n1 = n + b->wds + 1;
701 	for (i = b->maxwds; n1 > i; i <<= 1)
702 		k1++;
703 	b1 = Balloc(k1);
704 	x1 = b1->x;
705 	for (i = 0; i < n; i++)
706 		*x1++ = 0;
707 	x = b->x;
708 	xe = x + b->wds;
709 #ifdef Pack_32
710 	if (k &= 0x1f) {
711 		k1 = 32 - k;
712 		z = 0;
713 		do {
714 			*x1++ = *x << k | z;
715 			z = *x++ >> k1;
716 		} while (x < xe);
717 		if (*x1 = z)
718 			++n1;
719 	}
720 #else
721 	if (k &= 0xf) {
722 		k1 = 16 - k;
723 		z = 0;
724 		do {
725 			*x1++ = *x << k  & 0xffff | z;
726 			z = *x++ >> k1;
727 		} while (x < xe);
728 		if (*x1 = z)
729 			++n1;
730 	}
731 #endif
732 	else
733 		do
734 			*x1++ = *x++;
735 		while (x < xe);
736 	b1->wds = n1 - 1;
737 	Bfree(b);
738 	return b1;
739 }
740 
741  static int
742 cmp
743 #ifdef KR_headers
744 	(a, b) Bigint *a, *b;
745 #else
746 	(Bigint *a, Bigint *b)
747 #endif
748 {
749 	unsigned long *xa, *xa0, *xb, *xb0;
750 	int i, j;
751 
752 	i = a->wds;
753 	j = b->wds;
754 #ifdef DEBUG
755 	if (i > 1 && !a->x[i-1])
756 		Bug("cmp called with a->x[a->wds-1] == 0");
757 	if (j > 1 && !b->x[j-1])
758 		Bug("cmp called with b->x[b->wds-1] == 0");
759 #endif
760 	if (i -= j)
761 		return i;
762 	xa0 = a->x;
763 	xa = xa0 + j;
764 	xb0 = b->x;
765 	xb = xb0 + j;
766 	for (;;) {
767 		if (*--xa != *--xb)
768 			return *xa < *xb ? -1 : 1;
769 		if (xa <= xa0)
770 			break;
771 	}
772 	return 0;
773 }
774 
775  static Bigint *
776 diff
777 #ifdef KR_headers
778 	(a, b) Bigint *a, *b;
779 #else
780 	(Bigint *a, Bigint *b)
781 #endif
782 {
783 	Bigint *c;
784 	int i, wa, wb;
785 	long borrow, y;	/* We need signed shifts here. */
786 	unsigned long *xa, *xae, *xb, *xbe, *xc;
787 #ifdef Pack_32
788 	long z;
789 #endif
790 
791 	i = cmp(a,b);
792 	if (!i) {
793 		c = Balloc(0);
794 		c->wds = 1;
795 		c->x[0] = 0;
796 		return c;
797 	}
798 	if (i < 0) {
799 		c = a;
800 		a = b;
801 		b = c;
802 		i = 1;
803 	} else
804 		i = 0;
805 	c = Balloc(a->k);
806 	c->sign = i;
807 	wa = a->wds;
808 	xa = a->x;
809 	xae = xa + wa;
810 	wb = b->wds;
811 	xb = b->x;
812 	xbe = xb + wb;
813 	xc = c->x;
814 	borrow = 0;
815 #ifdef Pack_32
816 	do {
817 		y = (*xa & 0xffff) - (*xb & 0xffff) + borrow;
818 		borrow = y >> 16;
819 		Sign_Extend(borrow, y);
820 		z = (*xa++ >> 16) - (*xb++ >> 16) + borrow;
821 		borrow = z >> 16;
822 		Sign_Extend(borrow, z);
823 		Storeinc(xc, z, y);
824 	} while (xb < xbe);
825 	while (xa < xae) {
826 		y = (*xa & 0xffff) + borrow;
827 		borrow = y >> 16;
828 		Sign_Extend(borrow, y);
829 		z = (*xa++ >> 16) + borrow;
830 		borrow = z >> 16;
831 		Sign_Extend(borrow, z);
832 		Storeinc(xc, z, y);
833 	}
834 #else
835 	do {
836 		y = *xa++ - *xb++ + borrow;
837 		borrow = y >> 16;
838 		Sign_Extend(borrow, y);
839 		*xc++ = y & 0xffff;
840 	} while (xb < xbe);
841 	while (xa < xae) {
842 		y = *xa++ + borrow;
843 		borrow = y >> 16;
844 		Sign_Extend(borrow, y);
845 		*xc++ = y & 0xffff;
846 	}
847 #endif
848 	while (!*--xc)
849 		wa--;
850 	c->wds = wa;
851 	return c;
852 }
853 
854  static double
855 ulp
856 #ifdef KR_headers
857 	(x) double x;
858 #else
859 	(double x)
860 #endif
861 {
862 	register long L;
863 	double a;
864 
865 	L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
866 #ifndef Sudden_Underflow
867 	if (L > 0) {
868 #endif
869 #ifdef IBM
870 		L |= Exp_msk1 >> 4;
871 #endif
872 		word0(a) = L;
873 		word1(a) = 0;
874 #ifndef Sudden_Underflow
875 	} else {
876 		L = -L >> Exp_shift;
877 		if (L < Exp_shift) {
878 			word0(a) = 0x80000 >> L;
879 			word1(a) = 0;
880 		} else {
881 			word0(a) = 0;
882 			L -= Exp_shift;
883 			word1(a) = L >= 31 ? 1 : 1 << 31 - L;
884 		}
885 	}
886 #endif
887 	return a;
888 }
889 
890  static double
891 b2d
892 #ifdef KR_headers
893 	(a, e) Bigint *a; int *e;
894 #else
895 	(Bigint *a, int *e)
896 #endif
897 {
898 	unsigned long *xa, *xa0, w, y, z;
899 	int k;
900 	double d;
901 #ifdef VAX
902 	unsigned long d0, d1;
903 #else
904 #define d0 word0(d)
905 #define d1 word1(d)
906 #endif
907 
908 	xa0 = a->x;
909 	xa = xa0 + a->wds;
910 	y = *--xa;
911 #ifdef DEBUG
912 	if (!y) Bug("zero y in b2d");
913 #endif
914 	k = hi0bits(y);
915 	*e = 32 - k;
916 #ifdef Pack_32
917 	if (k < Ebits) {
918 		d0 = Exp_1 | y >> Ebits - k;
919 		w = xa > xa0 ? *--xa : 0;
920 		d1 = y << (32-Ebits) + k | w >> Ebits - k;
921 		goto ret_d;
922 		}
923 	z = xa > xa0 ? *--xa : 0;
924 	if (k -= Ebits) {
925 		d0 = Exp_1 | y << k | z >> 32 - k;
926 		y = xa > xa0 ? *--xa : 0;
927 		d1 = z << k | y >> 32 - k;
928 	} else {
929 		d0 = Exp_1 | y;
930 		d1 = z;
931 	}
932 #else
933 	if (k < Ebits + 16) {
934 		z = xa > xa0 ? *--xa : 0;
935 		d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k;
936 		w = xa > xa0 ? *--xa : 0;
937 		y = xa > xa0 ? *--xa : 0;
938 		d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k;
939 		goto ret_d;
940 	}
941 	z = xa > xa0 ? *--xa : 0;
942 	w = xa > xa0 ? *--xa : 0;
943 	k -= Ebits + 16;
944 	d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k;
945 	y = xa > xa0 ? *--xa : 0;
946 	d1 = w << k + 16 | y << k;
947 #endif
948  ret_d:
949 #ifdef VAX
950 	word0(d) = d0 >> 16 | d0 << 16;
951 	word1(d) = d1 >> 16 | d1 << 16;
952 #else
953 #undef d0
954 #undef d1
955 #endif
956 	return d;
957 }
958 
959  static Bigint *
960 d2b
961 #ifdef KR_headers
962 	(d, e, bits) double d; int *e, *bits;
963 #else
964 	(double d, int *e, int *bits)
965 #endif
966 {
967 	Bigint *b;
968 	int de, i, k;
969 	unsigned long *x, y, z;
970 #ifdef VAX
971 	unsigned long d0, d1;
972 	d0 = word0(d) >> 16 | word0(d) << 16;
973 	d1 = word1(d) >> 16 | word1(d) << 16;
974 #else
975 #define d0 word0(d)
976 #define d1 word1(d)
977 #endif
978 
979 #ifdef Pack_32
980 	b = Balloc(1);
981 #else
982 	b = Balloc(2);
983 #endif
984 	x = b->x;
985 
986 	z = d0 & Frac_mask;
987 	d0 &= 0x7fffffff;	/* clear sign bit, which we ignore */
988 #ifdef Sudden_Underflow
989 	de = (int)(d0 >> Exp_shift);
990 #ifndef IBM
991 	z |= Exp_msk11;
992 #endif
993 #else
994 	if (de = (int)(d0 >> Exp_shift))
995 		z |= Exp_msk1;
996 #endif
997 #ifdef Pack_32
998 	if (y = d1) {
999 		if (k = lo0bits(&y)) {
1000 			x[0] = y | z << 32 - k;
1001 			z >>= k;
1002 			}
1003 		else
1004 			x[0] = y;
1005 		i = b->wds = (x[1] = z) ? 2 : 1;
1006 	} else {
1007 #ifdef DEBUG
1008 		if (!z)
1009 			Bug("Zero passed to d2b");
1010 #endif
1011 		k = lo0bits(&z);
1012 		x[0] = z;
1013 		i = b->wds = 1;
1014 		k += 32;
1015 	}
1016 #else
1017 	if (y = d1) {
1018 		if (k = lo0bits(&y))
1019 			if (k >= 16) {
1020 				x[0] = y | z << 32 - k & 0xffff;
1021 				x[1] = z >> k - 16 & 0xffff;
1022 				x[2] = z >> k;
1023 				i = 2;
1024 			} else {
1025 				x[0] = y & 0xffff;
1026 				x[1] = y >> 16 | z << 16 - k & 0xffff;
1027 				x[2] = z >> k & 0xffff;
1028 				x[3] = z >> k+16;
1029 				i = 3;
1030 			}
1031 		else {
1032 			x[0] = y & 0xffff;
1033 			x[1] = y >> 16;
1034 			x[2] = z & 0xffff;
1035 			x[3] = z >> 16;
1036 			i = 3;
1037 		}
1038 	} else {
1039 #ifdef DEBUG
1040 		if (!z)
1041 			Bug("Zero passed to d2b");
1042 #endif
1043 		k = lo0bits(&z);
1044 		if (k >= 16) {
1045 			x[0] = z;
1046 			i = 0;
1047 		} else {
1048 			x[0] = z & 0xffff;
1049 			x[1] = z >> 16;
1050 			i = 1;
1051 		}
1052 		k += 32;
1053 	}
1054 	while (!x[i])
1055 		--i;
1056 	b->wds = i + 1;
1057 #endif
1058 #ifndef Sudden_Underflow
1059 	if (de) {
1060 #endif
1061 #ifdef IBM
1062 		*e = (de - Bias - (P-1) << 2) + k;
1063 		*bits = 4*P + 8 - k - hi0bits(word0(d) & Frac_mask);
1064 #else
1065 		*e = de - Bias - (P-1) + k;
1066 		*bits = P - k;
1067 #endif
1068 #ifndef Sudden_Underflow
1069 	} else {
1070 		*e = de - Bias - (P-1) + 1 + k;
1071 #ifdef Pack_32
1072 		*bits = 32*i - hi0bits(x[i-1]);
1073 #else
1074 		*bits = (i+2)*16 - hi0bits(x[i]);
1075 #endif
1076 	}
1077 #endif
1078 	return b;
1079 }
1080 #undef d0
1081 #undef d1
1082 
1083  static double
1084 ratio
1085 #ifdef KR_headers
1086 	(a, b) Bigint *a, *b;
1087 #else
1088 	(Bigint *a, Bigint *b)
1089 #endif
1090 {
1091 	double da, db;
1092 	int k, ka, kb;
1093 
1094 	da = b2d(a, &ka);
1095 	db = b2d(b, &kb);
1096 #ifdef Pack_32
1097 	k = ka - kb + 32*(a->wds - b->wds);
1098 #else
1099 	k = ka - kb + 16*(a->wds - b->wds);
1100 #endif
1101 #ifdef IBM
1102 	if (k > 0) {
1103 		word0(da) += (k >> 2)*Exp_msk1;
1104 		if (k &= 3)
1105 			da *= 1 << k;
1106 	} else {
1107 		k = -k;
1108 		word0(db) += (k >> 2)*Exp_msk1;
1109 		if (k &= 3)
1110 			db *= 1 << k;
1111 	}
1112 #else
1113 	if (k > 0)
1114 		word0(da) += k*Exp_msk1;
1115 	else {
1116 		k = -k;
1117 		word0(db) += k*Exp_msk1;
1118 	}
1119 #endif
1120 	return da / db;
1121 }
1122 
1123  static double
1124 tens[] = {
1125 		1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1126 		1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1127 		1e20, 1e21, 1e22
1128 #ifdef VAX
1129 		, 1e23, 1e24
1130 #endif
1131 		};
1132 
1133  static double
1134 #ifdef IEEE_Arith
1135 bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
1136 static double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, 1e-256 };
1137 #define n_bigtens 5
1138 #else
1139 #ifdef IBM
1140 bigtens[] = { 1e16, 1e32, 1e64 };
1141 static double tinytens[] = { 1e-16, 1e-32, 1e-64 };
1142 #define n_bigtens 3
1143 #else
1144 bigtens[] = { 1e16, 1e32 };
1145 static double tinytens[] = { 1e-16, 1e-32 };
1146 #define n_bigtens 2
1147 #endif
1148 #endif
1149 
1150  double
1151 strtod
1152 #ifdef KR_headers
1153 	(s00, se) CONST char *s00; char **se;
1154 #else
1155 	(CONST char *s00, char **se)
1156 #endif
1157 {
1158 	int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign,
1159 		 e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign;
1160 	CONST char *s, *s0, *s1;
1161 	double aadj, aadj1, adj, rv, rv0;
1162 	long L;
1163 	unsigned long y, z;
1164 	Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
1165 	sign = nz0 = nz = 0;
1166 	rv = 0.;
1167 	for (s = s00;;s++) switch(*s) {
1168 		case '-':
1169 			sign = 1;
1170 			/* no break */
1171 		case '+':
1172 			if (*++s)
1173 				goto break2;
1174 			/* no break */
1175 		case 0:
1176 			s = s00;
1177 			goto ret;
1178 		case '\t':
1179 		case '\n':
1180 		case '\v':
1181 		case '\f':
1182 		case '\r':
1183 		case ' ':
1184 			continue;
1185 		default:
1186 			goto break2;
1187 	}
1188  break2:
1189 	if (*s == '0') {
1190 		nz0 = 1;
1191 		while (*++s == '0') ;
1192 		if (!*s)
1193 			goto ret;
1194 	}
1195 	s0 = s;
1196 	y = z = 0;
1197 	for (nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
1198 		if (nd < 9)
1199 			y = 10*y + c - '0';
1200 		else if (nd < 16)
1201 			z = 10*z + c - '0';
1202 	nd0 = nd;
1203 	if (c == '.') {
1204 		c = *++s;
1205 		if (!nd) {
1206 			for (; c == '0'; c = *++s)
1207 				nz++;
1208 			if (c > '0' && c <= '9') {
1209 				s0 = s;
1210 				nf += nz;
1211 				nz = 0;
1212 				goto have_dig;
1213 			}
1214 			goto dig_done;
1215 		}
1216 		for (; c >= '0' && c <= '9'; c = *++s) {
1217  have_dig:
1218 			nz++;
1219 			if (c -= '0') {
1220 				nf += nz;
1221 				for (i = 1; i < nz; i++)
1222 					if (nd++ < 9)
1223 						y *= 10;
1224 					else if (nd <= DBL_DIG + 1)
1225 						z *= 10;
1226 				if (nd++ < 9)
1227 					y = 10*y + c;
1228 				else if (nd <= DBL_DIG + 1)
1229 					z = 10*z + c;
1230 				nz = 0;
1231 			}
1232 		}
1233 	}
1234  dig_done:
1235 	e = 0;
1236 	if (c == 'e' || c == 'E') {
1237 		if (!nd && !nz && !nz0) {
1238 			s = s00;
1239 			goto ret;
1240 		}
1241 		s00 = s;
1242 		esign = 0;
1243 		switch(c = *++s) {
1244 			case '-':
1245 				esign = 1;
1246 			case '+':
1247 				c = *++s;
1248 		}
1249 		if (c >= '0' && c <= '9') {
1250 			while (c == '0')
1251 				c = *++s;
1252 			if (c > '0' && c <= '9') {
1253 				L = c - '0';
1254 				s1 = s;
1255 				while ((c = *++s) >= '0' && c <= '9')
1256 					L = 10*L + c - '0';
1257 				if (s - s1 > 8 || L > 19999)
1258 					/* Avoid confusion from exponents
1259 					 * so large that e might overflow.
1260 					 */
1261 					e = 19999; /* safe for 16 bit ints */
1262 				else
1263 					e = (int)L;
1264 				if (esign)
1265 					e = -e;
1266 			} else
1267 				e = 0;
1268 		} else
1269 			s = s00;
1270 	}
1271 	if (!nd) {
1272 		if (!nz && !nz0)
1273 			s = s00;
1274 		goto ret;
1275 	}
1276 	e1 = e -= nf;
1277 
1278 	/* Now we have nd0 digits, starting at s0, followed by a
1279 	 * decimal point, followed by nd-nd0 digits.  The number we're
1280 	 * after is the integer represented by those digits times
1281 	 * 10**e */
1282 
1283 	if (!nd0)
1284 		nd0 = nd;
1285 	k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
1286 	rv = y;
1287 	if (k > 9)
1288 		rv = tens[k - 9] * rv + z;
1289 	if (nd <= DBL_DIG
1290 #ifndef RND_PRODQUOT
1291 		&& FLT_ROUNDS == 1
1292 #endif
1293 			) {
1294 		if (!e)
1295 			goto ret;
1296 		if (e > 0) {
1297 			if (e <= Ten_pmax) {
1298 #ifdef VAX
1299 				goto vax_ovfl_check;
1300 #else
1301 				/* rv = */ rounded_product(rv, tens[e]);
1302 				goto ret;
1303 #endif
1304 				}
1305 			i = DBL_DIG - nd;
1306 			if (e <= Ten_pmax + i) {
1307 				/* A fancier test would sometimes let us do
1308 				 * this for larger i values.
1309 				 */
1310 				e -= i;
1311 				rv *= tens[i];
1312 #ifdef VAX
1313 				/* VAX exponent range is so narrow we must
1314 				 * worry about overflow here...
1315 				 */
1316  vax_ovfl_check:
1317 				word0(rv) -= P*Exp_msk1;
1318 				/* rv = */ rounded_product(rv, tens[e]);
1319 				if ((word0(rv) & Exp_mask)
1320 				 > Exp_msk1*(DBL_MAX_EXP+Bias-1-P))
1321 					goto ovfl;
1322 				word0(rv) += P*Exp_msk1;
1323 #else
1324 				/* rv = */ rounded_product(rv, tens[e]);
1325 #endif
1326 				goto ret;
1327 			}
1328 		}
1329 #ifndef Inaccurate_Divide
1330 		else if (e >= -Ten_pmax) {
1331 			/* rv = */ rounded_quotient(rv, tens[-e]);
1332 			goto ret;
1333 		}
1334 #endif
1335 	}
1336 	e1 += nd - k;
1337 
1338 	/* Get starting approximation = rv * 10**e1 */
1339 
1340 	if (e1 > 0) {
1341 		if (i = e1 & 15)
1342 			rv *= tens[i];
1343 		if (e1 &= ~15) {
1344 			if (e1 > DBL_MAX_10_EXP) {
1345  ovfl:
1346 				errno = ERANGE;
1347 #ifdef __STDC__
1348 				rv = HUGE_VAL;
1349 #else
1350 				/* Can't trust HUGE_VAL */
1351 #ifdef IEEE_Arith
1352 				word0(rv) = Exp_mask;
1353 				word1(rv) = 0;
1354 #else
1355 				word0(rv) = Big0;
1356 				word1(rv) = Big1;
1357 #endif
1358 #endif
1359 				goto ret;
1360 			}
1361 			if (e1 >>= 4) {
1362 				for (j = 0; e1 > 1; j++, e1 >>= 1)
1363 					if (e1 & 1)
1364 						rv *= bigtens[j];
1365 			/* The last multiplication could overflow. */
1366 				word0(rv) -= P*Exp_msk1;
1367 				rv *= bigtens[j];
1368 				if ((z = word0(rv) & Exp_mask)
1369 				 > Exp_msk1*(DBL_MAX_EXP+Bias-P))
1370 					goto ovfl;
1371 				if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
1372 					/* set to largest number */
1373 					/* (Can't trust DBL_MAX) */
1374 					word0(rv) = Big0;
1375 					word1(rv) = Big1;
1376 					}
1377 				else
1378 					word0(rv) += P*Exp_msk1;
1379 			}
1380 		}
1381 	} else if (e1 < 0) {
1382 		e1 = -e1;
1383 		if (i = e1 & 15)
1384 			rv /= tens[i];
1385 		if (e1 &= ~15) {
1386 			e1 >>= 4;
1387 			for (j = 0; e1 > 1; j++, e1 >>= 1)
1388 				if (e1 & 1)
1389 					rv *= tinytens[j];
1390 			/* The last multiplication could underflow. */
1391 			rv0 = rv;
1392 			rv *= tinytens[j];
1393 			if (!rv) {
1394 				rv = 2.*rv0;
1395 				rv *= tinytens[j];
1396 				if (!rv) {
1397  undfl:
1398 					rv = 0.;
1399 					errno = ERANGE;
1400 					goto ret;
1401 					}
1402 				word0(rv) = Tiny0;
1403 				word1(rv) = Tiny1;
1404 				/* The refinement below will clean
1405 				 * this approximation up.
1406 				 */
1407 			}
1408 		}
1409 	}
1410 
1411 	/* Now the hard part -- adjusting rv to the correct value.*/
1412 
1413 	/* Put digits into bd: true value = bd * 10^e */
1414 
1415 	bd0 = s2b(s0, nd0, nd, y);
1416 
1417 	for (;;) {
1418 		bd = Balloc(bd0->k);
1419 		Bcopy(bd, bd0);
1420 		bb = d2b(rv, &bbe, &bbbits);	/* rv = bb * 2^bbe */
1421 		bs = i2b(1);
1422 
1423 		if (e >= 0) {
1424 			bb2 = bb5 = 0;
1425 			bd2 = bd5 = e;
1426 		} else {
1427 			bb2 = bb5 = -e;
1428 			bd2 = bd5 = 0;
1429 		}
1430 		if (bbe >= 0)
1431 			bb2 += bbe;
1432 		else
1433 			bd2 -= bbe;
1434 		bs2 = bb2;
1435 #ifdef Sudden_Underflow
1436 #ifdef IBM
1437 		j = 1 + 4*P - 3 - bbbits + ((bbe + bbbits - 1) & 3);
1438 #else
1439 		j = P + 1 - bbbits;
1440 #endif
1441 #else
1442 		i = bbe + bbbits - 1;	/* logb(rv) */
1443 		if (i < Emin)	/* denormal */
1444 			j = bbe + (P-Emin);
1445 		else
1446 			j = P + 1 - bbbits;
1447 #endif
1448 		bb2 += j;
1449 		bd2 += j;
1450 		i = bb2 < bd2 ? bb2 : bd2;
1451 		if (i > bs2)
1452 			i = bs2;
1453 		if (i > 0) {
1454 			bb2 -= i;
1455 			bd2 -= i;
1456 			bs2 -= i;
1457 			}
1458 		if (bb5 > 0) {
1459 			bs = pow5mult(bs, bb5);
1460 			bb1 = mult(bs, bb);
1461 			Bfree(bb);
1462 			bb = bb1;
1463 			}
1464 		if (bb2 > 0)
1465 			bb = lshift(bb, bb2);
1466 		if (bd5 > 0)
1467 			bd = pow5mult(bd, bd5);
1468 		if (bd2 > 0)
1469 			bd = lshift(bd, bd2);
1470 		if (bs2 > 0)
1471 			bs = lshift(bs, bs2);
1472 		delta = diff(bb, bd);
1473 		dsign = delta->sign;
1474 		delta->sign = 0;
1475 		i = cmp(delta, bs);
1476 		if (i < 0) {
1477 			/* Error is less than half an ulp -- check for
1478 			 * special case of mantissa a power of two.
1479 			 */
1480 			if (dsign || word1(rv) || word0(rv) & Bndry_mask)
1481 				break;
1482 			delta = lshift(delta,Log2P);
1483 			if (cmp(delta, bs) > 0)
1484 				goto drop_down;
1485 			break;
1486 		}
1487 		if (i == 0) {
1488 			/* exactly half-way between */
1489 			if (dsign) {
1490 				if ((word0(rv) & Bndry_mask1) == Bndry_mask1
1491 				 &&  word1(rv) == 0xffffffff) {
1492 					/*boundary case -- increment exponent*/
1493 					word0(rv) = (word0(rv) & Exp_mask)
1494 						+ Exp_msk1
1495 #ifdef IBM
1496 						| Exp_msk1 >> 4
1497 #endif
1498 						;
1499 					word1(rv) = 0;
1500 					break;
1501 				}
1502 			} else if (!(word0(rv) & Bndry_mask) && !word1(rv)) {
1503  drop_down:
1504 				/* boundary case -- decrement exponent */
1505 #ifdef Sudden_Underflow
1506 				L = word0(rv) & Exp_mask;
1507 #ifdef IBM
1508 				if (L <  Exp_msk1)
1509 #else
1510 				if (L <= Exp_msk1)
1511 #endif
1512 					goto undfl;
1513 				L -= Exp_msk1;
1514 #else
1515 				L = (word0(rv) & Exp_mask) - Exp_msk1;
1516 #endif
1517 				word0(rv) = L | Bndry_mask1;
1518 				word1(rv) = 0xffffffff;
1519 #ifdef IBM
1520 				goto cont;
1521 #else
1522 				break;
1523 #endif
1524 			}
1525 #ifndef ROUND_BIASED
1526 			if (!(word1(rv) & LSB))
1527 				break;
1528 #endif
1529 			if (dsign)
1530 				rv += ulp(rv);
1531 #ifndef ROUND_BIASED
1532 			else {
1533 				rv -= ulp(rv);
1534 #ifndef Sudden_Underflow
1535 				if (!rv)
1536 					goto undfl;
1537 #endif
1538 			}
1539 #endif
1540 			break;
1541 		}
1542 		if ((aadj = ratio(delta, bs)) <= 2.) {
1543 			if (dsign)
1544 				aadj = aadj1 = 1.;
1545 			else if (word1(rv) || word0(rv) & Bndry_mask) {
1546 #ifndef Sudden_Underflow
1547 				if (word1(rv) == Tiny1 && !word0(rv))
1548 					goto undfl;
1549 #endif
1550 				aadj = 1.;
1551 				aadj1 = -1.;
1552 			} else {
1553 				/* special case -- power of FLT_RADIX to be */
1554 				/* rounded down... */
1555 
1556 				if (aadj < 2./FLT_RADIX)
1557 					aadj = 1./FLT_RADIX;
1558 				else
1559 					aadj *= 0.5;
1560 				aadj1 = -aadj;
1561 			}
1562 		} else {
1563 			aadj *= 0.5;
1564 			aadj1 = dsign ? aadj : -aadj;
1565 #ifdef Check_FLT_ROUNDS
1566 			switch(FLT_ROUNDS) {
1567 				case 2: /* towards +infinity */
1568 					aadj1 -= 0.5;
1569 					break;
1570 				case 0: /* towards 0 */
1571 				case 3: /* towards -infinity */
1572 					aadj1 += 0.5;
1573 			}
1574 #else
1575 			if (FLT_ROUNDS == 0)
1576 				aadj1 += 0.5;
1577 #endif
1578 		}
1579 		y = word0(rv) & Exp_mask;
1580 
1581 		/* Check for overflow */
1582 
1583 		if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
1584 			rv0 = rv;
1585 			word0(rv) -= P*Exp_msk1;
1586 			adj = aadj1 * ulp(rv);
1587 			rv += adj;
1588 			if ((word0(rv) & Exp_mask) >=
1589 					Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
1590 				if (word0(rv0) == Big0 && word1(rv0) == Big1)
1591 					goto ovfl;
1592 				word0(rv) = Big0;
1593 				word1(rv) = Big1;
1594 				goto cont;
1595 			} else
1596 				word0(rv) += P*Exp_msk1;
1597 		} else {
1598 #ifdef Sudden_Underflow
1599 			if ((word0(rv) & Exp_mask) <= P*Exp_msk1) {
1600 				rv0 = rv;
1601 				word0(rv) += P*Exp_msk1;
1602 				adj = aadj1 * ulp(rv);
1603 				rv += adj;
1604 #ifdef IBM
1605 				if ((word0(rv) & Exp_mask) <  P*Exp_msk1)
1606 #else
1607 				if ((word0(rv) & Exp_mask) <= P*Exp_msk1)
1608 #endif
1609 				{
1610 					if (word0(rv0) == Tiny0
1611 					 && word1(rv0) == Tiny1)
1612 						goto undfl;
1613 					word0(rv) = Tiny0;
1614 					word1(rv) = Tiny1;
1615 					goto cont;
1616 				} else
1617 					word0(rv) -= P*Exp_msk1;
1618 			} else {
1619 				adj = aadj1 * ulp(rv);
1620 				rv += adj;
1621 			}
1622 #else
1623 			/* Compute adj so that the IEEE rounding rules will
1624 			 * correctly round rv + adj in some half-way cases.
1625 			 * If rv * ulp(rv) is denormalized (i.e.,
1626 			 * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
1627 			 * trouble from bits lost to denormalization;
1628 			 * example: 1.2e-307 .
1629 			 */
1630 			if (y <= (P-1)*Exp_msk1 && aadj >= 1.) {
1631 				aadj1 = (double)(int)(aadj + 0.5);
1632 				if (!dsign)
1633 					aadj1 = -aadj1;
1634 			}
1635 			adj = aadj1 * ulp(rv);
1636 			rv += adj;
1637 #endif
1638 		}
1639 		z = word0(rv) & Exp_mask;
1640 		if (y == z) {
1641 			/* Can we stop now? */
1642 			L = aadj;
1643 			aadj -= L;
1644 			/* The tolerances below are conservative. */
1645 			if (dsign || word1(rv) || word0(rv) & Bndry_mask) {
1646 				if (aadj < .4999999 || aadj > .5000001)
1647 					break;
1648 			} else if (aadj < .4999999/FLT_RADIX)
1649 				break;
1650 		}
1651  cont:
1652 		Bfree(bb);
1653 		Bfree(bd);
1654 		Bfree(bs);
1655 		Bfree(delta);
1656 	}
1657 	Bfree(bb);
1658 	Bfree(bd);
1659 	Bfree(bs);
1660 	Bfree(bd0);
1661 	Bfree(delta);
1662  ret:
1663 	if (se)
1664 		*se = (char *)s;
1665 	return sign ? -rv : rv;
1666 }
1667 
1668  static int
1669 quorem
1670 #ifdef KR_headers
1671 	(b, S) Bigint *b, *S;
1672 #else
1673 	(Bigint *b, Bigint *S)
1674 #endif
1675 {
1676 	int n;
1677 	long borrow, y;
1678 	unsigned long carry, q, ys;
1679 	unsigned long *bx, *bxe, *sx, *sxe;
1680 #ifdef Pack_32
1681 	long z;
1682 	unsigned long si, zs;
1683 #endif
1684 
1685 	n = S->wds;
1686 #ifdef DEBUG
1687 	/*debug*/ if (b->wds > n)
1688 	/*debug*/	Bug("oversize b in quorem");
1689 #endif
1690 	if (b->wds < n)
1691 		return 0;
1692 	sx = S->x;
1693 	sxe = sx + --n;
1694 	bx = b->x;
1695 	bxe = bx + n;
1696 	q = *bxe / (*sxe + 1);	/* ensure q <= true quotient */
1697 #ifdef DEBUG
1698 	/*debug*/ if (q > 9)
1699 	/*debug*/	Bug("oversized quotient in quorem");
1700 #endif
1701 	if (q) {
1702 		borrow = 0;
1703 		carry = 0;
1704 		do {
1705 #ifdef Pack_32
1706 			si = *sx++;
1707 			ys = (si & 0xffff) * q + carry;
1708 			zs = (si >> 16) * q + (ys >> 16);
1709 			carry = zs >> 16;
1710 			y = (*bx & 0xffff) - (ys & 0xffff) + borrow;
1711 			borrow = y >> 16;
1712 			Sign_Extend(borrow, y);
1713 			z = (*bx >> 16) - (zs & 0xffff) + borrow;
1714 			borrow = z >> 16;
1715 			Sign_Extend(borrow, z);
1716 			Storeinc(bx, z, y);
1717 #else
1718 			ys = *sx++ * q + carry;
1719 			carry = ys >> 16;
1720 			y = *bx - (ys & 0xffff) + borrow;
1721 			borrow = y >> 16;
1722 			Sign_Extend(borrow, y);
1723 			*bx++ = y & 0xffff;
1724 #endif
1725 		} while (sx <= sxe);
1726 		if (!*bxe) {
1727 			bx = b->x;
1728 			while (--bxe > bx && !*bxe)
1729 				--n;
1730 			b->wds = n;
1731 		}
1732 	}
1733 	if (cmp(b, S) >= 0) {
1734 		q++;
1735 		borrow = 0;
1736 		carry = 0;
1737 		bx = b->x;
1738 		sx = S->x;
1739 		do {
1740 #ifdef Pack_32
1741 			si = *sx++;
1742 			ys = (si & 0xffff) + carry;
1743 			zs = (si >> 16) + (ys >> 16);
1744 			carry = zs >> 16;
1745 			y = (*bx & 0xffff) - (ys & 0xffff) + borrow;
1746 			borrow = y >> 16;
1747 			Sign_Extend(borrow, y);
1748 			z = (*bx >> 16) - (zs & 0xffff) + borrow;
1749 			borrow = z >> 16;
1750 			Sign_Extend(borrow, z);
1751 			Storeinc(bx, z, y);
1752 #else
1753 			ys = *sx++ + carry;
1754 			carry = ys >> 16;
1755 			y = *bx - (ys & 0xffff) + borrow;
1756 			borrow = y >> 16;
1757 			Sign_Extend(borrow, y);
1758 			*bx++ = y & 0xffff;
1759 #endif
1760 		} while (sx <= sxe);
1761 		bx = b->x;
1762 		bxe = bx + n;
1763 		if (!*bxe) {
1764 			while (--bxe > bx && !*bxe)
1765 				--n;
1766 			b->wds = n;
1767 		}
1768 	}
1769 	return q;
1770 }
1771 
1772 /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
1773  *
1774  * Inspired by "How to Print Floating-Point Numbers Accurately" by
1775  * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101].
1776  *
1777  * Modifications:
1778  *	1. Rather than iterating, we use a simple numeric overestimate
1779  *	   to determine k = floor(log10(d)).  We scale relevant
1780  *	   quantities using O(log2(k)) rather than O(k) multiplications.
1781  *	2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
1782  *	   try to generate digits strictly left to right.  Instead, we
1783  *	   compute with fewer bits and propagate the carry if necessary
1784  *	   when rounding the final digit up.  This is often faster.
1785  *	3. Under the assumption that input will be rounded nearest,
1786  *	   mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
1787  *	   That is, we allow equality in stopping tests when the
1788  *	   round-nearest rule will give the same floating-point value
1789  *	   as would satisfaction of the stopping test with strict
1790  *	   inequality.
1791  *	4. We remove common factors of powers of 2 from relevant
1792  *	   quantities.
1793  *	5. When converting floating-point integers less than 1e16,
1794  *	   we use floating-point arithmetic rather than resorting
1795  *	   to multiple-precision integers.
1796  *	6. When asked to produce fewer than 15 digits, we first try
1797  *	   to get by with floating-point arithmetic; we resort to
1798  *	   multiple-precision integer arithmetic only if we cannot
1799  *	   guarantee that the floating-point calculation has given
1800  *	   the correctly rounded result.  For k requested digits and
1801  *	   "uniformly" distributed input, the probability is
1802  *	   something like 10^(k-15) that we must resort to the long
1803  *	   calculation.
1804  */
1805 
1806 char *
1807 __dtoa
1808 #ifdef KR_headers
1809 	(d, mode, ndigits, decpt, sign, rve)
1810 	double d; int mode, ndigits, *decpt, *sign; char **rve;
1811 #else
1812 	(double d, int mode, int ndigits, int *decpt, int *sign, char **rve)
1813 #endif
1814 {
1815  /*	Arguments ndigits, decpt, sign are similar to those
1816 	of ecvt and fcvt; trailing zeros are suppressed from
1817 	the returned string.  If not null, *rve is set to point
1818 	to the end of the return value.  If d is +-Infinity or NaN,
1819 	then *decpt is set to 9999.
1820 
1821 	mode:
1822 		0 ==> shortest string that yields d when read in
1823 			and rounded to nearest.
1824 		1 ==> like 0, but with Steele & White stopping rule;
1825 			e.g. with IEEE P754 arithmetic , mode 0 gives
1826 			1e23 whereas mode 1 gives 9.999999999999999e22.
1827 		2 ==> max(1,ndigits) significant digits.  This gives a
1828 			return value similar to that of ecvt, except
1829 			that trailing zeros are suppressed.
1830 		3 ==> through ndigits past the decimal point.  This
1831 			gives a return value similar to that from fcvt,
1832 			except that trailing zeros are suppressed, and
1833 			ndigits can be negative.
1834 		4-9 should give the same return values as 2-3, i.e.,
1835 			4 <= mode <= 9 ==> same return as mode
1836 			2 + (mode & 1).  These modes are mainly for
1837 			debugging; often they run slower but sometimes
1838 			faster than modes 2-3.
1839 		4,5,8,9 ==> left-to-right digit generation.
1840 		6-9 ==> don't try fast floating-point estimate
1841 			(if applicable).
1842 
1843 		Values of mode other than 0-9 are treated as mode 0.
1844 
1845 		Sufficient space is allocated to the return value
1846 		to hold the suppressed trailing zeros.
1847 	*/
1848 
1849 	int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,
1850 		j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
1851 		spec_case, try_quick;
1852 	long L;
1853 #ifndef Sudden_Underflow
1854 	int denorm;
1855 	unsigned long x;
1856 #endif
1857 	Bigint *b, *b1, *delta, *mlo, *mhi, *S;
1858 	double d2, ds, eps;
1859 	char *s, *s0;
1860 	static Bigint *result;
1861 	static int result_k;
1862 
1863 	if (result) {
1864 		result->k = result_k;
1865 		result->maxwds = 1 << result_k;
1866 		Bfree(result);
1867 		result = 0;
1868 	}
1869 
1870 	if (word0(d) & Sign_bit) {
1871 		/* set sign for everything, including 0's and NaNs */
1872 		*sign = 1;
1873 		word0(d) &= ~Sign_bit;	/* clear sign bit */
1874 	}
1875 	else
1876 		*sign = 0;
1877 
1878 #if defined(IEEE_Arith) + defined(VAX)
1879 #ifdef IEEE_Arith
1880 	if ((word0(d) & Exp_mask) == Exp_mask)
1881 #else
1882 	if (word0(d)  == 0x8000)
1883 #endif
1884 	{
1885 		/* Infinity or NaN */
1886 		*decpt = 9999;
1887 		s =
1888 #ifdef IEEE_Arith
1889 			!word1(d) && !(word0(d) & 0xfffff) ? "Infinity" :
1890 #endif
1891 				"NaN";
1892 		if (rve)
1893 			*rve =
1894 #ifdef IEEE_Arith
1895 				s[3] ? s + 8 :
1896 #endif
1897 						s + 3;
1898 		return s;
1899 	}
1900 #endif
1901 #ifdef IBM
1902 	d += 0; /* normalize */
1903 #endif
1904 	if (!d) {
1905 		*decpt = 1;
1906 		s = "0";
1907 		if (rve)
1908 			*rve = s + 1;
1909 		return s;
1910 	}
1911 
1912 	b = d2b(d, &be, &bbits);
1913 #ifdef Sudden_Underflow
1914 	i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
1915 #else
1916 	if (i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1))) {
1917 #endif
1918 		d2 = d;
1919 		word0(d2) &= Frac_mask1;
1920 		word0(d2) |= Exp_11;
1921 #ifdef IBM
1922 		if (j = 11 - hi0bits(word0(d2) & Frac_mask))
1923 			d2 /= 1 << j;
1924 #endif
1925 
1926 		/* log(x)	~=~ log(1.5) + (x-1.5)/1.5
1927 		 * log10(x)	 =  log(x) / log(10)
1928 		 *		~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
1929 		 * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
1930 		 *
1931 		 * This suggests computing an approximation k to log10(d) by
1932 		 *
1933 		 * k = (i - Bias)*0.301029995663981
1934 		 *	+ ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
1935 		 *
1936 		 * We want k to be too large rather than too small.
1937 		 * The error in the first-order Taylor series approximation
1938 		 * is in our favor, so we just round up the constant enough
1939 		 * to compensate for any error in the multiplication of
1940 		 * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
1941 		 * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
1942 		 * adding 1e-13 to the constant term more than suffices.
1943 		 * Hence we adjust the constant term to 0.1760912590558.
1944 		 * (We could get a more accurate k by invoking log10,
1945 		 *  but this is probably not worthwhile.)
1946 		 */
1947 
1948 		i -= Bias;
1949 #ifdef IBM
1950 		i <<= 2;
1951 		i += j;
1952 #endif
1953 #ifndef Sudden_Underflow
1954 		denorm = 0;
1955 	} else {
1956 		/* d is denormalized */
1957 
1958 		i = bbits + be + (Bias + (P-1) - 1);
1959 		x = i > 32  ? word0(d) << 64 - i | word1(d) >> i - 32
1960 			    : word1(d) << 32 - i;
1961 		d2 = x;
1962 		word0(d2) -= 31*Exp_msk1; /* adjust exponent */
1963 		i -= (Bias + (P-1) - 1) + 1;
1964 		denorm = 1;
1965 	}
1966 #endif
1967 	ds = (d2-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
1968 	k = (int)ds;
1969 	if (ds < 0. && ds != k)
1970 		k--;	/* want k = floor(ds) */
1971 	k_check = 1;
1972 	if (k >= 0 && k <= Ten_pmax) {
1973 		if (d < tens[k])
1974 			k--;
1975 		k_check = 0;
1976 	}
1977 	j = bbits - i - 1;
1978 	if (j >= 0) {
1979 		b2 = 0;
1980 		s2 = j;
1981 	} else {
1982 		b2 = -j;
1983 		s2 = 0;
1984 	}
1985 	if (k >= 0) {
1986 		b5 = 0;
1987 		s5 = k;
1988 		s2 += k;
1989 	} else {
1990 		b2 -= k;
1991 		b5 = -k;
1992 		s5 = 0;
1993 	}
1994 	if (mode < 0 || mode > 9)
1995 		mode = 0;
1996 	try_quick = 1;
1997 	if (mode > 5) {
1998 		mode -= 4;
1999 		try_quick = 0;
2000 	}
2001 	leftright = 1;
2002 	switch(mode) {
2003 		case 0:
2004 		case 1:
2005 			ilim = ilim1 = -1;
2006 			i = 18;
2007 			ndigits = 0;
2008 			break;
2009 		case 2:
2010 			leftright = 0;
2011 			/* no break */
2012 		case 4:
2013 			if (ndigits <= 0)
2014 				ndigits = 1;
2015 			ilim = ilim1 = i = ndigits;
2016 			break;
2017 		case 3:
2018 			leftright = 0;
2019 			/* no break */
2020 		case 5:
2021 			i = ndigits + k + 1;
2022 			ilim = i;
2023 			ilim1 = i - 1;
2024 			if (i <= 0)
2025 				i = 1;
2026 	}
2027 	j = sizeof(unsigned long);
2028 	for (result_k = 0; sizeof(Bigint) - sizeof(unsigned long) + j < i;
2029 		j <<= 1) result_k++;
2030 	result = Balloc(result_k);
2031 	s = s0 = (char *)result;
2032 
2033 	if (ilim >= 0 && ilim <= Quick_max && try_quick) {
2034 
2035 		/* Try to get by with floating-point arithmetic. */
2036 
2037 		i = 0;
2038 		d2 = d;
2039 		k0 = k;
2040 		ilim0 = ilim;
2041 		ieps = 2; /* conservative */
2042 		if (k > 0) {
2043 			ds = tens[k&0xf];
2044 			j = k >> 4;
2045 			if (j & Bletch) {
2046 				/* prevent overflows */
2047 				j &= Bletch - 1;
2048 				d /= bigtens[n_bigtens-1];
2049 				ieps++;
2050 			}
2051 			for (; j; j >>= 1, i++)
2052 				if (j & 1) {
2053 					ieps++;
2054 					ds *= bigtens[i];
2055 				}
2056 			d /= ds;
2057 		} else if (j1 = -k) {
2058 			d *= tens[j1 & 0xf];
2059 			for (j = j1 >> 4; j; j >>= 1, i++)
2060 				if (j & 1) {
2061 					ieps++;
2062 					d *= bigtens[i];
2063 				}
2064 		}
2065 		if (k_check && d < 1. && ilim > 0) {
2066 			if (ilim1 <= 0)
2067 				goto fast_failed;
2068 			ilim = ilim1;
2069 			k--;
2070 			d *= 10.;
2071 			ieps++;
2072 		}
2073 		eps = ieps*d + 7.;
2074 		word0(eps) -= (P-1)*Exp_msk1;
2075 		if (ilim == 0) {
2076 			S = mhi = 0;
2077 			d -= 5.;
2078 			if (d > eps)
2079 				goto one_digit;
2080 			if (d < -eps)
2081 				goto no_digits;
2082 			goto fast_failed;
2083 		}
2084 #ifndef No_leftright
2085 		if (leftright) {
2086 			/* Use Steele & White method of only
2087 			 * generating digits needed.
2088 			 */
2089 			eps = 0.5/tens[ilim-1] - eps;
2090 			for (i = 0;;) {
2091 				L = d;
2092 				d -= L;
2093 				*s++ = '0' + (int)L;
2094 				if (d < eps)
2095 					goto ret1;
2096 				if (1. - d < eps)
2097 					goto bump_up;
2098 				if (++i >= ilim)
2099 					break;
2100 				eps *= 10.;
2101 				d *= 10.;
2102 			}
2103 		} else {
2104 #endif
2105 			/* Generate ilim digits, then fix them up. */
2106 			eps *= tens[ilim-1];
2107 			for (i = 1;; i++, d *= 10.) {
2108 				L = d;
2109 				d -= L;
2110 				*s++ = '0' + (int)L;
2111 				if (i == ilim) {
2112 					if (d > 0.5 + eps)
2113 						goto bump_up;
2114 					else if (d < 0.5 - eps) {
2115 						while (*--s == '0');
2116 						s++;
2117 						goto ret1;
2118 					}
2119 					break;
2120 				}
2121 			}
2122 #ifndef No_leftright
2123 		}
2124 #endif
2125  fast_failed:
2126 		s = s0;
2127 		d = d2;
2128 		k = k0;
2129 		ilim = ilim0;
2130 	}
2131 
2132 	/* Do we have a "small" integer? */
2133 
2134 	if (be >= 0 && k <= Int_max) {
2135 		/* Yes. */
2136 		ds = tens[k];
2137 		if (ndigits < 0 && ilim <= 0) {
2138 			S = mhi = 0;
2139 			if (ilim < 0 || d <= 5*ds)
2140 				goto no_digits;
2141 			goto one_digit;
2142 		}
2143 		for (i = 1;; i++) {
2144 			L = d / ds;
2145 			d -= L*ds;
2146 #ifdef Check_FLT_ROUNDS
2147 			/* If FLT_ROUNDS == 2, L will usually be high by 1 */
2148 			if (d < 0) {
2149 				L--;
2150 				d += ds;
2151 			}
2152 #endif
2153 			*s++ = '0' + (int)L;
2154 			if (i == ilim) {
2155 				d += d;
2156 				if (d > ds || d == ds && L & 1) {
2157  bump_up:
2158 					while (*--s == '9')
2159 						if (s == s0) {
2160 							k++;
2161 							*s = '0';
2162 							break;
2163 						}
2164 					++*s++;
2165 				}
2166 				break;
2167 			}
2168 			if (!(d *= 10.))
2169 				break;
2170 		}
2171 		goto ret1;
2172 	}
2173 
2174 	m2 = b2;
2175 	m5 = b5;
2176 	mhi = mlo = 0;
2177 	if (leftright) {
2178 		if (mode < 2) {
2179 			i =
2180 #ifndef Sudden_Underflow
2181 				denorm ? be + (Bias + (P-1) - 1 + 1) :
2182 #endif
2183 #ifdef IBM
2184 				1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3);
2185 #else
2186 				1 + P - bbits;
2187 #endif
2188 		} else {
2189 			j = ilim - 1;
2190 			if (m5 >= j)
2191 				m5 -= j;
2192 			else {
2193 				s5 += j -= m5;
2194 				b5 += j;
2195 				m5 = 0;
2196 			}
2197 			if ((i = ilim) < 0) {
2198 				m2 -= i;
2199 				i = 0;
2200 			}
2201 		}
2202 		b2 += i;
2203 		s2 += i;
2204 		mhi = i2b(1);
2205 	}
2206 	if (m2 > 0 && s2 > 0) {
2207 		i = m2 < s2 ? m2 : s2;
2208 		b2 -= i;
2209 		m2 -= i;
2210 		s2 -= i;
2211 	}
2212 	if (b5 > 0) {
2213 		if (leftright) {
2214 			if (m5 > 0) {
2215 				mhi = pow5mult(mhi, m5);
2216 				b1 = mult(mhi, b);
2217 				Bfree(b);
2218 				b = b1;
2219 				}
2220 			if (j = b5 - m5)
2221 				b = pow5mult(b, j);
2222 		} else
2223 			b = pow5mult(b, b5);
2224 	}
2225 	S = i2b(1);
2226 	if (s5 > 0)
2227 		S = pow5mult(S, s5);
2228 
2229 	/* Check for special case that d is a normalized power of 2. */
2230 
2231 	if (mode < 2) {
2232 		if (!word1(d) && !(word0(d) & Bndry_mask)
2233 #ifndef Sudden_Underflow
2234 		 && word0(d) & Exp_mask
2235 #endif
2236 				) {
2237 			/* The special case */
2238 			b2 += Log2P;
2239 			s2 += Log2P;
2240 			spec_case = 1;
2241 		} else
2242 			spec_case = 0;
2243 	}
2244 
2245 	/* Arrange for convenient computation of quotients:
2246 	 * shift left if necessary so divisor has 4 leading 0 bits.
2247 	 *
2248 	 * Perhaps we should just compute leading 28 bits of S once
2249 	 * and for all and pass them and a shift to quorem, so it
2250 	 * can do shifts and ors to compute the numerator for q.
2251 	 */
2252 #ifdef Pack_32
2253 	if (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f)
2254 		i = 32 - i;
2255 #else
2256 	if (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0xf)
2257 		i = 16 - i;
2258 #endif
2259 	if (i > 4) {
2260 		i -= 4;
2261 		b2 += i;
2262 		m2 += i;
2263 		s2 += i;
2264 	} else if (i < 4) {
2265 		i += 28;
2266 		b2 += i;
2267 		m2 += i;
2268 		s2 += i;
2269 	}
2270 	if (b2 > 0)
2271 		b = lshift(b, b2);
2272 	if (s2 > 0)
2273 		S = lshift(S, s2);
2274 	if (k_check) {
2275 		if (cmp(b,S) < 0) {
2276 			k--;
2277 			b = multadd(b, 10, 0);	/* we botched the k estimate */
2278 			if (leftright)
2279 				mhi = multadd(mhi, 10, 0);
2280 			ilim = ilim1;
2281 		}
2282 	}
2283 	if (ilim <= 0 && mode > 2) {
2284 		if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) {
2285 			/* no digits, fcvt style */
2286  no_digits:
2287 			k = -1 - ndigits;
2288 			goto ret;
2289 		}
2290  one_digit:
2291 		*s++ = '1';
2292 		k++;
2293 		goto ret;
2294 	}
2295 	if (leftright) {
2296 		if (m2 > 0)
2297 			mhi = lshift(mhi, m2);
2298 
2299 		/* Compute mlo -- check for special case
2300 		 * that d is a normalized power of 2.
2301 		 */
2302 
2303 		mlo = mhi;
2304 		if (spec_case) {
2305 			mhi = Balloc(mhi->k);
2306 			Bcopy(mhi, mlo);
2307 			mhi = lshift(mhi, Log2P);
2308 		}
2309 
2310 		for (i = 1;;i++) {
2311 			dig = quorem(b,S) + '0';
2312 			/* Do we yet have the shortest decimal string
2313 			 * that will round to d?
2314 			 */
2315 			j = cmp(b, mlo);
2316 			delta = diff(S, mhi);
2317 			j1 = delta->sign ? 1 : cmp(b, delta);
2318 			Bfree(delta);
2319 #ifndef ROUND_BIASED
2320 			if (j1 == 0 && !mode && !(word1(d) & 1)) {
2321 				if (dig == '9')
2322 					goto round_9_up;
2323 				if (j > 0)
2324 					dig++;
2325 				*s++ = dig;
2326 				goto ret;
2327 			}
2328 #endif
2329 			if (j < 0 || j == 0 && !mode
2330 #ifndef ROUND_BIASED
2331 							&& !(word1(d) & 1)
2332 #endif
2333 					) {
2334 				if (j1 > 0) {
2335 					b = lshift(b, 1);
2336 					j1 = cmp(b, S);
2337 					if ((j1 > 0 || j1 == 0 && dig & 1)
2338 					&& dig++ == '9')
2339 						goto round_9_up;
2340 				}
2341 				*s++ = dig;
2342 				goto ret;
2343 			}
2344 			if (j1 > 0) {
2345 				if (dig == '9') { /* possible if i == 1 */
2346  round_9_up:
2347 					*s++ = '9';
2348 					goto roundoff;
2349 				}
2350 				*s++ = dig + 1;
2351 				goto ret;
2352 			}
2353 			*s++ = dig;
2354 			if (i == ilim)
2355 				break;
2356 			b = multadd(b, 10, 0);
2357 			if (mlo == mhi)
2358 				mlo = mhi = multadd(mhi, 10, 0);
2359 			else {
2360 				mlo = multadd(mlo, 10, 0);
2361 				mhi = multadd(mhi, 10, 0);
2362 			}
2363 		}
2364 	} else
2365 		for (i = 1;; i++) {
2366 			*s++ = dig = quorem(b,S) + '0';
2367 			if (i >= ilim)
2368 				break;
2369 			b = multadd(b, 10, 0);
2370 		}
2371 
2372 	/* Round off last digit */
2373 
2374 	b = lshift(b, 1);
2375 	j = cmp(b, S);
2376 	if (j > 0 || j == 0 && dig & 1) {
2377  roundoff:
2378 		while (*--s == '9')
2379 			if (s == s0) {
2380 				k++;
2381 				*s++ = '1';
2382 				goto ret;
2383 			}
2384 		++*s++;
2385 	} else {
2386 		while (*--s == '0');
2387 		s++;
2388 	}
2389  ret:
2390 	Bfree(S);
2391 	if (mhi) {
2392 		if (mlo && mlo != mhi)
2393 			Bfree(mlo);
2394 		Bfree(mhi);
2395 	}
2396  ret1:
2397 	Bfree(b);
2398 	if (s == s0) {	/* don't return empty string */
2399 		*s++ = '0';
2400 		k = 0;
2401 	}
2402 	*s = 0;
2403 	*decpt = k + 1;
2404 	if (rve)
2405 		*rve = s;
2406 	return s0;
2407 	}
2408 #ifdef __cplusplus
2409 }
2410 #endif
2411