xref: /original-bsd/lib/libkvm/kvm_proc.c (revision 48611f03)
1 /*-
2  * Copyright (c) 1989, 1992 The Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software developed by the Computer Systems
6  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7  * BG 91-66 and contributed to Berkeley.
8  *
9  * %sccs.include.redist.c%
10  */
11 
12 #if defined(LIBC_SCCS) && !defined(lint)
13 static char sccsid[] = "@(#)kvm_proc.c	5.28 (Berkeley) 03/31/93";
14 #endif /* LIBC_SCCS and not lint */
15 
16 /*
17  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
18  * users of this code, so we've factored it out into a separate module.
19  * Thus, we keep this grunge out of the other kvm applications (i.e.,
20  * most other applications are interested only in open/close/read/nlist).
21  */
22 
23 #include <sys/param.h>
24 #include <sys/user.h>
25 #include <sys/proc.h>
26 #include <sys/exec.h>
27 #include <sys/stat.h>
28 #include <sys/ioctl.h>
29 #include <sys/tty.h>
30 #include <unistd.h>
31 #include <nlist.h>
32 #include <kvm.h>
33 
34 #include <vm/vm.h>
35 #include <vm/vm_param.h>
36 #include <vm/swap_pager.h>
37 
38 #include <sys/sysctl.h>
39 #include <sys/kinfo_proc.h>
40 
41 #include <limits.h>
42 #include <db.h>
43 #include <paths.h>
44 
45 #include "kvm_private.h"
46 
47 static char *
48 kvm_readswap(kd, p, va, cnt)
49 	kvm_t *kd;
50 	const struct proc *p;
51 	u_long va;
52 	u_long *cnt;
53 {
54 	register int ix;
55 	register u_long addr, head;
56 	register u_long offset, pagestart, sbstart, pgoff;
57 	register off_t seekpoint;
58 	struct vm_map_entry vme;
59 	struct vm_object vmo;
60 	struct pager_struct pager;
61 	struct swpager swap;
62 	struct swblock swb;
63 	static char page[NBPG];
64 
65 	head = (u_long)&p->p_vmspace->vm_map.header;
66 	/*
67 	 * Look through the address map for the memory object
68 	 * that corresponds to the given virtual address.
69 	 * The header just has the entire valid range.
70 	 */
71 	addr = head;
72 	while (1) {
73 		if (kvm_read(kd, addr, (char *)&vme, sizeof(vme)) !=
74 		    sizeof(vme))
75 			return (0);
76 
77 		if (va >= vme.start && va <= vme.end &&
78 		    vme.object.vm_object != 0)
79 			break;
80 
81 		addr = (u_long)vme.next;
82 		if (addr == 0 || addr == head)
83 			return (0);
84 	}
85 	/*
86 	 * We found the right object -- follow shadow links.
87 	 */
88 	offset = va - vme.start + vme.offset;
89 	addr = (u_long)vme.object.vm_object;
90 	while (1) {
91 		if (kvm_read(kd, addr, (char *)&vmo, sizeof(vmo)) !=
92 		    sizeof(vmo))
93 			return (0);
94 		addr = (u_long)vmo.shadow;
95 		if (addr == 0)
96 			break;
97 		offset += vmo.shadow_offset;
98 	}
99 	if (vmo.pager == 0)
100 		return (0);
101 
102 	offset += vmo.paging_offset;
103 	/*
104 	 * Read in the pager info and make sure it's a swap device.
105 	 */
106 	addr = (u_long)vmo.pager;
107 	if (kvm_read(kd, addr, (char *)&pager, sizeof(pager)) != sizeof(pager)
108 	    || pager.pg_type != PG_SWAP)
109 		return (0);
110 
111 	/*
112 	 * Read in the swap_pager private data, and compute the
113 	 * swap offset.
114 	 */
115 	addr = (u_long)pager.pg_data;
116 	if (kvm_read(kd, addr, (char *)&swap, sizeof(swap)) != sizeof(swap))
117 		return (0);
118 	ix = offset / dbtob(swap.sw_bsize);
119 	if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks)
120 		return (0);
121 
122 	addr = (u_long)&swap.sw_blocks[ix];
123 	if (kvm_read(kd, addr, (char *)&swb, sizeof(swb)) != sizeof(swb))
124 		return (0);
125 
126 	sbstart = (offset / dbtob(swap.sw_bsize)) * dbtob(swap.sw_bsize);
127 	sbstart /= NBPG;
128 	pagestart = offset / NBPG;
129 	pgoff = pagestart - sbstart;
130 
131 	if (swb.swb_block == 0 || (swb.swb_mask & (1 << pgoff)) == 0)
132 		return (0);
133 
134 	seekpoint = dbtob(swb.swb_block) + ctob(pgoff);
135 	errno = 0;
136 	if (lseek(kd->swfd, seekpoint, 0) == -1 && errno != 0)
137 		return (0);
138 	if (read(kd->swfd, page, sizeof(page)) != sizeof(page))
139 		return (0);
140 
141 	offset %= NBPG;
142 	*cnt = NBPG - offset;
143 	return (&page[offset]);
144 }
145 
146 #define KREAD(kd, addr, obj) \
147 	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
148 
149 /*
150  * Read proc's from memory file into buffer bp, which has space to hold
151  * at most maxcnt procs.
152  */
153 static int
154 kvm_proclist(kd, what, arg, p, bp, maxcnt)
155 	kvm_t *kd;
156 	int what, arg;
157 	struct proc *p;
158 	struct kinfo_proc *bp;
159 	int maxcnt;
160 {
161 	register int cnt = 0;
162 	struct eproc eproc;
163 	struct pgrp pgrp;
164 	struct session sess;
165 	struct tty tty;
166 	struct proc proc;
167 
168 	for (; cnt < maxcnt && p != 0; p = proc.p_nxt) {
169 		if (KREAD(kd, (u_long)p, &proc)) {
170 			_kvm_err(kd, kd->program, "can't read proc at %x", p);
171 			return (-1);
172 		}
173 		if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
174 			KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
175 			      &eproc.e_ucred);
176 
177 		switch(what) {
178 
179 		case KERN_PROC_PID:
180 			if (proc.p_pid != (pid_t)arg)
181 				continue;
182 			break;
183 
184 		case KERN_PROC_UID:
185 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
186 				continue;
187 			break;
188 
189 		case KERN_PROC_RUID:
190 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
191 				continue;
192 			break;
193 		}
194 		/*
195 		 * We're going to add another proc to the set.  If this
196 		 * will overflow the buffer, assume the reason is because
197 		 * nprocs (or the proc list) is corrupt and declare an error.
198 		 */
199 		if (cnt >= maxcnt) {
200 			_kvm_err(kd, kd->program, "nprocs corrupt");
201 			return (-1);
202 		}
203 		/*
204 		 * gather eproc
205 		 */
206 		eproc.e_paddr = p;
207 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
208 			_kvm_err(kd, kd->program, "can't read pgrp at %x",
209 				 proc.p_pgrp);
210 			return (-1);
211 		}
212 		eproc.e_sess = pgrp.pg_session;
213 		eproc.e_pgid = pgrp.pg_id;
214 		eproc.e_jobc = pgrp.pg_jobc;
215 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
216 			_kvm_err(kd, kd->program, "can't read session at %x",
217 				pgrp.pg_session);
218 			return (-1);
219 		}
220 		if ((proc.p_flag & SCTTY) && sess.s_ttyp != NULL) {
221 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
222 				_kvm_err(kd, kd->program,
223 					 "can't read tty at %x", sess.s_ttyp);
224 				return (-1);
225 			}
226 			eproc.e_tdev = tty.t_dev;
227 			eproc.e_tsess = tty.t_session;
228 			if (tty.t_pgrp != NULL) {
229 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
230 					_kvm_err(kd, kd->program,
231 						 "can't read tpgrp at &x",
232 						tty.t_pgrp);
233 					return (-1);
234 				}
235 				eproc.e_tpgid = pgrp.pg_id;
236 			} else
237 				eproc.e_tpgid = -1;
238 		} else
239 			eproc.e_tdev = NODEV;
240 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
241 		if (sess.s_leader == p)
242 			eproc.e_flag |= EPROC_SLEADER;
243 		if (proc.p_wmesg)
244 			(void)kvm_read(kd, (u_long)proc.p_wmesg,
245 			    eproc.e_wmesg, WMESGLEN);
246 
247 #ifdef sparc
248 		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize,
249 		    (char *)&eproc.e_vm.vm_rssize,
250 		    sizeof(eproc.e_vm.vm_rssize));
251 		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize,
252 		    (char *)&eproc.e_vm.vm_tsize,
253 		    3 * sizeof(eproc.e_vm.vm_rssize));	/* XXX */
254 #else
255 		(void)kvm_read(kd, (u_long)proc.p_vmspace,
256 		    (char *)&eproc.e_vm, sizeof(eproc.e_vm));
257 #endif
258 		eproc.e_xsize = eproc.e_xrssize = 0;
259 		eproc.e_xccount = eproc.e_xswrss = 0;
260 
261 		switch (what) {
262 
263 		case KERN_PROC_PGRP:
264 			if (eproc.e_pgid != (pid_t)arg)
265 				continue;
266 			break;
267 
268 		case KERN_PROC_TTY:
269 			if ((proc.p_flag&SCTTY) == 0 ||
270 			     eproc.e_tdev != (dev_t)arg)
271 				continue;
272 			break;
273 		}
274 		bcopy((char *)&proc, (char *)&bp->kp_proc, sizeof(proc));
275 		bcopy((char *)&eproc, (char *)&bp->kp_eproc, sizeof(eproc));
276 		++bp;
277 		++cnt;
278 	}
279 	return (cnt);
280 }
281 
282 /*
283  * Build proc info array by reading in proc list from a crash dump.
284  * Return number of procs read.  maxcnt is the max we will read.
285  */
286 static int
287 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
288 	kvm_t *kd;
289 	int what, arg;
290 	u_long a_allproc;
291 	u_long a_zombproc;
292 	int maxcnt;
293 {
294 	register struct kinfo_proc *bp = kd->procbase;
295 	register int acnt, zcnt;
296 	struct proc *p;
297 
298 	if (KREAD(kd, a_allproc, &p)) {
299 		_kvm_err(kd, kd->program, "cannot read allproc");
300 		return (-1);
301 	}
302 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
303 	if (acnt < 0)
304 		return (acnt);
305 
306 	if (KREAD(kd, a_zombproc, &p)) {
307 		_kvm_err(kd, kd->program, "cannot read zombproc");
308 		return (-1);
309 	}
310 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
311 	if (zcnt < 0)
312 		zcnt = 0;
313 
314 	return (acnt + zcnt);
315 }
316 
317 struct kinfo_proc *
318 kvm_getprocs(kd, op, arg, cnt)
319 	kvm_t *kd;
320 	int op, arg;
321 	int *cnt;
322 {
323 	int mib[4], size, st, nprocs;
324 
325 	if (kd->procbase != 0) {
326 		free((void *)kd->procbase);
327 		/*
328 		 * Clear this pointer in case this call fails.  Otherwise,
329 		 * kvm_close() will free it again.
330 		 */
331 		kd->procbase = 0;
332 	}
333 	if (ISALIVE(kd)) {
334 		size = 0;
335 		mib[0] = CTL_KERN;
336 		mib[1] = KERN_PROC;
337 		mib[2] = op;
338 		mib[3] = arg;
339 		st = sysctl(mib, 4, NULL, &size, NULL, 0);
340 		if (st == -1) {
341 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
342 			return (0);
343 		}
344 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
345 		if (kd->procbase == 0)
346 			return (0);
347 		st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
348 		if (st == -1) {
349 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
350 			return (0);
351 		}
352 		if (size % sizeof(struct kinfo_proc) != 0) {
353 			_kvm_err(kd, kd->program,
354 				"proc size mismatch (%d total, %d chunks)",
355 				size, sizeof(struct kinfo_proc));
356 			return (0);
357 		}
358 		nprocs = size / sizeof(struct kinfo_proc);
359 	} else {
360 		struct nlist nl[4], *p;
361 
362 		nl[0].n_name = "_nprocs";
363 		nl[1].n_name = "_allproc";
364 		nl[2].n_name = "_zombproc";
365 		nl[3].n_name = 0;
366 
367 		if (kvm_nlist(kd, nl) != 0) {
368 			for (p = nl; p->n_type != 0; ++p)
369 				;
370 			_kvm_err(kd, kd->program,
371 				 "%s: no such symbol", p->n_name);
372 			return (0);
373 		}
374 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
375 			_kvm_err(kd, kd->program, "can't read nprocs");
376 			return (0);
377 		}
378 		size = nprocs * sizeof(struct kinfo_proc);
379 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
380 		if (kd->procbase == 0)
381 			return (0);
382 
383 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
384 				      nl[2].n_value, nprocs);
385 #ifdef notdef
386 		size = nprocs * sizeof(struct kinfo_proc);
387 		(void)realloc(kd->procbase, size);
388 #endif
389 	}
390 	*cnt = nprocs;
391 	return (kd->procbase);
392 }
393 
394 void
395 _kvm_freeprocs(kd)
396 	kvm_t *kd;
397 {
398 	if (kd->procbase) {
399 		free(kd->procbase);
400 		kd->procbase = 0;
401 	}
402 }
403 
404 void *
405 _kvm_realloc(kd, p, n)
406 	kvm_t *kd;
407 	void *p;
408 	size_t n;
409 {
410 	void *np = (void *)realloc(p, n);
411 
412 	if (np == 0)
413 		_kvm_err(kd, kd->program, "out of memory");
414 	return (np);
415 }
416 
417 #ifndef MAX
418 #define MAX(a, b) ((a) > (b) ? (a) : (b))
419 #endif
420 
421 /*
422  * Read in an argument vector from the user address space of process p.
423  * addr if the user-space base address of narg null-terminated contiguous
424  * strings.  This is used to read in both the command arguments and
425  * environment strings.  Read at most maxcnt characters of strings.
426  */
427 static char **
428 kvm_argv(kd, p, addr, narg, maxcnt)
429 	kvm_t *kd;
430 	struct proc *p;
431 	register u_long addr;
432 	register int narg;
433 	register int maxcnt;
434 {
435 	register char *cp;
436 	register int len, cc;
437 	register char **argv;
438 
439 	/*
440 	 * Check that there aren't an unreasonable number of agruments,
441 	 * and that the address is in user space.
442 	 */
443 	if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
444 		return (0);
445 
446 	if (kd->argv == 0) {
447 		/*
448 		 * Try to avoid reallocs.
449 		 */
450 		kd->argc = MAX(narg + 1, 32);
451 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
452 						sizeof(*kd->argv));
453 		if (kd->argv == 0)
454 			return (0);
455 	} else if (narg + 1 > kd->argc) {
456 		kd->argc = MAX(2 * kd->argc, narg + 1);
457 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
458 						sizeof(*kd->argv));
459 		if (kd->argv == 0)
460 			return (0);
461 	}
462 	if (kd->argspc == 0) {
463 		kd->argspc = (char *)_kvm_malloc(kd, NBPG);
464 		if (kd->argspc == 0)
465 			return (0);
466 		kd->arglen = NBPG;
467 	}
468 	cp = kd->argspc;
469 	argv = kd->argv;
470 	*argv = cp;
471 	len = 0;
472 	/*
473 	 * Loop over pages, filling in the argument vector.
474 	 */
475 	while (addr < VM_MAXUSER_ADDRESS) {
476 		cc = NBPG - (addr & PGOFSET);
477 		if (maxcnt > 0 && cc > maxcnt - len)
478 			cc = maxcnt - len;;
479 		if (len + cc > kd->arglen) {
480 			register int off;
481 			register char **pp;
482 			register char *op = kd->argspc;
483 
484 			kd->arglen *= 2;
485 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
486 							  kd->arglen);
487 			if (kd->argspc == 0)
488 				return (0);
489 			cp = &kd->argspc[len];
490 			/*
491 			 * Adjust argv pointers in case realloc moved
492 			 * the string space.
493 			 */
494 			off = kd->argspc - op;
495 			for (pp = kd->argv; pp < argv; ++pp)
496 				*pp += off;
497 		}
498 		if (kvm_uread(kd, p, addr, cp, cc) != cc)
499 			/* XXX */
500 			return (0);
501 		len += cc;
502 		addr += cc;
503 
504 		if (maxcnt == 0 && len > 16 * NBPG)
505 			/* sanity */
506 			return (0);
507 
508 		while (--cc >= 0) {
509 			if (*cp++ == 0) {
510 				if (--narg <= 0) {
511 					*++argv = 0;
512 					return (kd->argv);
513 				} else
514 					*++argv = cp;
515 			}
516 		}
517 		if (maxcnt > 0 && len >= maxcnt) {
518 			/*
519 			 * We're stopping prematurely.  Terminate the
520 			 * argv and current string.
521 			 */
522 			*++argv = 0;
523 			*cp = 0;
524 			return (kd->argv);
525 		}
526 	}
527 }
528 
529 static void
530 ps_str_a(p, addr, n)
531 	struct ps_strings *p;
532 	u_long *addr;
533 	int *n;
534 {
535 	*addr = (u_long)p->ps_argvstr;
536 	*n = p->ps_nargvstr;
537 }
538 
539 static void
540 ps_str_e(p, addr, n)
541 	struct ps_strings *p;
542 	u_long *addr;
543 	int *n;
544 {
545 	*addr = (u_long)p->ps_envstr;
546 	*n = p->ps_nenvstr;
547 }
548 
549 /*
550  * Determine if the proc indicated by p is still active.
551  * This test is not 100% foolproof in theory, but chances of
552  * being wrong are very low.
553  */
554 static int
555 proc_verify(kd, kernp, p)
556 	kvm_t *kd;
557 	u_long kernp;
558 	const struct proc *p;
559 {
560 	struct proc kernproc;
561 
562 	/*
563 	 * Just read in the whole proc.  It's not that big relative
564 	 * to the cost of the read system call.
565 	 */
566 	if (kvm_read(kd, kernp, (char *)&kernproc, sizeof(kernproc)) !=
567 	    sizeof(kernproc))
568 		return (0);
569 	return (p->p_pid == kernproc.p_pid &&
570 		(kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
571 }
572 
573 static char **
574 kvm_doargv(kd, kp, nchr, info)
575 	kvm_t *kd;
576 	const struct kinfo_proc *kp;
577 	int nchr;
578 	int (*info)(struct ps_strings*, u_long *, int *);
579 {
580 	register const struct proc *p = &kp->kp_proc;
581 	register char **ap;
582 	u_long addr;
583 	int cnt;
584 	struct ps_strings arginfo;
585 
586 	/*
587 	 * Pointers are stored at the top of the user stack.
588 	 */
589 	if (p->p_stat == SZOMB ||
590 	    kvm_uread(kd, p, USRSTACK - sizeof(arginfo), (char *)&arginfo,
591 		      sizeof(arginfo)) != sizeof(arginfo))
592 		return (0);
593 
594 	(*info)(&arginfo, &addr, &cnt);
595 	ap = kvm_argv(kd, p, addr, cnt, nchr);
596 	/*
597 	 * For live kernels, make sure this process didn't go away.
598 	 */
599 	if (ap != 0 && ISALIVE(kd) &&
600 	    !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
601 		ap = 0;
602 	return (ap);
603 }
604 
605 /*
606  * Get the command args.  This code is now machine independent.
607  */
608 char **
609 kvm_getargv(kd, kp, nchr)
610 	kvm_t *kd;
611 	const struct kinfo_proc *kp;
612 	int nchr;
613 {
614 	return (kvm_doargv(kd, kp, nchr, ps_str_a));
615 }
616 
617 char **
618 kvm_getenvv(kd, kp, nchr)
619 	kvm_t *kd;
620 	const struct kinfo_proc *kp;
621 	int nchr;
622 {
623 	return (kvm_doargv(kd, kp, nchr, ps_str_e));
624 }
625 
626 /*
627  * Read from user space.  The user context is given by p.
628  */
629 ssize_t
630 kvm_uread(kd, p, uva, buf, len)
631 	kvm_t *kd;
632 	register struct proc *p;
633 	register u_long uva;
634 	register char *buf;
635 	register size_t len;
636 {
637 	register char *cp;
638 
639 	cp = buf;
640 	while (len > 0) {
641 		u_long pa;
642 		register int cc;
643 
644 		cc = _kvm_uvatop(kd, p, uva, &pa);
645 		if (cc > 0) {
646 			if (cc > len)
647 				cc = len;
648 			errno = 0;
649 			if (lseek(kd->pmfd, (off_t)pa, 0) == -1 && errno != 0) {
650 				_kvm_err(kd, 0, "invalid address (%x)", uva);
651 				break;
652 			}
653 			cc = read(kd->pmfd, cp, cc);
654 			if (cc < 0) {
655 				_kvm_syserr(kd, 0, _PATH_MEM);
656 				break;
657 			} else if (cc < len) {
658 				_kvm_err(kd, kd->program, "short read");
659 				break;
660 			}
661 		} else if (ISALIVE(kd)) {
662 			/* try swap */
663 			register char *dp;
664 			int cnt;
665 
666 			dp = kvm_readswap(kd, p, uva, &cnt);
667 			if (dp == 0) {
668 				_kvm_err(kd, 0, "invalid address (%x)", uva);
669 				return (0);
670 			}
671 			cc = MIN(cnt, len);
672 			bcopy(dp, cp, cc);
673 		} else
674 			break;
675 		cp += cc;
676 		uva += cc;
677 		len -= cc;
678 	}
679 	return (ssize_t)(cp - buf);
680 }
681