xref: /original-bsd/lib/libm/common_source/erf.c (revision c3e32dec)
1 /*-
2  * Copyright (c) 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * %sccs.include.redist.c%
6  */
7 
8 #ifndef lint
9 static char sccsid[] = "@(#)erf.c	8.1 (Berkeley) 06/04/93";
10 #endif /* not lint */
11 
12 /* Modified Nov 30, 1992 P. McILROY:
13  *	Replaced expansions for x >= 1.25 (error 1.7ulp vs ~6ulp)
14  * Replaced even+odd with direct calculation for x < .84375,
15  * to avoid destructive cancellation.
16  *
17  * Performance of erfc(x):
18  * In 300000 trials in the range [.83, .84375] the
19  * maximum observed error was 3.6ulp.
20  *
21  * In [.84735,1.25] the maximum observed error was <2.5ulp in
22  * 100000 runs in the range [1.2, 1.25].
23  *
24  * In [1.25,26] (Not including subnormal results)
25  * the error is < 1.7ulp.
26  */
27 
28 /* double erf(double x)
29  * double erfc(double x)
30  *			     x
31  *		      2      |\
32  *     erf(x)  =  ---------  | exp(-t*t)dt
33  *		   sqrt(pi) \|
34  *			     0
35  *
36  *     erfc(x) =  1-erf(x)
37  *
38  * Method:
39  *      1. Reduce x to |x| by erf(-x) = -erf(x)
40  *	2. For x in [0, 0.84375]
41  *	    erf(x)  = x + x*P(x^2)
42  *          erfc(x) = 1 - erf(x)           if x<=0.25
43  *                  = 0.5 + ((0.5-x)-x*P)  if x in [0.25,0.84375]
44  *	   where
45  *			2		 2	  4		  20
46  *              P =  P(x ) = (p0 + p1 * x + p2 * x + ... + p10 * x  )
47  * 	   is an approximation to (erf(x)-x)/x with precision
48  *
49  *						 -56.45
50  *			| P - (erf(x)-x)/x | <= 2
51  *
52  *
53  *	   Remark. The formula is derived by noting
54  *          erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
55  *	   and that
56  *          2/sqrt(pi) = 1.128379167095512573896158903121545171688
57  *	   is close to one. The interval is chosen because the fixed
58  *	   point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
59  *	   near 0.6174), and by some experiment, 0.84375 is chosen to
60  * 	   guarantee the error is less than one ulp for erf.
61  *
62  *      3. For x in [0.84375,1.25], let s = x - 1, and
63  *         c = 0.84506291151 rounded to single (24 bits)
64  *         	erf(x)  = c  + P1(s)/Q1(s)
65  *         	erfc(x) = (1-c)  - P1(s)/Q1(s)
66  *         	|P1/Q1 - (erf(x)-c)| <= 2**-59.06
67  *	   Remark: here we use the taylor series expansion at x=1.
68  *		erf(1+s) = erf(1) + s*Poly(s)
69  *			 = 0.845.. + P1(s)/Q1(s)
70  *	   That is, we use rational approximation to approximate
71  *			erf(1+s) - (c = (single)0.84506291151)
72  *	   Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
73  *	   where
74  *		P1(s) = degree 6 poly in s
75  *		Q1(s) = degree 6 poly in s
76  *
77  *	4. For x in [1.25, 2]; [2, 4]
78  *         	erf(x)  = 1.0 - tiny
79  *		erfc(x)	= (1/x)exp(-x*x-(.5*log(pi) -.5z + R(z)/S(z))
80  *
81  *	Where z = 1/(x*x), R is degree 9, and S is degree 3;
82  *
83  *      5. For x in [4,28]
84  *         	erf(x)  = 1.0 - tiny
85  *		erfc(x)	= (1/x)exp(-x*x-(.5*log(pi)+eps + zP(z))
86  *
87  *	Where P is degree 14 polynomial in 1/(x*x).
88  *
89  *      Notes:
90  *	   Here 4 and 5 make use of the asymptotic series
91  *			  exp(-x*x)
92  *		erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) );
93  *			  x*sqrt(pi)
94  *
95  *		where for z = 1/(x*x)
96  *		P(z) ~ z/2*(-1 + z*3/2*(1 + z*5/2*(-1 + z*7/2*(1 +...))))
97  *
98  *	   Thus we use rational approximation to approximate
99  *              erfc*x*exp(x*x) ~ 1/sqrt(pi);
100  *
101  *		The error bound for the target function, G(z) for
102  *		the interval
103  *		[4, 28]:
104  * 		|eps + 1/(z)P(z) - G(z)| < 2**(-56.61)
105  *		for [2, 4]:
106  *      	|R(z)/S(z) - G(z)|	 < 2**(-58.24)
107  *		for [1.25, 2]:
108  *		|R(z)/S(z) - G(z)|	 < 2**(-58.12)
109  *
110  *      6. For inf > x >= 28
111  *         	erf(x)  = 1 - tiny  (raise inexact)
112  *         	erfc(x) = tiny*tiny (raise underflow)
113  *
114  *      7. Special cases:
115  *         	erf(0)  = 0, erf(inf)  = 1, erf(-inf) = -1,
116  *         	erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
117  *	   	erfc/erf(NaN) is NaN
118  */
119 
120 #if defined(vax) || defined(tahoe)
121 #define _IEEE	0
122 #define TRUNC(x) (double) (float) (x)
123 #else
124 #define _IEEE	1
125 #define TRUNC(x) *(((int *) &x) + 1) &= 0xf8000000
126 #define infnan(x) 0.0
127 #endif
128 
129 #ifdef _IEEE_LIBM
130 /*
131  * redefining "___function" to "function" in _IEEE_LIBM mode
132  */
133 #include "ieee_libm.h"
134 #endif
135 
136 static double
137 tiny	    = 1e-300,
138 half	    = 0.5,
139 one	    = 1.0,
140 two	    = 2.0,
141 c 	    = 8.45062911510467529297e-01, /* (float)0.84506291151 */
142 /*
143  * Coefficients for approximation to erf in [0,0.84375]
144  */
145 p0t8 = 1.02703333676410051049867154944018394163280,
146 p0 =   1.283791670955125638123339436800229927041e-0001,
147 p1 =  -3.761263890318340796574473028946097022260e-0001,
148 p2 =   1.128379167093567004871858633779992337238e-0001,
149 p3 =  -2.686617064084433642889526516177508374437e-0002,
150 p4 =   5.223977576966219409445780927846432273191e-0003,
151 p5 =  -8.548323822001639515038738961618255438422e-0004,
152 p6 =   1.205520092530505090384383082516403772317e-0004,
153 p7 =  -1.492214100762529635365672665955239554276e-0005,
154 p8 =   1.640186161764254363152286358441771740838e-0006,
155 p9 =  -1.571599331700515057841960987689515895479e-0007,
156 p10=   1.073087585213621540635426191486561494058e-0008;
157 /*
158  * Coefficients for approximation to erf in [0.84375,1.25]
159  */
160 static double
161 pa0 =  -2.362118560752659485957248365514511540287e-0003,
162 pa1 =   4.148561186837483359654781492060070469522e-0001,
163 pa2 =  -3.722078760357013107593507594535478633044e-0001,
164 pa3 =   3.183466199011617316853636418691420262160e-0001,
165 pa4 =  -1.108946942823966771253985510891237782544e-0001,
166 pa5 =   3.547830432561823343969797140537411825179e-0002,
167 pa6 =  -2.166375594868790886906539848893221184820e-0003,
168 qa1 =   1.064208804008442270765369280952419863524e-0001,
169 qa2 =   5.403979177021710663441167681878575087235e-0001,
170 qa3 =   7.182865441419627066207655332170665812023e-0002,
171 qa4 =   1.261712198087616469108438860983447773726e-0001,
172 qa5 =   1.363708391202905087876983523620537833157e-0002,
173 qa6 =   1.198449984679910764099772682882189711364e-0002;
174 /*
175  * log(sqrt(pi)) for large x expansions.
176  * The tail (lsqrtPI_lo) is included in the rational
177  * approximations.
178 */
179 static double
180    lsqrtPI_hi = .5723649429247000819387380943226;
181 /*
182  * lsqrtPI_lo = .000000000000000005132975581353913;
183  *
184  * Coefficients for approximation to erfc in [2, 4]
185 */
186 static double
187 rb0  =	-1.5306508387410807582e-010,	/* includes lsqrtPI_lo */
188 rb1  =	 2.15592846101742183841910806188e-008,
189 rb2  =	 6.24998557732436510470108714799e-001,
190 rb3  =	 8.24849222231141787631258921465e+000,
191 rb4  =	 2.63974967372233173534823436057e+001,
192 rb5  =	 9.86383092541570505318304640241e+000,
193 rb6  =	-7.28024154841991322228977878694e+000,
194 rb7  =	 5.96303287280680116566600190708e+000,
195 rb8  =	-4.40070358507372993983608466806e+000,
196 rb9  =	 2.39923700182518073731330332521e+000,
197 rb10 =	-6.89257464785841156285073338950e-001,
198 sb1  =	 1.56641558965626774835300238919e+001,
199 sb2  =	 7.20522741000949622502957936376e+001,
200 sb3  =	 9.60121069770492994166488642804e+001;
201 /*
202  * Coefficients for approximation to erfc in [1.25, 2]
203 */
204 static double
205 rc0  =	-2.47925334685189288817e-007,	/* includes lsqrtPI_lo */
206 rc1  =	 1.28735722546372485255126993930e-005,
207 rc2  =	 6.24664954087883916855616917019e-001,
208 rc3  =	 4.69798884785807402408863708843e+000,
209 rc4  =	 7.61618295853929705430118701770e+000,
210 rc5  =	 9.15640208659364240872946538730e-001,
211 rc6  =	-3.59753040425048631334448145935e-001,
212 rc7  =	 1.42862267989304403403849619281e-001,
213 rc8  =	-4.74392758811439801958087514322e-002,
214 rc9  =	 1.09964787987580810135757047874e-002,
215 rc10 =	-1.28856240494889325194638463046e-003,
216 sc1  =	 9.97395106984001955652274773456e+000,
217 sc2  =	 2.80952153365721279953959310660e+001,
218 sc3  =	 2.19826478142545234106819407316e+001;
219 /*
220  * Coefficients for approximation to  erfc in [4,28]
221  */
222 static double
223 rd0  =	-2.1491361969012978677e-016,	/* includes lsqrtPI_lo */
224 rd1  =	-4.99999999999640086151350330820e-001,
225 rd2  =	 6.24999999772906433825880867516e-001,
226 rd3  =	-1.54166659428052432723177389562e+000,
227 rd4  =	 5.51561147405411844601985649206e+000,
228 rd5  =	-2.55046307982949826964613748714e+001,
229 rd6  =	 1.43631424382843846387913799845e+002,
230 rd7  =	-9.45789244999420134263345971704e+002,
231 rd8  =	 6.94834146607051206956384703517e+003,
232 rd9  =	-5.27176414235983393155038356781e+004,
233 rd10 =	 3.68530281128672766499221324921e+005,
234 rd11 =	-2.06466642800404317677021026611e+006,
235 rd12 =	 7.78293889471135381609201431274e+006,
236 rd13 =	-1.42821001129434127360582351685e+007;
237 
238 double erf(x)
239 	double x;
240 {
241 	double R,S,P,Q,ax,s,y,z,r,fabs(),exp();
242 	if(!finite(x)) {		/* erf(nan)=nan */
243 	    if (isnan(x))
244 		return(x);
245 	    return (x > 0 ? one : -one); /* erf(+/-inf)= +/-1 */
246 	}
247 	if ((ax = x) < 0)
248 		ax = - ax;
249 	if (ax < .84375) {
250 	    if (ax < 3.7e-09) {
251 		if (ax < 1.0e-308)
252 		    return 0.125*(8.0*x+p0t8*x);  /*avoid underflow */
253 		return x + p0*x;
254 	    }
255 	    y = x*x;
256 	    r = y*(p1+y*(p2+y*(p3+y*(p4+y*(p5+
257 			y*(p6+y*(p7+y*(p8+y*(p9+y*p10)))))))));
258 	    return x + x*(p0+r);
259 	}
260 	if (ax < 1.25) {		/* 0.84375 <= |x| < 1.25 */
261 	    s = fabs(x)-one;
262 	    P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
263 	    Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
264 	    if (x>=0)
265 		return (c + P/Q);
266 	    else
267 		return (-c - P/Q);
268 	}
269 	if (ax >= 6.0) {		/* inf>|x|>=6 */
270 	    if (x >= 0.0)
271 		return (one-tiny);
272 	    else
273 		return (tiny-one);
274 	}
275     /* 1.25 <= |x| < 6 */
276 	z = -ax*ax;
277 	s = -one/z;
278 	if (ax < 2.0) {
279 		R = rc0+s*(rc1+s*(rc2+s*(rc3+s*(rc4+s*(rc5+
280 			s*(rc6+s*(rc7+s*(rc8+s*(rc9+s*rc10)))))))));
281 		S = one+s*(sc1+s*(sc2+s*sc3));
282 	} else {
283 		R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+
284 			s*(rb6+s*(rb7+s*(rb8+s*(rb9+s*rb10)))))))));
285 		S = one+s*(sb1+s*(sb2+s*sb3));
286 	}
287 	y = (R/S -.5*s) - lsqrtPI_hi;
288 	z += y;
289 	z = exp(z)/ax;
290 	if (x >= 0)
291 		return (one-z);
292 	else
293 		return (z-one);
294 }
295 
296 double erfc(x)
297 	double x;
298 {
299 	double R,S,P,Q,s,ax,y,z,r,fabs(),__exp__D();
300 	if (!finite(x)) {
301 		if (isnan(x))		/* erfc(NaN) = NaN */
302 			return(x);
303 		else if (x > 0)		/* erfc(+-inf)=0,2 */
304 			return 0.0;
305 		else
306 			return 2.0;
307 	}
308 	if ((ax = x) < 0)
309 		ax = -ax;
310 	if (ax < .84375) {			/* |x|<0.84375 */
311 	    if (ax < 1.38777878078144568e-17)  	/* |x|<2**-56 */
312 		return one-x;
313 	    y = x*x;
314 	    r = y*(p1+y*(p2+y*(p3+y*(p4+y*(p5+
315 			y*(p6+y*(p7+y*(p8+y*(p9+y*p10)))))))));
316 	    if (ax < .0625) {  	/* |x|<2**-4 */
317 		return (one-(x+x*(p0+r)));
318 	    } else {
319 		r = x*(p0+r);
320 		r += (x-half);
321 	        return (half - r);
322 	    }
323 	}
324 	if (ax < 1.25) {		/* 0.84375 <= |x| < 1.25 */
325 	    s = ax-one;
326 	    P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
327 	    Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
328 	    if (x>=0) {
329 	        z  = one-c; return z - P/Q;
330 	    } else {
331 		z = c+P/Q; return one+z;
332 	    }
333 	}
334 	if (ax >= 28)	/* Out of range */
335  		if (x>0)
336 			return (tiny*tiny);
337 		else
338 			return (two-tiny);
339 	z = ax;
340 	TRUNC(z);
341 	y = z - ax; y *= (ax+z);
342 	z *= -z;			/* Here z + y = -x^2 */
343 		s = one/(-z-y);		/* 1/(x*x) */
344 	if (ax >= 4) {			/* 6 <= ax */
345 		R = s*(rd1+s*(rd2+s*(rd3+s*(rd4+s*(rd5+
346 			s*(rd6+s*(rd7+s*(rd8+s*(rd9+s*(rd10
347 			+s*(rd11+s*(rd12+s*rd13))))))))))));
348 		y += rd0;
349 	} else if (ax >= 2) {
350 		R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+
351 			s*(rb6+s*(rb7+s*(rb8+s*(rb9+s*rb10)))))))));
352 		S = one+s*(sb1+s*(sb2+s*sb3));
353 		y += R/S;
354 		R = -.5*s;
355 	} else {
356 		R = rc0+s*(rc1+s*(rc2+s*(rc3+s*(rc4+s*(rc5+
357 			s*(rc6+s*(rc7+s*(rc8+s*(rc9+s*rc10)))))))));
358 		S = one+s*(sc1+s*(sc2+s*sc3));
359 		y += R/S;
360 		R = -.5*s;
361 	}
362 	/* return exp(-x^2 - lsqrtPI_hi + R + y)/x;	*/
363 	s = ((R + y) - lsqrtPI_hi) + z;
364 	y = (((z-s) - lsqrtPI_hi) + R) + y;
365 	r = __exp__D(s, y)/x;
366 	if (x>0)
367 		return r;
368 	else
369 		return two-r;
370 }
371