xref: /original-bsd/lib/libm/common_source/exp.c (revision 91abda3c)
1 /*
2  * Copyright (c) 1985 Regents of the University of California.
3  * All rights reserved.
4  *
5  * %sccs.include.redist.c%
6  *
7  * All recipients should regard themselves as participants in an ongoing
8  * research project and hence should feel obligated to report their
9  * experiences (good or bad) with these elementary function codes, using
10  * the sendbug(8) program, to the authors.
11  */
12 
13 #ifndef lint
14 static char sccsid[] = "@(#)exp.c	5.5 (Berkeley) 06/01/90";
15 #endif /* not lint */
16 
17 /* EXP(X)
18  * RETURN THE EXPONENTIAL OF X
19  * DOUBLE PRECISION (IEEE 53 bits, VAX D FORMAT 56 BITS)
20  * CODED IN C BY K.C. NG, 1/19/85;
21  * REVISED BY K.C. NG on 2/6/85, 2/15/85, 3/7/85, 3/24/85, 4/16/85, 6/14/86.
22  *
23  * Required system supported functions:
24  *	scalb(x,n)
25  *	copysign(x,y)
26  *	finite(x)
27  *
28  * Method:
29  *	1. Argument Reduction: given the input x, find r and integer k such
30  *	   that
31  *	                   x = k*ln2 + r,  |r| <= 0.5*ln2 .
32  *	   r will be represented as r := z+c for better accuracy.
33  *
34  *	2. Compute exp(r) by
35  *
36  *		exp(r) = 1 + r + r*R1/(2-R1),
37  *	   where
38  *		R1 = x - x^2*(p1+x^2*(p2+x^2*(p3+x^2*(p4+p5*x^2)))).
39  *
40  *	3. exp(x) = 2^k * exp(r) .
41  *
42  * Special cases:
43  *	exp(INF) is INF, exp(NaN) is NaN;
44  *	exp(-INF)=  0;
45  *	for finite argument, only exp(0)=1 is exact.
46  *
47  * Accuracy:
48  *	exp(x) returns the exponential of x nearly rounded. In a test run
49  *	with 1,156,000 random arguments on a VAX, the maximum observed
50  *	error was 0.869 ulps (units in the last place).
51  *
52  * Constants:
53  * The hexadecimal values are the intended ones for the following constants.
54  * The decimal values may be used, provided that the compiler will convert
55  * from decimal to binary accurately enough to produce the hexadecimal values
56  * shown.
57  */
58 
59 #include "mathimpl.h"
60 
61 vc(ln2hi,  6.9314718055829871446E-1  ,7217,4031,0000,f7d0,   0, .B17217F7D00000)
62 vc(ln2lo,  1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC)
63 vc(lnhuge, 9.4961163736712506989E1   ,ec1d,43bd,9010,a73e,   7, .BDEC1DA73E9010)
64 vc(lntiny,-9.5654310917272452386E1   ,4f01,c3bf,33af,d72e,   7,-.BF4F01D72E33AF)
65 vc(invln2, 1.4426950408889634148E0   ,aa3b,40b8,17f1,295c,   1, .B8AA3B295C17F1)
66 vc(p1,     1.6666666666666602251E-1  ,aaaa,3f2a,a9f1,aaaa,  -2, .AAAAAAAAAAA9F1)
67 vc(p2,    -2.7777777777015591216E-3  ,0b60,bc36,ec94,b5f5,  -8,-.B60B60B5F5EC94)
68 vc(p3,     6.6137563214379341918E-5  ,b355,398a,f15f,792e, -13, .8AB355792EF15F)
69 vc(p4,    -1.6533902205465250480E-6  ,ea0e,b6dd,5f84,2e93, -19,-.DDEA0E2E935F84)
70 vc(p5,     4.1381367970572387085E-8  ,bb4b,3431,2683,95f5, -24, .B1BB4B95F52683)
71 
72 #ifdef vccast
73 #define    ln2hi    vccast(ln2hi)
74 #define    ln2lo    vccast(ln2lo)
75 #define   lnhuge    vccast(lnhuge)
76 #define   lntiny    vccast(lntiny)
77 #define   invln2    vccast(invln2)
78 #define       p1    vccast(p1)
79 #define       p2    vccast(p2)
80 #define       p3    vccast(p3)
81 #define       p4    vccast(p4)
82 #define       p5    vccast(p5)
83 #endif
84 
85 ic(p1,     1.6666666666666601904E-1,  -3,  1.555555555553E)
86 ic(p2,    -2.7777777777015593384E-3,  -9, -1.6C16C16BEBD93)
87 ic(p3,     6.6137563214379343612E-5, -14,  1.1566AAF25DE2C)
88 ic(p4,    -1.6533902205465251539E-6, -20, -1.BBD41C5D26BF1)
89 ic(p5,     4.1381367970572384604E-8, -25,  1.6376972BEA4D0)
90 ic(ln2hi,  6.9314718036912381649E-1,  -1,  1.62E42FEE00000)
91 ic(ln2lo,  1.9082149292705877000E-10,-33,  1.A39EF35793C76)
92 ic(lnhuge, 7.1602103751842355450E2,    9,  1.6602B15B7ECF2)
93 ic(lntiny,-7.5137154372698068983E2,    9, -1.77AF8EBEAE354)
94 ic(invln2, 1.4426950408889633870E0,    0,  1.71547652B82FE)
95 
96 double exp(x)
97 double x;
98 {
99 	double  z,hi,lo,c;
100 	int k;
101 
102 #if !defined(vax)&&!defined(tahoe)
103 	if(x!=x) return(x);	/* x is NaN */
104 #endif	/* !defined(vax)&&!defined(tahoe) */
105 	if( x <= lnhuge ) {
106 		if( x >= lntiny ) {
107 
108 		    /* argument reduction : x --> x - k*ln2 */
109 
110 			k=invln2*x+copysign(0.5,x);	/* k=NINT(x/ln2) */
111 
112 		    /* express x-k*ln2 as hi-lo and let x=hi-lo rounded */
113 
114 			hi=x-k*ln2hi;
115 			x=hi-(lo=k*ln2lo);
116 
117 		    /* return 2^k*[1+x+x*c/(2+c)]  */
118 			z=x*x;
119 			c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5))));
120 			return  scalb(1.0+(hi-(lo-(x*c)/(2.0-c))),k);
121 
122 		}
123 		/* end of x > lntiny */
124 
125 		else
126 		     /* exp(-big#) underflows to zero */
127 		     if(finite(x))  return(scalb(1.0,-5000));
128 
129 		     /* exp(-INF) is zero */
130 		     else return(0.0);
131 	}
132 	/* end of x < lnhuge */
133 
134 	else
135 	/* exp(INF) is INF, exp(+big#) overflows to INF */
136 	    return( finite(x) ?  scalb(1.0,5000)  : x);
137 }
138