xref: /original-bsd/lib/libm/common_source/exp.c (revision c3e32dec)
1 /*
2  * Copyright (c) 1985, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * %sccs.include.redist.c%
6  */
7 
8 #ifndef lint
9 static char sccsid[] = "@(#)exp.c	8.1 (Berkeley) 06/04/93";
10 #endif /* not lint */
11 
12 /* EXP(X)
13  * RETURN THE EXPONENTIAL OF X
14  * DOUBLE PRECISION (IEEE 53 bits, VAX D FORMAT 56 BITS)
15  * CODED IN C BY K.C. NG, 1/19/85;
16  * REVISED BY K.C. NG on 2/6/85, 2/15/85, 3/7/85, 3/24/85, 4/16/85, 6/14/86.
17  *
18  * Required system supported functions:
19  *	scalb(x,n)
20  *	copysign(x,y)
21  *	finite(x)
22  *
23  * Method:
24  *	1. Argument Reduction: given the input x, find r and integer k such
25  *	   that
26  *	                   x = k*ln2 + r,  |r| <= 0.5*ln2 .
27  *	   r will be represented as r := z+c for better accuracy.
28  *
29  *	2. Compute exp(r) by
30  *
31  *		exp(r) = 1 + r + r*R1/(2-R1),
32  *	   where
33  *		R1 = x - x^2*(p1+x^2*(p2+x^2*(p3+x^2*(p4+p5*x^2)))).
34  *
35  *	3. exp(x) = 2^k * exp(r) .
36  *
37  * Special cases:
38  *	exp(INF) is INF, exp(NaN) is NaN;
39  *	exp(-INF)=  0;
40  *	for finite argument, only exp(0)=1 is exact.
41  *
42  * Accuracy:
43  *	exp(x) returns the exponential of x nearly rounded. In a test run
44  *	with 1,156,000 random arguments on a VAX, the maximum observed
45  *	error was 0.869 ulps (units in the last place).
46  *
47  * Constants:
48  * The hexadecimal values are the intended ones for the following constants.
49  * The decimal values may be used, provided that the compiler will convert
50  * from decimal to binary accurately enough to produce the hexadecimal values
51  * shown.
52  */
53 
54 #include "mathimpl.h"
55 
56 vc(ln2hi,  6.9314718055829871446E-1  ,7217,4031,0000,f7d0,   0, .B17217F7D00000)
57 vc(ln2lo,  1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC)
58 vc(lnhuge, 9.4961163736712506989E1   ,ec1d,43bd,9010,a73e,   7, .BDEC1DA73E9010)
59 vc(lntiny,-9.5654310917272452386E1   ,4f01,c3bf,33af,d72e,   7,-.BF4F01D72E33AF)
60 vc(invln2, 1.4426950408889634148E0   ,aa3b,40b8,17f1,295c,   1, .B8AA3B295C17F1)
61 vc(p1,     1.6666666666666602251E-1  ,aaaa,3f2a,a9f1,aaaa,  -2, .AAAAAAAAAAA9F1)
62 vc(p2,    -2.7777777777015591216E-3  ,0b60,bc36,ec94,b5f5,  -8,-.B60B60B5F5EC94)
63 vc(p3,     6.6137563214379341918E-5  ,b355,398a,f15f,792e, -13, .8AB355792EF15F)
64 vc(p4,    -1.6533902205465250480E-6  ,ea0e,b6dd,5f84,2e93, -19,-.DDEA0E2E935F84)
65 vc(p5,     4.1381367970572387085E-8  ,bb4b,3431,2683,95f5, -24, .B1BB4B95F52683)
66 
67 #ifdef vccast
68 #define    ln2hi    vccast(ln2hi)
69 #define    ln2lo    vccast(ln2lo)
70 #define   lnhuge    vccast(lnhuge)
71 #define   lntiny    vccast(lntiny)
72 #define   invln2    vccast(invln2)
73 #define       p1    vccast(p1)
74 #define       p2    vccast(p2)
75 #define       p3    vccast(p3)
76 #define       p4    vccast(p4)
77 #define       p5    vccast(p5)
78 #endif
79 
80 ic(p1,     1.6666666666666601904E-1,  -3,  1.555555555553E)
81 ic(p2,    -2.7777777777015593384E-3,  -9, -1.6C16C16BEBD93)
82 ic(p3,     6.6137563214379343612E-5, -14,  1.1566AAF25DE2C)
83 ic(p4,    -1.6533902205465251539E-6, -20, -1.BBD41C5D26BF1)
84 ic(p5,     4.1381367970572384604E-8, -25,  1.6376972BEA4D0)
85 ic(ln2hi,  6.9314718036912381649E-1,  -1,  1.62E42FEE00000)
86 ic(ln2lo,  1.9082149292705877000E-10,-33,  1.A39EF35793C76)
87 ic(lnhuge, 7.1602103751842355450E2,    9,  1.6602B15B7ECF2)
88 ic(lntiny,-7.5137154372698068983E2,    9, -1.77AF8EBEAE354)
89 ic(invln2, 1.4426950408889633870E0,    0,  1.71547652B82FE)
90 
91 double exp(x)
92 double x;
93 {
94 	double  z,hi,lo,c;
95 	int k;
96 
97 #if !defined(vax)&&!defined(tahoe)
98 	if(x!=x) return(x);	/* x is NaN */
99 #endif	/* !defined(vax)&&!defined(tahoe) */
100 	if( x <= lnhuge ) {
101 		if( x >= lntiny ) {
102 
103 		    /* argument reduction : x --> x - k*ln2 */
104 
105 			k=invln2*x+copysign(0.5,x);	/* k=NINT(x/ln2) */
106 
107 		    /* express x-k*ln2 as hi-lo and let x=hi-lo rounded */
108 
109 			hi=x-k*ln2hi;
110 			x=hi-(lo=k*ln2lo);
111 
112 		    /* return 2^k*[1+x+x*c/(2+c)]  */
113 			z=x*x;
114 			c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5))));
115 			return  scalb(1.0+(hi-(lo-(x*c)/(2.0-c))),k);
116 
117 		}
118 		/* end of x > lntiny */
119 
120 		else
121 		     /* exp(-big#) underflows to zero */
122 		     if(finite(x))  return(scalb(1.0,-5000));
123 
124 		     /* exp(-INF) is zero */
125 		     else return(0.0);
126 	}
127 	/* end of x < lnhuge */
128 
129 	else
130 	/* exp(INF) is INF, exp(+big#) overflows to INF */
131 	    return( finite(x) ?  scalb(1.0,5000)  : x);
132 }
133 
134 /* returns exp(r = x + c) for |c| < |x| with no overlap.  */
135 
136 double __exp__D(x, c)
137 double x, c;
138 {
139 	double  z,hi,lo, t;
140 	int k;
141 
142 #if !defined(vax)&&!defined(tahoe)
143 	if (x!=x) return(x);	/* x is NaN */
144 #endif	/* !defined(vax)&&!defined(tahoe) */
145 	if ( x <= lnhuge ) {
146 		if ( x >= lntiny ) {
147 
148 		    /* argument reduction : x --> x - k*ln2 */
149 			z = invln2*x;
150 			k = z + copysign(.5, x);
151 
152 		    /* express (x+c)-k*ln2 as hi-lo and let x=hi-lo rounded */
153 
154 			hi=(x-k*ln2hi);			/* Exact. */
155 			x= hi - (lo = k*ln2lo-c);
156 		    /* return 2^k*[1+x+x*c/(2+c)]  */
157 			z=x*x;
158 			c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5))));
159 			c = (x*c)/(2.0-c);
160 
161 			return  scalb(1.+(hi-(lo - c)), k);
162 		}
163 		/* end of x > lntiny */
164 
165 		else
166 		     /* exp(-big#) underflows to zero */
167 		     if(finite(x))  return(scalb(1.0,-5000));
168 
169 		     /* exp(-INF) is zero */
170 		     else return(0.0);
171 	}
172 	/* end of x < lnhuge */
173 
174 	else
175 	/* exp(INF) is INF, exp(+big#) overflows to INF */
176 	    return( finite(x) ?  scalb(1.0,5000)  : x);
177 }
178