xref: /original-bsd/lib/libm/common_source/j0.c (revision c3e32dec)
1 /*-
2  * Copyright (c) 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * %sccs.include.redist.c%
6  */
7 
8 #ifndef lint
9 static char sccsid[] = "@(#)j0.c	8.1 (Berkeley) 06/04/93";
10 #endif /* not lint */
11 
12 /*
13  * 16 December 1992
14  * Minor modifications by Peter McIlroy to adapt non-IEEE architecture.
15  */
16 
17 /*
18  * ====================================================
19  * Copyright (C) 1992 by Sun Microsystems, Inc.
20  *
21  * Developed at SunPro, a Sun Microsystems, Inc. business.
22  * Permission to use, copy, modify, and distribute this
23  * software is freely granted, provided that this notice
24  * is preserved.
25  * ====================================================
26  *
27  * ******************* WARNING ********************
28  * This is an alpha version of SunPro's FDLIBM (Freely
29  * Distributable Math Library) for IEEE double precision
30  * arithmetic. FDLIBM is a basic math library written
31  * in C that runs on machines that conform to IEEE
32  * Standard 754/854. This alpha version is distributed
33  * for testing purpose. Those who use this software
34  * should report any bugs to
35  *
36  *		fdlibm-comments@sunpro.eng.sun.com
37  *
38  * -- K.C. Ng, Oct 12, 1992
39  * ************************************************
40  */
41 
42 /* double j0(double x), y0(double x)
43  * Bessel function of the first and second kinds of order zero.
44  * Method -- j0(x):
45  *	1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ...
46  *	2. Reduce x to |x| since j0(x)=j0(-x),  and
47  *	   for x in (0,2)
48  *		j0(x) = 1-z/4+ z^2*R0/S0,  where z = x*x;
49  *	   (precision:  |j0-1+z/4-z^2R0/S0 |<2**-63.67 )
50  *	   for x in (2,inf)
51  * 		j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
52  * 	   where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
53  *	   as follow:
54  *		cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
55  *			= 1/sqrt(2) * (cos(x) + sin(x))
56  *		sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
57  *			= 1/sqrt(2) * (sin(x) - cos(x))
58  * 	   (To avoid cancellation, use
59  *		sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
60  * 	    to compute the worse one.)
61  *
62  *	3 Special cases
63  *		j0(nan)= nan
64  *		j0(0) = 1
65  *		j0(inf) = 0
66  *
67  * Method -- y0(x):
68  *	1. For x<2.
69  *	   Since
70  *		y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...)
71  *	   therefore y0(x)-2/pi*j0(x)*ln(x) is an even function.
72  *	   We use the following function to approximate y0,
73  *		y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2
74  *	   where
75  *		U(z) = u0 + u1*z + ... + u6*z^6
76  *		V(z) = 1  + v1*z + ... + v4*z^4
77  *	   with absolute approximation error bounded by 2**-72.
78  *	   Note: For tiny x, U/V = u0 and j0(x)~1, hence
79  *		y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27)
80  *	2. For x>=2.
81  * 		y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
82  * 	   where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
83  *	   by the method mentioned above.
84  *	3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0.
85  */
86 
87 #include <math.h>
88 #include <float.h>
89 #if defined(vax) || defined(tahoe)
90 #define _IEEE	0
91 #else
92 #define _IEEE	1
93 #define infnan(x) (0.0)
94 #endif
95 
96 static double pzero __P((double)), qzero __P((double));
97 
98 static double
99 huge 	= 1e300,
100 zero    = 0.0,
101 one	= 1.0,
102 invsqrtpi= 5.641895835477562869480794515607725858441e-0001,
103 tpi	= 0.636619772367581343075535053490057448,
104  		/* R0/S0 on [0, 2.00] */
105 r02 =   1.562499999999999408594634421055018003102e-0002,
106 r03 =  -1.899792942388547334476601771991800712355e-0004,
107 r04 =   1.829540495327006565964161150603950916854e-0006,
108 r05 =  -4.618326885321032060803075217804816988758e-0009,
109 s01 =   1.561910294648900170180789369288114642057e-0002,
110 s02 =   1.169267846633374484918570613449245536323e-0004,
111 s03 =   5.135465502073181376284426245689510134134e-0007,
112 s04 =   1.166140033337900097836930825478674320464e-0009;
113 
114 double
115 j0(x)
116 	double x;
117 {
118 	double z, s,c,ss,cc,r,u,v;
119 
120 	if (!finite(x))
121 		if (_IEEE) return one/(x*x);
122 		else return (0);
123 	x = fabs(x);
124 	if (x >= 2.0) {	/* |x| >= 2.0 */
125 		s = sin(x);
126 		c = cos(x);
127 		ss = s-c;
128 		cc = s+c;
129 		if (x < .5 * DBL_MAX) {  /* make sure x+x not overflow */
130 		    z = -cos(x+x);
131 		    if ((s*c)<zero) cc = z/ss;
132 		    else 	    ss = z/cc;
133 		}
134 	/*
135 	 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
136 	 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
137 	 */
138 		if (_IEEE && x> 6.80564733841876927e+38) /* 2^129 */
139 			z = (invsqrtpi*cc)/sqrt(x);
140 		else {
141 		    u = pzero(x); v = qzero(x);
142 		    z = invsqrtpi*(u*cc-v*ss)/sqrt(x);
143 		}
144 		return z;
145 	}
146 	if (x < 1.220703125e-004) {		   /* |x| < 2**-13 */
147 	    if (huge+x > one) {			   /* raise inexact if x != 0 */
148 	        if (x < 7.450580596923828125e-009) /* |x|<2**-27 */
149 			return one;
150 	        else return (one - 0.25*x*x);
151 	    }
152 	}
153 	z = x*x;
154 	r =  z*(r02+z*(r03+z*(r04+z*r05)));
155 	s =  one+z*(s01+z*(s02+z*(s03+z*s04)));
156 	if (x < one) {			/* |x| < 1.00 */
157 	    return (one + z*(-0.25+(r/s)));
158 	} else {
159 	    u = 0.5*x;
160 	    return ((one+u)*(one-u)+z*(r/s));
161 	}
162 }
163 
164 static double
165 u00 =  -7.380429510868722527422411862872999615628e-0002,
166 u01 =   1.766664525091811069896442906220827182707e-0001,
167 u02 =  -1.381856719455968955440002438182885835344e-0002,
168 u03 =   3.474534320936836562092566861515617053954e-0004,
169 u04 =  -3.814070537243641752631729276103284491172e-0006,
170 u05 =   1.955901370350229170025509706510038090009e-0008,
171 u06 =  -3.982051941321034108350630097330144576337e-0011,
172 v01 =   1.273048348341237002944554656529224780561e-0002,
173 v02 =   7.600686273503532807462101309675806839635e-0005,
174 v03 =   2.591508518404578033173189144579208685163e-0007,
175 v04 =   4.411103113326754838596529339004302243157e-0010;
176 
177 double
178 y0(x)
179 	double x;
180 {
181 	double z, s,c,ss,cc,u,v,j0();
182     /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0  */
183 	if (!finite(x))
184 		if (_IEEE)
185 			return (one/(x+x*x));
186 		else
187 			return (0);
188         if (x == 0)
189 		if (_IEEE)	return (-one/zero);
190 		else		return(infnan(-ERANGE));
191         if (x<0)
192 		if (_IEEE)	return (zero/zero);
193 		else		return (infnan(EDOM));
194         if (x >= 2.00) {	/* |x| >= 2.0 */
195         /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
196          * where x0 = x-pi/4
197          *      Better formula:
198          *              cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
199          *                      =  1/sqrt(2) * (sin(x) + cos(x))
200          *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
201          *                      =  1/sqrt(2) * (sin(x) - cos(x))
202          * To avoid cancellation, use
203          *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
204          * to compute the worse one.
205          */
206                 s = sin(x);
207                 c = cos(x);
208                 ss = s-c;
209                 cc = s+c;
210 	/*
211 	 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
212 	 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
213 	 */
214                 if (x < .5 * DBL_MAX) {  /* make sure x+x not overflow */
215                     z = -cos(x+x);
216                     if ((s*c)<zero) cc = z/ss;
217                     else            ss = z/cc;
218                 }
219                 if (_IEEE && x > 6.80564733841876927e+38) /* > 2^129 */
220 			z = (invsqrtpi*ss)/sqrt(x);
221                 else {
222                     u = pzero(x); v = qzero(x);
223                     z = invsqrtpi*(u*ss+v*cc)/sqrt(x);
224                 }
225                 return z;
226 	}
227 	if (x <= 7.450580596923828125e-009) {		/* x < 2**-27 */
228 	    return (u00 + tpi*log(x));
229 	}
230 	z = x*x;
231 	u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
232 	v = one+z*(v01+z*(v02+z*(v03+z*v04)));
233 	return (u/v + tpi*(j0(x)*log(x)));
234 }
235 
236 /* The asymptotic expansions of pzero is
237  *	1 - 9/128 s^2 + 11025/98304 s^4 - ...,	where s = 1/x.
238  * For x >= 2, We approximate pzero by
239  * 	pzero(x) = 1 + (R/S)
240  * where  R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
241  * 	  S = 1 + ps0*s^2 + ... + ps4*s^10
242  * and
243  *	| pzero(x)-1-R/S | <= 2  ** ( -60.26)
244  */
245 static double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
246    0.0,
247   -7.031249999999003994151563066182798210142e-0002,
248   -8.081670412753498508883963849859423939871e+0000,
249   -2.570631056797048755890526455854482662510e+0002,
250   -2.485216410094288379417154382189125598962e+0003,
251   -5.253043804907295692946647153614119665649e+0003,
252 };
253 static double ps8[5] = {
254    1.165343646196681758075176077627332052048e+0002,
255    3.833744753641218451213253490882686307027e+0003,
256    4.059785726484725470626341023967186966531e+0004,
257    1.167529725643759169416844015694440325519e+0005,
258    4.762772841467309430100106254805711722972e+0004,
259 };
260 
261 static double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
262   -1.141254646918944974922813501362824060117e-0011,
263   -7.031249408735992804117367183001996028304e-0002,
264   -4.159610644705877925119684455252125760478e+0000,
265   -6.767476522651671942610538094335912346253e+0001,
266   -3.312312996491729755731871867397057689078e+0002,
267   -3.464333883656048910814187305901796723256e+0002,
268 };
269 static double ps5[5] = {
270    6.075393826923003305967637195319271932944e+0001,
271    1.051252305957045869801410979087427910437e+0003,
272    5.978970943338558182743915287887408780344e+0003,
273    9.625445143577745335793221135208591603029e+0003,
274    2.406058159229391070820491174867406875471e+0003,
275 };
276 
277 static double pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
278   -2.547046017719519317420607587742992297519e-0009,
279   -7.031196163814817199050629727406231152464e-0002,
280   -2.409032215495295917537157371488126555072e+0000,
281   -2.196597747348830936268718293366935843223e+0001,
282   -5.807917047017375458527187341817239891940e+0001,
283   -3.144794705948885090518775074177485744176e+0001,
284 };
285 static double ps3[5] = {
286    3.585603380552097167919946472266854507059e+0001,
287    3.615139830503038919981567245265266294189e+0002,
288    1.193607837921115243628631691509851364715e+0003,
289    1.127996798569074250675414186814529958010e+0003,
290    1.735809308133357510239737333055228118910e+0002,
291 };
292 
293 static double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
294   -8.875343330325263874525704514800809730145e-0008,
295   -7.030309954836247756556445443331044338352e-0002,
296   -1.450738467809529910662233622603401167409e+0000,
297   -7.635696138235277739186371273434739292491e+0000,
298   -1.119316688603567398846655082201614524650e+0001,
299   -3.233645793513353260006821113608134669030e+0000,
300 };
301 static double ps2[5] = {
302    2.222029975320888079364901247548798910952e+0001,
303    1.362067942182152109590340823043813120940e+0002,
304    2.704702786580835044524562897256790293238e+0002,
305    1.538753942083203315263554770476850028583e+0002,
306    1.465761769482561965099880599279699314477e+0001,
307 };
308 
309 static double pzero(x)
310 	double x;
311 {
312 	double *p,*q,z,r,s;
313 	if (x >= 8.00)			   {p = pr8; q= ps8;}
314 	else if (x >= 4.54545211791992188) {p = pr5; q= ps5;}
315 	else if (x >= 2.85714149475097656) {p = pr3; q= ps3;}
316 	else if (x >= 2.00)		   {p = pr2; q= ps2;}
317 	z = one/(x*x);
318 	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
319 	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
320 	return one+ r/s;
321 }
322 
323 
324 /* For x >= 8, the asymptotic expansions of qzero is
325  *	-1/8 s + 75/1024 s^3 - ..., where s = 1/x.
326  * We approximate pzero by
327  * 	qzero(x) = s*(-1.25 + (R/S))
328  * where  R = qr0 + qr1*s^2 + qr2*s^4 + ... + qr5*s^10
329  * 	  S = 1 + qs0*s^2 + ... + qs5*s^12
330  * and
331  *	| qzero(x)/s +1.25-R/S | <= 2  ** ( -61.22)
332  */
333 static double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
334    0.0,
335    7.324218749999350414479738504551775297096e-0002,
336    1.176820646822526933903301695932765232456e+0001,
337    5.576733802564018422407734683549251364365e+0002,
338    8.859197207564685717547076568608235802317e+0003,
339    3.701462677768878501173055581933725704809e+0004,
340 };
341 static double qs8[6] = {
342    1.637760268956898345680262381842235272369e+0002,
343    8.098344946564498460163123708054674227492e+0003,
344    1.425382914191204905277585267143216379136e+0005,
345    8.033092571195144136565231198526081387047e+0005,
346    8.405015798190605130722042369969184811488e+0005,
347   -3.438992935378666373204500729736454421006e+0005,
348 };
349 
350 static double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
351    1.840859635945155400568380711372759921179e-0011,
352    7.324217666126847411304688081129741939255e-0002,
353    5.835635089620569401157245917610984757296e+0000,
354    1.351115772864498375785526599119895942361e+0002,
355    1.027243765961641042977177679021711341529e+0003,
356    1.989977858646053872589042328678602481924e+0003,
357 };
358 static double qs5[6] = {
359    8.277661022365377058749454444343415524509e+0001,
360    2.077814164213929827140178285401017305309e+0003,
361    1.884728877857180787101956800212453218179e+0004,
362    5.675111228949473657576693406600265778689e+0004,
363    3.597675384251145011342454247417399490174e+0004,
364   -5.354342756019447546671440667961399442388e+0003,
365 };
366 
367 static double qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
368    4.377410140897386263955149197672576223054e-0009,
369    7.324111800429115152536250525131924283018e-0002,
370    3.344231375161707158666412987337679317358e+0000,
371    4.262184407454126175974453269277100206290e+0001,
372    1.708080913405656078640701512007621675724e+0002,
373    1.667339486966511691019925923456050558293e+0002,
374 };
375 static double qs3[6] = {
376    4.875887297245871932865584382810260676713e+0001,
377    7.096892210566060535416958362640184894280e+0002,
378    3.704148226201113687434290319905207398682e+0003,
379    6.460425167525689088321109036469797462086e+0003,
380    2.516333689203689683999196167394889715078e+0003,
381   -1.492474518361563818275130131510339371048e+0002,
382 };
383 
384 static double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
385    1.504444448869832780257436041633206366087e-0007,
386    7.322342659630792930894554535717104926902e-0002,
387    1.998191740938159956838594407540292600331e+0000,
388    1.449560293478857407645853071687125850962e+0001,
389    3.166623175047815297062638132537957315395e+0001,
390    1.625270757109292688799540258329430963726e+0001,
391 };
392 static double qs2[6] = {
393    3.036558483552191922522729838478169383969e+0001,
394    2.693481186080498724211751445725708524507e+0002,
395    8.447837575953201460013136756723746023736e+0002,
396    8.829358451124885811233995083187666981299e+0002,
397    2.126663885117988324180482985363624996652e+0002,
398   -5.310954938826669402431816125780738924463e+0000,
399 };
400 
401 static double qzero(x)
402 	double x;
403 {
404 	double *p,*q, s,r,z;
405 	if (x >= 8.00)			   {p = qr8; q= qs8;}
406 	else if (x >= 4.54545211791992188) {p = qr5; q= qs5;}
407 	else if (x >= 2.85714149475097656) {p = qr3; q= qs3;}
408 	else if (x >= 2.00)		   {p = qr2; q= qs2;}
409 	z = one/(x*x);
410 	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
411 	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
412 	return (-.125 + r/s)/x;
413 }
414