xref: /original-bsd/lib/libm/common_source/jn.c (revision c3e32dec)
1 /*-
2  * Copyright (c) 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * %sccs.include.redist.c%
6  */
7 
8 #ifndef lint
9 static char sccsid[] = "@(#)jn.c	8.1 (Berkeley) 06/04/93";
10 #endif /* not lint */
11 
12 /*
13  * 16 December 1992
14  * Minor modifications by Peter McIlroy to adapt non-IEEE architecture.
15  */
16 
17 /*
18  * ====================================================
19  * Copyright (C) 1992 by Sun Microsystems, Inc.
20  *
21  * Developed at SunPro, a Sun Microsystems, Inc. business.
22  * Permission to use, copy, modify, and distribute this
23  * software is freely granted, provided that this notice
24  * is preserved.
25  * ====================================================
26  *
27  * ******************* WARNING ********************
28  * This is an alpha version of SunPro's FDLIBM (Freely
29  * Distributable Math Library) for IEEE double precision
30  * arithmetic. FDLIBM is a basic math library written
31  * in C that runs on machines that conform to IEEE
32  * Standard 754/854. This alpha version is distributed
33  * for testing purpose. Those who use this software
34  * should report any bugs to
35  *
36  *		fdlibm-comments@sunpro.eng.sun.com
37  *
38  * -- K.C. Ng, Oct 12, 1992
39  * ************************************************
40  */
41 
42 /*
43  * jn(int n, double x), yn(int n, double x)
44  * floating point Bessel's function of the 1st and 2nd kind
45  * of order n
46  *
47  * Special cases:
48  *	y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
49  *	y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
50  * Note 2. About jn(n,x), yn(n,x)
51  *	For n=0, j0(x) is called,
52  *	for n=1, j1(x) is called,
53  *	for n<x, forward recursion us used starting
54  *	from values of j0(x) and j1(x).
55  *	for n>x, a continued fraction approximation to
56  *	j(n,x)/j(n-1,x) is evaluated and then backward
57  *	recursion is used starting from a supposed value
58  *	for j(n,x). The resulting value of j(0,x) is
59  *	compared with the actual value to correct the
60  *	supposed value of j(n,x).
61  *
62  *	yn(n,x) is similar in all respects, except
63  *	that forward recursion is used for all
64  *	values of n>1.
65  *
66  */
67 
68 #include <math.h>
69 #include <float.h>
70 #include <errno.h>
71 
72 #if defined(vax) || defined(tahoe)
73 #define _IEEE	0
74 #else
75 #define _IEEE	1
76 #define infnan(x) (0.0)
77 #endif
78 
79 extern double j0(),j1(),log(),fabs(),sqrt(),cos(),sin(),y0(),y1();
80 static double
81 invsqrtpi= 5.641895835477562869480794515607725858441e-0001,
82 two  = 2.0,
83 zero = 0.0,
84 one  = 1.0;
85 
86 double jn(n,x)
87 	int n; double x;
88 {
89 	int i, sgn;
90 	double a, b, temp;
91 	double z, w;
92 
93     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
94      * Thus, J(-n,x) = J(n,-x)
95      */
96     /* if J(n,NaN) is NaN */
97 	if (_IEEE && isnan(x)) return x+x;
98 	if (n<0){
99 		n = -n;
100 		x = -x;
101 	}
102 	if (n==0) return(j0(x));
103 	if (n==1) return(j1(x));
104 	sgn = (n&1)&(x < zero);		/* even n -- 0, odd n -- sign(x) */
105 	x = fabs(x);
106 	if (x == 0 || !finite (x)) 	/* if x is 0 or inf */
107 	    b = zero;
108 	else if ((double) n <= x) {
109 			/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
110 	    if (_IEEE && x >= 8.148143905337944345e+090) {
111 					/* x >= 2**302 */
112     /* (x >> n**2)
113      *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
114      *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
115      *	    Let s=sin(x), c=cos(x),
116      *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
117      *
118      *		   n	sin(xn)*sqt2	cos(xn)*sqt2
119      *		----------------------------------
120      *		   0	 s-c		 c+s
121      *		   1	-s-c 		-c+s
122      *		   2	-s+c		-c-s
123      *		   3	 s+c		 c-s
124      */
125 		switch(n&3) {
126 		    case 0: temp =  cos(x)+sin(x); break;
127 		    case 1: temp = -cos(x)+sin(x); break;
128 		    case 2: temp = -cos(x)-sin(x); break;
129 		    case 3: temp =  cos(x)-sin(x); break;
130 		}
131 		b = invsqrtpi*temp/sqrt(x);
132 	    } else {
133 	        a = j0(x);
134 	        b = j1(x);
135 	        for(i=1;i<n;i++){
136 		    temp = b;
137 		    b = b*((double)(i+i)/x) - a; /* avoid underflow */
138 		    a = temp;
139 	        }
140 	    }
141 	} else {
142 	    if (x < 1.86264514923095703125e-009) { /* x < 2**-29 */
143     /* x is tiny, return the first Taylor expansion of J(n,x)
144      * J(n,x) = 1/n!*(x/2)^n  - ...
145      */
146 		if (n > 33)	/* underflow */
147 		    b = zero;
148 		else {
149 		    temp = x*0.5; b = temp;
150 		    for (a=one,i=2;i<=n;i++) {
151 			a *= (double)i;		/* a = n! */
152 			b *= temp;		/* b = (x/2)^n */
153 		    }
154 		    b = b/a;
155 		}
156 	    } else {
157 		/* use backward recurrence */
158 		/* 			x      x^2      x^2
159 		 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
160 		 *			2n  - 2(n+1) - 2(n+2)
161 		 *
162 		 * 			1      1        1
163 		 *  (for large x)   =  ----  ------   ------   .....
164 		 *			2n   2(n+1)   2(n+2)
165 		 *			-- - ------ - ------ -
166 		 *			 x     x         x
167 		 *
168 		 * Let w = 2n/x and h=2/x, then the above quotient
169 		 * is equal to the continued fraction:
170 		 *		    1
171 		 *	= -----------------------
172 		 *		       1
173 		 *	   w - -----------------
174 		 *			  1
175 		 * 	        w+h - ---------
176 		 *		       w+2h - ...
177 		 *
178 		 * To determine how many terms needed, let
179 		 * Q(0) = w, Q(1) = w(w+h) - 1,
180 		 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
181 		 * When Q(k) > 1e4	good for single
182 		 * When Q(k) > 1e9	good for double
183 		 * When Q(k) > 1e17	good for quadruple
184 		 */
185 	    /* determine k */
186 		double t,v;
187 		double q0,q1,h,tmp; int k,m;
188 		w  = (n+n)/(double)x; h = 2.0/(double)x;
189 		q0 = w;  z = w+h; q1 = w*z - 1.0; k=1;
190 		while (q1<1.0e9) {
191 			k += 1; z += h;
192 			tmp = z*q1 - q0;
193 			q0 = q1;
194 			q1 = tmp;
195 		}
196 		m = n+n;
197 		for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
198 		a = t;
199 		b = one;
200 		/*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
201 		 *  Hence, if n*(log(2n/x)) > ...
202 		 *  single 8.8722839355e+01
203 		 *  double 7.09782712893383973096e+02
204 		 *  long double 1.1356523406294143949491931077970765006170e+04
205 		 *  then recurrent value may overflow and the result will
206 		 *  likely underflow to zero
207 		 */
208 		tmp = n;
209 		v = two/x;
210 		tmp = tmp*log(fabs(v*tmp));
211 	    	for (i=n-1;i>0;i--){
212 		        temp = b;
213 		        b = ((i+i)/x)*b - a;
214 		        a = temp;
215 		    /* scale b to avoid spurious overflow */
216 #			if defined(vax) || defined(tahoe)
217 #				define BMAX 1e13
218 #			else
219 #				define BMAX 1e100
220 #			endif /* defined(vax) || defined(tahoe) */
221 			if (b > BMAX) {
222 				a /= b;
223 				t /= b;
224 				b = one;
225 			}
226 		}
227 	    	b = (t*j0(x)/b);
228 	    }
229 	}
230 	return ((sgn == 1) ? -b : b);
231 }
232 double yn(n,x)
233 	int n; double x;
234 {
235 	int i, sign;
236 	double a, b, temp;
237 
238     /* Y(n,NaN), Y(n, x < 0) is NaN */
239 	if (x <= 0 || (_IEEE && x != x))
240 		if (_IEEE && x < 0) return zero/zero;
241 		else if (x < 0)     return (infnan(EDOM));
242 		else if (_IEEE)     return -one/zero;
243 		else		    return(infnan(-ERANGE));
244 	else if (!finite(x)) return(0);
245 	sign = 1;
246 	if (n<0){
247 		n = -n;
248 		sign = 1 - ((n&1)<<2);
249 	}
250 	if (n == 0) return(y0(x));
251 	if (n == 1) return(sign*y1(x));
252 	if(_IEEE && x >= 8.148143905337944345e+090) { /* x > 2**302 */
253     /* (x >> n**2)
254      *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
255      *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
256      *	    Let s=sin(x), c=cos(x),
257      *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
258      *
259      *		   n	sin(xn)*sqt2	cos(xn)*sqt2
260      *		----------------------------------
261      *		   0	 s-c		 c+s
262      *		   1	-s-c 		-c+s
263      *		   2	-s+c		-c-s
264      *		   3	 s+c		 c-s
265      */
266 		switch (n&3) {
267 		    case 0: temp =  sin(x)-cos(x); break;
268 		    case 1: temp = -sin(x)-cos(x); break;
269 		    case 2: temp = -sin(x)+cos(x); break;
270 		    case 3: temp =  sin(x)+cos(x); break;
271 		}
272 		b = invsqrtpi*temp/sqrt(x);
273 	} else {
274 	    a = y0(x);
275 	    b = y1(x);
276 	/* quit if b is -inf */
277 	    for (i = 1; i < n && !finite(b); i++){
278 		temp = b;
279 		b = ((double)(i+i)/x)*b - a;
280 		a = temp;
281 	    }
282 	}
283 	if (!_IEEE && !finite(b))
284 		return (infnan(-sign * ERANGE));
285 	return ((sign > 0) ? b : -b);
286 }
287