1 /*-
2  * Copyright (c) 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * %sccs.include.redist.c%
6  */
7 
8 #ifndef lint
9 static char sccsid[] = "@(#)lgamma.c	8.2 (Berkeley) 11/30/93";
10 #endif /* not lint */
11 
12 /*
13  * Coded by Peter McIlroy, Nov 1992;
14  *
15  * The financial support of UUNET Communications Services is greatfully
16  * acknowledged.
17  */
18 
19 #include <math.h>
20 #include <errno.h>
21 
22 #include "mathimpl.h"
23 
24 /* Log gamma function.
25  * Error:  x > 0 error < 1.3ulp.
26  *	   x > 4, error < 1ulp.
27  *	   x > 9, error < .6ulp.
28  * 	   x < 0, all bets are off. (When G(x) ~ 1, log(G(x)) ~ 0)
29  * Method:
30  *	x > 6:
31  *		Use the asymptotic expansion (Stirling's Formula)
32  *	0 < x < 6:
33  *		Use gamma(x+1) = x*gamma(x) for argument reduction.
34  *		Use rational approximation in
35  *		the range 1.2, 2.5
36  *		Two approximations are used, one centered at the
37  *		minimum to ensure monotonicity; one centered at 2
38  *		to maintain small relative error.
39  *	x < 0:
40  *		Use the reflection formula,
41  *		G(1-x)G(x) = PI/sin(PI*x)
42  * Special values:
43  *	non-positive integer	returns +Inf.
44  *	NaN			returns NaN
45 */
46 static int endian;
47 #if defined(vax) || defined(tahoe)
48 #define _IEEE		0
49 /* double and float have same size exponent field */
50 #define TRUNC(x)	x = (double) (float) (x)
51 #else
52 #define _IEEE		1
53 #define TRUNC(x)	*(((int *) &x) + endian) &= 0xf8000000
54 #define infnan(x)	0.0
55 #endif
56 
57 static double small_lgam(double);
58 static double large_lgam(double);
59 static double neg_lgam(double);
60 static double zero = 0.0, one = 1.0;
61 int signgam;
62 
63 #define UNDERFL (1e-1020 * 1e-1020)
64 
65 #define LEFT	(1.0 - (x0 + .25))
66 #define RIGHT	(x0 - .218)
67 /*
68 /* Constants for approximation in [1.244,1.712]
69 */
70 #define x0	0.461632144968362356785
71 #define x0_lo	-.000000000000000015522348162858676890521
72 #define a0_hi	-0.12148629128932952880859
73 #define a0_lo	.0000000007534799204229502
74 #define r0	-2.771227512955130520e-002
75 #define r1	-2.980729795228150847e-001
76 #define r2	-3.257411333183093394e-001
77 #define r3	-1.126814387531706041e-001
78 #define r4	-1.129130057170225562e-002
79 #define r5	-2.259650588213369095e-005
80 #define s0	 1.714457160001714442e+000
81 #define s1	 2.786469504618194648e+000
82 #define s2	 1.564546365519179805e+000
83 #define s3	 3.485846389981109850e-001
84 #define s4	 2.467759345363656348e-002
85 /*
86  * Constants for approximation in [1.71, 2.5]
87 */
88 #define a1_hi	4.227843350984671344505727574870e-01
89 #define a1_lo	4.670126436531227189e-18
90 #define p0	3.224670334241133695662995251041e-01
91 #define p1	3.569659696950364669021382724168e-01
92 #define p2	1.342918716072560025853732668111e-01
93 #define p3	1.950702176409779831089963408886e-02
94 #define p4	8.546740251667538090796227834289e-04
95 #define q0	1.000000000000000444089209850062e+00
96 #define q1	1.315850076960161985084596381057e+00
97 #define q2	6.274644311862156431658377186977e-01
98 #define q3	1.304706631926259297049597307705e-01
99 #define q4	1.102815279606722369265536798366e-02
100 #define q5	2.512690594856678929537585620579e-04
101 #define q6	-1.003597548112371003358107325598e-06
102 /*
103  * Stirling's Formula, adjusted for equal-ripple. x in [6,Inf].
104 */
105 #define lns2pi	.418938533204672741780329736405
106 #define pb0	 8.33333333333333148296162562474e-02
107 #define pb1	-2.77777777774548123579378966497e-03
108 #define pb2	 7.93650778754435631476282786423e-04
109 #define pb3	-5.95235082566672847950717262222e-04
110 #define pb4	 8.41428560346653702135821806252e-04
111 #define pb5	-1.89773526463879200348872089421e-03
112 #define pb6	 5.69394463439411649408050664078e-03
113 #define pb7	-1.44705562421428915453880392761e-02
114 
115 __pure double
116 lgamma(double x)
117 {
118 	double r;
119 
120 	signgam = 1;
121 	endian = ((*(int *) &one)) ? 1 : 0;
122 
123 	if (!finite(x))
124 		if (_IEEE)
125 			return (x+x);
126 		else return (infnan(EDOM));
127 
128 	if (x > 6 + RIGHT) {
129 		r = large_lgam(x);
130 		return (r);
131 	} else if (x > 1e-16)
132 		return (small_lgam(x));
133 	else if (x > -1e-16) {
134 		if (x < 0)
135 			signgam = -1, x = -x;
136 		return (-log(x));
137 	} else
138 		return (neg_lgam(x));
139 }
140 
141 static double
142 large_lgam(double x)
143 {
144 	double z, p, x1;
145 	int i;
146 	struct Double t, u, v;
147 	u = __log__D(x);
148 	u.a -= 1.0;
149 	if (x > 1e15) {
150 		v.a = x - 0.5;
151 		TRUNC(v.a);
152 		v.b = (x - v.a) - 0.5;
153 		t.a = u.a*v.a;
154 		t.b = x*u.b + v.b*u.a;
155 		if (_IEEE == 0 && !finite(t.a))
156 			return(infnan(ERANGE));
157 		return(t.a + t.b);
158 	}
159 	x1 = 1./x;
160 	z = x1*x1;
161 	p = pb0+z*(pb1+z*(pb2+z*(pb3+z*(pb4+z*(pb5+z*(pb6+z*pb7))))));
162 					/* error in approximation = 2.8e-19 */
163 
164 	p = p*x1;			/* error < 2.3e-18 absolute */
165 					/* 0 < p < 1/64 (at x = 5.5) */
166 	v.a = x = x - 0.5;
167 	TRUNC(v.a);			/* truncate v.a to 26 bits. */
168 	v.b = x - v.a;
169 	t.a = v.a*u.a;			/* t = (x-.5)*(log(x)-1) */
170 	t.b = v.b*u.a + x*u.b;
171 	t.b += p; t.b += lns2pi;	/* return t + lns2pi + p */
172 	return (t.a + t.b);
173 }
174 
175 static double
176 small_lgam(double x)
177 {
178 	int x_int;
179 	double y, z, t, r = 0, p, q, hi, lo;
180 	struct Double rr;
181 	x_int = (x + .5);
182 	y = x - x_int;
183 	if (x_int <= 2 && y > RIGHT) {
184 		t = y - x0;
185 		y--; x_int++;
186 		goto CONTINUE;
187 	} else if (y < -LEFT) {
188 		t = y +(1.0-x0);
189 CONTINUE:
190 		z = t - x0_lo;
191 		p = r0+z*(r1+z*(r2+z*(r3+z*(r4+z*r5))));
192 		q = s0+z*(s1+z*(s2+z*(s3+z*s4)));
193 		r = t*(z*(p/q) - x0_lo);
194 		t = .5*t*t;
195 		z = 1.0;
196 		switch (x_int) {
197 		case 6:	z  = (y + 5);
198 		case 5:	z *= (y + 4);
199 		case 4:	z *= (y + 3);
200 		case 3:	z *= (y + 2);
201 			rr = __log__D(z);
202 			rr.b += a0_lo; rr.a += a0_hi;
203 			return(((r+rr.b)+t+rr.a));
204 		case 2: return(((r+a0_lo)+t)+a0_hi);
205 		case 0: r -= log1p(x);
206 		default: rr = __log__D(x);
207 			rr.a -= a0_hi; rr.b -= a0_lo;
208 			return(((r - rr.b) + t) - rr.a);
209 		}
210 	} else {
211 		p = p0+y*(p1+y*(p2+y*(p3+y*p4)));
212 		q = q0+y*(q1+y*(q2+y*(q3+y*(q4+y*(q5+y*q6)))));
213 		p = p*(y/q);
214 		t = (double)(float) y;
215 		z = y-t;
216 		hi = (double)(float) (p+a1_hi);
217 		lo = a1_hi - hi; lo += p; lo += a1_lo;
218 		r = lo*y + z*hi;	/* q + r = y*(a0+p/q) */
219 		q = hi*t;
220 		z = 1.0;
221 		switch (x_int) {
222 		case 6:	z  = (y + 5);
223 		case 5:	z *= (y + 4);
224 		case 4:	z *= (y + 3);
225 		case 3:	z *= (y + 2);
226 			rr = __log__D(z);
227 			r += rr.b; r += q;
228 			return(rr.a + r);
229 		case 2:	return (q+ r);
230 		case 0: rr = __log__D(x);
231 			r -= rr.b; r -= log1p(x);
232 			r += q; r-= rr.a;
233 			return(r);
234 		default: rr = __log__D(x);
235 			r -= rr.b;
236 			q -= rr.a;
237 			return (r+q);
238 		}
239 	}
240 }
241 
242 static double
243 neg_lgam(double x)
244 {
245 	int xi;
246 	double y, z, one = 1.0, zero = 0.0;
247 	extern double gamma();
248 
249 	/* avoid destructive cancellation as much as possible */
250 	if (x > -170) {
251 		xi = x;
252 		if (xi == x)
253 			if (_IEEE)
254 				return(one/zero);
255 			else
256 				return(infnan(ERANGE));
257 		y = gamma(x);
258 		if (y < 0)
259 			y = -y, signgam = -1;
260 		return (log(y));
261 	}
262 	z = floor(x + .5);
263 	if (z == x) {		/* convention: G(-(integer)) -> +Inf */
264 		if (_IEEE)
265 			return (one/zero);
266 		else
267 			return (infnan(ERANGE));
268 	}
269 	y = .5*ceil(x);
270 	if (y == ceil(y))
271 		signgam = -1;
272 	x = -x;
273 	z = fabs(x + z);	/* 0 < z <= .5 */
274 	if (z < .25)
275 		z = sin(M_PI*z);
276 	else
277 		z = cos(M_PI*(0.5-z));
278 	z = log(M_PI/(z*x));
279 	y = large_lgam(x);
280 	return (z - y);
281 }
282