xref: /original-bsd/lib/libm/common_source/log1p.c (revision e9b82df0)
1 /*
2  * Copyright (c) 1985 Regents of the University of California.
3  * All rights reserved.
4  *
5  * %sccs.include.redist.c%
6  *
7  * All recipients should regard themselves as participants in an ongoing
8  * research project and hence should feel obligated to report their
9  * experiences (good or bad) with these elementary function codes, using
10  * the sendbug(8) program, to the authors.
11  */
12 
13 #ifndef lint
14 static char sccsid[] = "@(#)log1p.c	5.5 (Berkeley) 06/01/90";
15 #endif /* not lint */
16 
17 /* LOG1P(x)
18  * RETURN THE LOGARITHM OF 1+x
19  * DOUBLE PRECISION (VAX D FORMAT 56 bits, IEEE DOUBLE 53 BITS)
20  * CODED IN C BY K.C. NG, 1/19/85;
21  * REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/24/85, 4/16/85.
22  *
23  * Required system supported functions:
24  *	scalb(x,n)
25  *	copysign(x,y)
26  *	logb(x)
27  *	finite(x)
28  *
29  * Required kernel function:
30  *	log__L(z)
31  *
32  * Method :
33  *	1. Argument Reduction: find k and f such that
34  *			1+x  = 2^k * (1+f),
35  *	   where  sqrt(2)/2 < 1+f < sqrt(2) .
36  *
37  *	2. Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
38  *		 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
39  *	   log(1+f) is computed by
40  *
41  *	     		log(1+f) = 2s + s*log__L(s*s)
42  *	   where
43  *		log__L(z) = z*(L1 + z*(L2 + z*(... (L6 + z*L7)...)))
44  *
45  *	   See log__L() for the values of the coefficients.
46  *
47  *	3. Finally,  log(1+x) = k*ln2 + log(1+f).
48  *
49  *	Remarks 1. In step 3 n*ln2 will be stored in two floating point numbers
50  *		   n*ln2hi + n*ln2lo, where ln2hi is chosen such that the last
51  *		   20 bits (for VAX D format), or the last 21 bits ( for IEEE
52  *		   double) is 0. This ensures n*ln2hi is exactly representable.
53  *		2. In step 1, f may not be representable. A correction term c
54  *	 	   for f is computed. It follows that the correction term for
55  *		   f - t (the leading term of log(1+f) in step 2) is c-c*x. We
56  *		   add this correction term to n*ln2lo to attenuate the error.
57  *
58  *
59  * Special cases:
60  *	log1p(x) is NaN with signal if x < -1; log1p(NaN) is NaN with no signal;
61  *	log1p(INF) is +INF; log1p(-1) is -INF with signal;
62  *	only log1p(0)=0 is exact for finite argument.
63  *
64  * Accuracy:
65  *	log1p(x) returns the exact log(1+x) nearly rounded. In a test run
66  *	with 1,536,000 random arguments on a VAX, the maximum observed
67  *	error was .846 ulps (units in the last place).
68  *
69  * Constants:
70  * The hexadecimal values are the intended ones for the following constants.
71  * The decimal values may be used, provided that the compiler will convert
72  * from decimal to binary accurately enough to produce the hexadecimal values
73  * shown.
74  */
75 
76 #include <errno.h>
77 #include "mathimpl.h"
78 
79 vc(ln2hi, 6.9314718055829871446E-1  ,7217,4031,0000,f7d0,   0, .B17217F7D00000)
80 vc(ln2lo, 1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC)
81 vc(sqrt2, 1.4142135623730950622E0   ,04f3,40b5,de65,33f9,   1, .B504F333F9DE65)
82 
83 ic(ln2hi, 6.9314718036912381649E-1,   -1, 1.62E42FEE00000)
84 ic(ln2lo, 1.9082149292705877000E-10, -33, 1.A39EF35793C76)
85 ic(sqrt2, 1.4142135623730951455E0,     0, 1.6A09E667F3BCD)
86 
87 #ifdef vccast
88 #define	ln2hi	vccast(ln2hi)
89 #define	ln2lo	vccast(ln2lo)
90 #define	sqrt2	vccast(sqrt2)
91 #endif
92 
93 double log1p(x)
94 double x;
95 {
96 	const static double zero=0.0, negone= -1.0, one=1.0,
97 		      half=1.0/2.0, small=1.0E-20;   /* 1+small == 1 */
98 	double z,s,t,c;
99 	int k;
100 
101 #if !defined(vax)&&!defined(tahoe)
102 	if(x!=x) return(x);	/* x is NaN */
103 #endif	/* !defined(vax)&&!defined(tahoe) */
104 
105 	if(finite(x)) {
106 	   if( x > negone ) {
107 
108 	   /* argument reduction */
109 	      if(copysign(x,one)<small) return(x);
110 	      k=logb(one+x); z=scalb(x,-k); t=scalb(one,-k);
111 	      if(z+t >= sqrt2 )
112 		  { k += 1 ; z *= half; t *= half; }
113 	      t += negone; x = z + t;
114 	      c = (t-x)+z ;		/* correction term for x */
115 
116  	   /* compute log(1+x)  */
117               s = x/(2+x); t = x*x*half;
118 	      c += (k*ln2lo-c*x);
119 	      z = c+s*(t+log__L(s*s));
120 	      x += (z - t) ;
121 
122 	      return(k*ln2hi+x);
123 	   }
124 	/* end of if (x > negone) */
125 
126 	    else {
127 #if defined(vax)||defined(tahoe)
128 		if ( x == negone )
129 		    return (infnan(-ERANGE));	/* -INF */
130 		else
131 		    return (infnan(EDOM));	/* NaN */
132 #else	/* defined(vax)||defined(tahoe) */
133 		/* x = -1, return -INF with signal */
134 		if ( x == negone ) return( negone/zero );
135 
136 		/* negative argument for log, return NaN with signal */
137 	        else return ( zero / zero );
138 #endif	/* defined(vax)||defined(tahoe) */
139 	    }
140 	}
141     /* end of if (finite(x)) */
142 
143     /* log(-INF) is NaN */
144 	else if(x<0)
145 	     return(zero/zero);
146 
147     /* log(+INF) is INF */
148 	else return(x);
149 }
150