1 /*
2  * Copyright (c) 1985 Regents of the University of California.
3  * All rights reserved.
4  *
5  * %sccs.include.redist.c%
6  */
7 
8 #ifndef lint
9 static char sccsid[] = "@(#)log__L.c	5.6 (Berkeley) 10/09/90";
10 #endif /* not lint */
11 
12 /* log__L(Z)
13  *		LOG(1+X) - 2S			       X
14  * RETURN      ---------------  WHERE Z = S*S,  S = ------- , 0 <= Z <= .0294...
15  *		      S				     2 + X
16  *
17  * DOUBLE PRECISION (VAX D FORMAT 56 bits or IEEE DOUBLE 53 BITS)
18  * KERNEL FUNCTION FOR LOG; TO BE USED IN LOG1P, LOG, AND POW FUNCTIONS
19  * CODED IN C BY K.C. NG, 1/19/85;
20  * REVISED BY K.C. Ng, 2/3/85, 4/16/85.
21  *
22  * Method :
23  *	1. Polynomial approximation: let s = x/(2+x).
24  *	   Based on log(1+x) = log(1+s) - log(1-s)
25  *		 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
26  *
27  *	   (log(1+x) - 2s)/s is computed by
28  *
29  *	       z*(L1 + z*(L2 + z*(... (L7 + z*L8)...)))
30  *
31  *	   where z=s*s. (See the listing below for Lk's values.) The
32  *	   coefficients are obtained by a special Remez algorithm.
33  *
34  * Accuracy:
35  *	Assuming no rounding error, the maximum magnitude of the approximation
36  *	error (absolute) is 2**(-58.49) for IEEE double, and 2**(-63.63)
37  *	for VAX D format.
38  *
39  * Constants:
40  * The hexadecimal values are the intended ones for the following constants.
41  * The decimal values may be used, provided that the compiler will convert
42  * from decimal to binary accurately enough to produce the hexadecimal values
43  * shown.
44  */
45 
46 #include "mathimpl.h"
47 
48 vc(L1, 6.6666666666666703212E-1 ,aaaa,402a,aac5,aaaa,  0, .AAAAAAAAAAAAC5)
49 vc(L2, 3.9999999999970461961E-1 ,cccc,3fcc,2684,cccc, -1, .CCCCCCCCCC2684)
50 vc(L3, 2.8571428579395698188E-1 ,4924,3f92,5782,92f8, -1, .92492492F85782)
51 vc(L4, 2.2222221233634724402E-1 ,8e38,3f63,af2c,39b7, -2, .E38E3839B7AF2C)
52 vc(L5, 1.8181879517064680057E-1 ,2eb4,3f3a,655e,cc39, -2, .BA2EB4CC39655E)
53 vc(L6, 1.5382888777946145467E-1 ,8551,3f1d,781d,e8c5, -2, .9D8551E8C5781D)
54 vc(L7, 1.3338356561139403517E-1 ,95b3,3f08,cd92,907f, -2, .8895B3907FCD92)
55 vc(L8, 1.2500000000000000000E-1 ,0000,3f00,0000,0000, -2, .80000000000000)
56 
57 ic(L1, 6.6666666666667340202E-1, -1, 1.5555555555592)
58 ic(L2, 3.9999999999416702146E-1, -2, 1.999999997FF24)
59 ic(L3, 2.8571428742008753154E-1, -2, 1.24924941E07B4)
60 ic(L4, 2.2222198607186277597E-1, -3, 1.C71C52150BEA6)
61 ic(L5, 1.8183562745289935658E-1, -3, 1.74663CC94342F)
62 ic(L6, 1.5314087275331442206E-1, -3, 1.39A1EC014045B)
63 ic(L7, 1.4795612545334174692E-1, -3, 1.2F039F0085122)
64 
65 #ifdef vccast
66 #define	L1	vccast(L1)
67 #define	L2	vccast(L2)
68 #define	L3	vccast(L3)
69 #define	L4	vccast(L4)
70 #define	L5	vccast(L5)
71 #define	L6	vccast(L6)
72 #define	L7	vccast(L7)
73 #define	L8	vccast(L8)
74 #endif
75 
76 double log__L(z)
77 double z;
78 {
79 #if defined(vax)||defined(tahoe)
80     return(z*(L1+z*(L2+z*(L3+z*(L4+z*(L5+z*(L6+z*(L7+z*L8))))))));
81 #else	/* defined(vax)||defined(tahoe) */
82     return(z*(L1+z*(L2+z*(L3+z*(L4+z*(L5+z*(L6+z*L7)))))));
83 #endif	/* defined(vax)||defined(tahoe) */
84 }
85