xref: /original-bsd/lib/libm/ieee/cabs.c (revision 65ba69af)
1 /*
2  * Copyright (c) 1985 Regents of the University of California.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms are permitted
6  * provided that the above copyright notice and this paragraph are
7  * duplicated in all such forms and that any documentation,
8  * advertising materials, and other materials related to such
9  * distribution and use acknowledge that the software was developed
10  * by the University of California, Berkeley.  The name of the
11  * University may not be used to endorse or promote products derived
12  * from this software without specific prior written permission.
13  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
14  * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
15  * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
16  *
17  * All recipients should regard themselves as participants in an ongoing
18  * research project and hence should feel obligated to report their
19  * experiences (good or bad) with these elementary function codes, using
20  * the sendbug(8) program, to the authors.
21  */
22 
23 #ifndef lint
24 static char sccsid[] = "@(#)cabs.c	5.3 (Berkeley) 06/30/88";
25 #endif /* not lint */
26 
27 /* HYPOT(X,Y)
28  * RETURN THE SQUARE ROOT OF X^2 + Y^2  WHERE Z=X+iY
29  * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
30  * CODED IN C BY K.C. NG, 11/28/84;
31  * REVISED BY K.C. NG, 7/12/85.
32  *
33  * Required system supported functions :
34  *	copysign(x,y)
35  *	finite(x)
36  *	scalb(x,N)
37  *	sqrt(x)
38  *
39  * Method :
40  *	1. replace x by |x| and y by |y|, and swap x and
41  *	   y if y > x (hence x is never smaller than y).
42  *	2. Hypot(x,y) is computed by:
43  *	   Case I, x/y > 2
44  *
45  *				       y
46  *		hypot = x + -----------------------------
47  *			 		    2
48  *			    sqrt ( 1 + [x/y]  )  +  x/y
49  *
50  *	   Case II, x/y <= 2
51  *				                   y
52  *		hypot = x + --------------------------------------------------
53  *				          		     2
54  *				     			[x/y]   -  2
55  *			   (sqrt(2)+1) + (x-y)/y + -----------------------------
56  *			 		    			  2
57  *			    			  sqrt ( 1 + [x/y]  )  + sqrt(2)
58  *
59  *
60  *
61  * Special cases:
62  *	hypot(x,y) is INF if x or y is +INF or -INF; else
63  *	hypot(x,y) is NAN if x or y is NAN.
64  *
65  * Accuracy:
66  * 	hypot(x,y) returns the sqrt(x^2+y^2) with error less than 1 ulps (units
67  *	in the last place). See Kahan's "Interval Arithmetic Options in the
68  *	Proposed IEEE Floating Point Arithmetic Standard", Interval Mathematics
69  *      1980, Edited by Karl L.E. Nickel, pp 99-128. (A faster but less accurate
70  *	code follows in	comments.) In a test run with 500,000 random arguments
71  *	on a VAX, the maximum observed error was .959 ulps.
72  *
73  * Constants:
74  * The hexadecimal values are the intended ones for the following constants.
75  * The decimal values may be used, provided that the compiler will convert
76  * from decimal to binary accurately enough to produce the hexadecimal values
77  * shown.
78  */
79 
80 #if defined(vax)||defined(tahoe)	/* VAX D format */
81 #ifdef vax
82 #define _0x(A,B)	0x/**/A/**/B
83 #else	/* vax */
84 #define _0x(A,B)	0x/**/B/**/A
85 #endif	/* vax */
86 /* static double */
87 /* r2p1hi =  2.4142135623730950345E0     , Hex  2^  2   *  .9A827999FCEF32 */
88 /* r2p1lo =  1.4349369327986523769E-17   , Hex  2^-55   *  .84597D89B3754B */
89 /* sqrt2  =  1.4142135623730950622E0     ; Hex  2^  1   *  .B504F333F9DE65 */
90 static long    r2p1hix[] = { _0x(8279,411a), _0x(ef32,99fc)};
91 static long    r2p1lox[] = { _0x(597d,2484), _0x(754b,89b3)};
92 static long     sqrt2x[] = { _0x(04f3,40b5), _0x(de65,33f9)};
93 #define   r2p1hi    (*(double*)r2p1hix)
94 #define   r2p1lo    (*(double*)r2p1lox)
95 #define    sqrt2    (*(double*)sqrt2x)
96 #else	/* defined(vax)||defined(tahoe)	*/
97 static double
98 r2p1hi =  2.4142135623730949234E0     , /*Hex  2^1     *  1.3504F333F9DE6 */
99 r2p1lo =  1.2537167179050217666E-16   , /*Hex  2^-53   *  1.21165F626CDD5 */
100 sqrt2  =  1.4142135623730951455E0     ; /*Hex  2^  0   *  1.6A09E667F3BCD */
101 #endif	/* defined(vax)||defined(tahoe)	*/
102 
103 double
104 hypot(x,y)
105 double x, y;
106 {
107 	static double zero=0, one=1,
108 		      small=1.0E-18;	/* fl(1+small)==1 */
109 	static ibig=30;	/* fl(1+2**(2*ibig))==1 */
110 	double copysign(),scalb(),logb(),sqrt(),t,r;
111 	int finite(), exp;
112 
113 	if(finite(x))
114 	    if(finite(y))
115 	    {
116 		x=copysign(x,one);
117 		y=copysign(y,one);
118 		if(y > x)
119 		    { t=x; x=y; y=t; }
120 		if(x == zero) return(zero);
121 		if(y == zero) return(x);
122 		exp= logb(x);
123 		if(exp-(int)logb(y) > ibig )
124 			/* raise inexact flag and return |x| */
125 		   { one+small; return(x); }
126 
127 	    /* start computing sqrt(x^2 + y^2) */
128 		r=x-y;
129 		if(r>y) { 	/* x/y > 2 */
130 		    r=x/y;
131 		    r=r+sqrt(one+r*r); }
132 		else {		/* 1 <= x/y <= 2 */
133 		    r/=y; t=r*(r+2.0);
134 		    r+=t/(sqrt2+sqrt(2.0+t));
135 		    r+=r2p1lo; r+=r2p1hi; }
136 
137 		r=y/r;
138 		return(x+r);
139 
140 	    }
141 
142 	    else if(y==y)   	   /* y is +-INF */
143 		     return(copysign(y,one));
144 	    else
145 		     return(y);	   /* y is NaN and x is finite */
146 
147 	else if(x==x) 		   /* x is +-INF */
148 	         return (copysign(x,one));
149 	else if(finite(y))
150 	         return(x);		   /* x is NaN, y is finite */
151 #if !defined(vax)&&!defined(tahoe)
152 	else if(y!=y) return(y);  /* x and y is NaN */
153 #endif	/* !defined(vax)&&!defined(tahoe) */
154 	else return(copysign(y,one));   /* y is INF */
155 }
156 
157 /* CABS(Z)
158  * RETURN THE ABSOLUTE VALUE OF THE COMPLEX NUMBER  Z = X + iY
159  * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
160  * CODED IN C BY K.C. NG, 11/28/84.
161  * REVISED BY K.C. NG, 7/12/85.
162  *
163  * Required kernel function :
164  *	hypot(x,y)
165  *
166  * Method :
167  *	cabs(z) = hypot(x,y) .
168  */
169 
170 double
171 cabs(z)
172 struct { double x, y;} z;
173 {
174 	return hypot(z.x,z.y);
175 }
176 
177 double
178 z_abs(z)
179 struct { double x,y;} *z;
180 {
181 	return hypot(z->x,z->y);
182 }
183 
184 /* A faster but less accurate version of cabs(x,y) */
185 #if 0
186 double hypot(x,y)
187 double x, y;
188 {
189 	static double zero=0, one=1;
190 		      small=1.0E-18;	/* fl(1+small)==1 */
191 	static ibig=30;	/* fl(1+2**(2*ibig))==1 */
192 	double copysign(),scalb(),logb(),sqrt(),temp;
193 	int finite(), exp;
194 
195 	if(finite(x))
196 	    if(finite(y))
197 	    {
198 		x=copysign(x,one);
199 		y=copysign(y,one);
200 		if(y > x)
201 		    { temp=x; x=y; y=temp; }
202 		if(x == zero) return(zero);
203 		if(y == zero) return(x);
204 		exp= logb(x);
205 		x=scalb(x,-exp);
206 		if(exp-(int)logb(y) > ibig )
207 			/* raise inexact flag and return |x| */
208 		   { one+small; return(scalb(x,exp)); }
209 		else y=scalb(y,-exp);
210 		return(scalb(sqrt(x*x+y*y),exp));
211 	    }
212 
213 	    else if(y==y)   	   /* y is +-INF */
214 		     return(copysign(y,one));
215 	    else
216 		     return(y);	   /* y is NaN and x is finite */
217 
218 	else if(x==x) 		   /* x is +-INF */
219 	         return (copysign(x,one));
220 	else if(finite(y))
221 	         return(x);		   /* x is NaN, y is finite */
222 	else if(y!=y) return(y);  	/* x and y is NaN */
223 	else return(copysign(y,one));   /* y is INF */
224 }
225 #endif
226