xref: /original-bsd/old/dbx/process.c (revision 8ac030d2)
1 /* Copyright (c) 1982 Regents of the University of California */
2 
3 static char sccsid[] = "@(#)process.c 1.3 12/18/82";
4 
5 /*
6  * Process management.
7  *
8  * This module contains the routines to manage the execution and
9  * tracing of the debuggee process.
10  */
11 
12 #include "defs.h"
13 #include "process.h"
14 #include "machine.h"
15 #include "events.h"
16 #include "tree.h"
17 #include "operators.h"
18 #include "source.h"
19 #include "object.h"
20 #include "mappings.h"
21 #include "main.h"
22 #include "coredump.h"
23 #include <signal.h>
24 #include <errno.h>
25 #include <sys/param.h>
26 #include <machine/reg.h>
27 #include <sys/stat.h>
28 
29 #ifndef public
30 
31 typedef struct Process *Process;
32 
33 Process process;
34 
35 #include "machine.h"
36 
37 #endif
38 
39 #define NOTSTARTED 1
40 #define STOPPED 0177
41 #define FINISHED 0
42 
43 /*
44  * Cache-ing of instruction segment is done to reduce the number
45  * of system calls.
46  */
47 
48 #define CSIZE 1003       /* size of instruction cache */
49 
50 typedef struct {
51     Word addr;
52     Word val;
53 } CacheWord;
54 
55 /*
56  * This structure holds the information we need from the user structure.
57  */
58 
59 struct Process {
60     int pid;			/* process being traced */
61     int mask;			/* ps */
62     Word reg[NREG];		/* process's registers */
63     Word oreg[NREG];		/* registers when process last stopped */
64     short status;		/* either STOPPED or FINISHED */
65     short signo;		/* signal that stopped process */
66     int exitval;		/* return value from exit() */
67     long sigset;		/* bit array of traced signals */
68     CacheWord word[CSIZE];	/* text segment cache */
69 };
70 
71 /*
72  * These definitions are for the arguments to "pio".
73  */
74 
75 typedef enum { PREAD, PWRITE } PioOp;
76 typedef enum { TEXTSEG, DATASEG } PioSeg;
77 
78 private struct Process pbuf;
79 
80 #define MAXNCMDARGS 10         /* maximum number of arguments to RUN */
81 
82 private Boolean just_started;
83 private int argc;
84 private String argv[MAXNCMDARGS];
85 private String infile, outfile;
86 
87 /*
88  * Initialize process information.
89  */
90 
91 public process_init()
92 {
93     register Integer i;
94     Char buf[10];
95 
96     process = &pbuf;
97     process->status = (coredump) ? STOPPED : NOTSTARTED;
98     setsigtrace();
99     for (i = 0; i < NREG; i++) {
100 	sprintf(buf, "$r%d", i);
101 	defregname(identname(buf, false), i);
102     }
103     defregname(identname("$ap", true), ARGP);
104     defregname(identname("$fp", true), FRP);
105     defregname(identname("$sp", true), STKP);
106     defregname(identname("$pc", true), PROGCTR);
107     if (coredump) {
108 	coredump_readin(process->mask, process->reg, process->signo);
109     }
110 }
111 
112 /*
113  * Routines to get at process information from outside this module.
114  */
115 
116 public Word reg(n)
117 Integer n;
118 {
119     register Word w;
120 
121     if (n == NREG) {
122 	w = process->mask;
123     } else {
124 	w = process->reg[n];
125     }
126     return w;
127 }
128 
129 public setreg(n, w)
130 Integer n;
131 Word w;
132 {
133     process->reg[n] = w;
134 }
135 
136 /*
137  * Begin execution.
138  *
139  * We set a breakpoint at the end of the code so that the
140  * process data doesn't disappear after the program terminates.
141  */
142 
143 private Boolean remade();
144 
145 public start(argv, infile, outfile)
146 String argv[];
147 String infile, outfile;
148 {
149     String pargv[4];
150     Node cond;
151 
152     if (coredump) {
153 	coredump = false;
154 	fclose(corefile);
155 	coredump_close();
156     }
157     if (argv == nil) {
158 	argv = pargv;
159 	pargv[0] = objname;
160 	pargv[1] = nil;
161     } else {
162 	argv[argc] = nil;
163     }
164     if (remade(objname)) {
165 	reinit(argv, infile, outfile);
166     }
167     pstart(process, argv, infile, outfile);
168     if (process->status == STOPPED) {
169 	pc = 0;
170 	curfunc = program;
171 	if (objsize != 0) {
172 	    cond = build(O_EQ, build(O_SYM, pcsym), build(O_LCON, lastaddr()));
173 	    event_once(cond, buildcmdlist(build(O_ENDX)));
174 	}
175     }
176 }
177 
178 /*
179  * Check to see if the object file has changed since the symbolic
180  * information last was read.
181  */
182 
183 private time_t modtime;
184 
185 private Boolean remade(filename)
186 String filename;
187 {
188     struct stat s;
189     Boolean b;
190 
191     stat(filename, &s);
192     b = (Boolean) (modtime != 0 and modtime < s.st_mtime);
193     modtime = s.st_mtime;
194     return b;
195 }
196 
197 /*
198  * Set up what signals we want to trace.
199  */
200 
201 private setsigtrace()
202 {
203     register Integer i;
204     register Process p;
205 
206     p = process;
207     for (i = 1; i <= NSIG; i++) {
208 	psigtrace(p, i, true);
209     }
210     psigtrace(p, SIGHUP, false);
211     psigtrace(p, SIGKILL, false);
212     psigtrace(p, SIGALRM, false);
213     psigtrace(p, SIGTSTP, false);
214     psigtrace(p, SIGCONT, false);
215     psigtrace(p, SIGCHLD, false);
216 }
217 
218 /*
219  * Initialize the argument list.
220  */
221 
222 public arginit()
223 {
224     infile = nil;
225     outfile = nil;
226     argv[0] = objname;
227     argc = 1;
228 }
229 
230 /*
231  * Add an argument to the list for the debuggee.
232  */
233 
234 public newarg(arg)
235 String arg;
236 {
237     if (argc >= MAXNCMDARGS) {
238 	error("too many arguments");
239     }
240     argv[argc++] = arg;
241 }
242 
243 /*
244  * Set the standard input for the debuggee.
245  */
246 
247 public inarg(filename)
248 String filename;
249 {
250     if (infile != nil) {
251 	error("multiple input redirects");
252     }
253     infile = filename;
254 }
255 
256 /*
257  * Set the standard output for the debuggee.
258  * Probably should check to avoid overwriting an existing file.
259  */
260 
261 public outarg(filename)
262 String filename;
263 {
264     if (outfile != nil) {
265 	error("multiple output redirect");
266     }
267     outfile = filename;
268 }
269 
270 /*
271  * Start debuggee executing.
272  */
273 
274 public run()
275 {
276     process->status = STOPPED;
277     fixbps();
278     curline = 0;
279     start(argv, infile, outfile);
280     just_started = true;
281     isstopped = false;
282     cont();
283 }
284 
285 /*
286  * Continue execution wherever we left off.
287  *
288  * Note that this routine never returns.  Eventually bpact() will fail
289  * and we'll call printstatus or step will call it.
290  */
291 
292 typedef int Intfunc();
293 
294 private Intfunc *dbintr;
295 private intr();
296 
297 #define succeeds    == true
298 #define fails       == false
299 
300 public cont()
301 {
302     dbintr = signal(SIGINT, intr);
303     if (just_started) {
304 	just_started = false;
305     } else {
306 	if (not isstopped) {
307 	    error("can't continue execution");
308 	}
309 	isstopped = false;
310 	step();
311     }
312     for (;;) {
313 	if (single_stepping) {
314 	    printnews();
315 	} else {
316 	    setallbps();
317 	    resume();
318 	    unsetallbps();
319 	    if (bpact() fails) {
320 		printstatus();
321 	    }
322 	}
323 	step();
324     }
325     /* NOTREACHED */
326 }
327 
328 /*
329  * This routine is called if we get an interrupt while "running" px
330  * but actually in the debugger.  Could happen, for example, while
331  * processing breakpoints.
332  *
333  * We basically just want to keep going; the assumption is
334  * that when the process resumes it will get the interrupt
335  * which will then be handled.
336  */
337 
338 private intr()
339 {
340     signal(SIGINT, intr);
341 }
342 
343 public fixintr()
344 {
345     signal(SIGINT, dbintr);
346 }
347 
348 /*
349  * Resume execution.
350  */
351 
352 public resume()
353 {
354     register Process p;
355 
356     p = process;
357     if (traceexec) {
358 	printf("execution resumes at pc 0x%x\n", process->reg[PROGCTR]);
359 	fflush(stdout);
360     }
361     pcont(p);
362     pc = process->reg[PROGCTR];
363     if (traceexec) {
364 	printf("execution stops at pc 0x%x on sig %d\n",
365 	    process->reg[PROGCTR], p->signo);
366 	fflush(stdout);
367     }
368 }
369 
370 /*
371  * Continue execution up to the next source line.
372  *
373  * There are two ways to define the next source line depending on what
374  * is desired when a procedure or function call is encountered.  Step
375  * stops at the beginning of the procedure or call; next skips over it.
376  */
377 
378 /*
379  * Stepc is what is called when the step command is given.
380  * It has to play with the "isstopped" information.
381  */
382 
383 public stepc()
384 {
385     if (not isstopped) {
386 	error("can't continue execution");
387     }
388     isstopped = false;
389     dostep(false);
390     isstopped = true;
391 }
392 
393 public next()
394 {
395     if (not isstopped) {
396 	error("can't continue execution");
397     }
398     isstopped = false;
399     dostep(true);
400     isstopped = true;
401 }
402 
403 public step()
404 {
405     dostep(false);
406 }
407 
408 /*
409  * Resume execution up to the given address.  It is assumed that
410  * no breakpoints exist between the current address and the one
411  * we're stepping to.  This saves us from setting all the breakpoints.
412  */
413 
414 public stepto(addr)
415 Address addr;
416 {
417     setbp(addr);
418     resume();
419     unsetbp(addr);
420     if (not isbperr()) {
421 	printstatus();
422     }
423 }
424 
425 /*
426  * Print the status of the process.
427  * This routine does not return.
428  */
429 
430 public printstatus()
431 {
432     if (process->status == FINISHED) {
433 	exit(0);
434     } else {
435 	curfunc = whatblock(pc);
436 	getsrcpos();
437 	if (process->signo == SIGINT) {
438 	    isstopped = true;
439 	    printerror();
440 	} else if (isbperr() and isstopped) {
441 	    printf("stopped ");
442 	    if (curline > 0) {
443 		printsrcpos();
444 		putchar('\n');
445 		printlines(curline, curline);
446 	    } else {
447 		printf("in ");
448 		printwhich(stdout, curfunc);
449 		printf(" at 0x%x\n", pc);
450 		printinst(pc, pc);
451 	    }
452 	    erecover();
453 	} else {
454 	    fixbps();
455 	    fixintr();
456 	    isstopped = true;
457 	    printerror();
458 	}
459     }
460 }
461 
462 /*
463  * Some functions for testing the state of the process.
464  */
465 
466 public Boolean notstarted(p)
467 Process p;
468 {
469     return (Boolean) (p->status == NOTSTARTED);
470 }
471 
472 public Boolean isfinished(p)
473 Process p;
474 {
475     return (Boolean) (p->status == FINISHED);
476 }
477 
478 /*
479  * Return the signal number which stopped the process.
480  */
481 
482 public Integer errnum(p)
483 Process p;
484 {
485     return p->signo;
486 }
487 
488 /*
489  * Return the termination code of the process.
490  */
491 
492 public Integer exitcode(p)
493 Process p;
494 {
495     return p->exitval;
496 }
497 
498 /*
499  * These routines are used to access the debuggee process from
500  * outside this module.
501  *
502  * They invoke "pio" which eventually leads to a call to "ptrace".
503  * The system generates an I/O error when a ptrace fails, we catch
504  * that here and assume its due to a misguided address.
505  */
506 
507 extern Intfunc *onsyserr();
508 
509 private badaddr;
510 private rwerr();
511 
512 /*
513  * Read from the process' instruction area.
514  */
515 
516 public iread(buff, addr, nbytes)
517 char *buff;
518 Address addr;
519 int nbytes;
520 {
521     Intfunc *f;
522 
523     f = onsyserr(EIO, rwerr);
524     badaddr = addr;
525     if (coredump) {
526 	coredump_readtext(buff, addr, nbytes);
527     } else {
528 	pio(process, PREAD, TEXTSEG, buff, addr, nbytes);
529     }
530     onsyserr(EIO, f);
531 }
532 
533 /*
534  * Write to the process' instruction area, usually in order to set
535  * or unset a breakpoint.
536  */
537 
538 public iwrite(buff, addr, nbytes)
539 char *buff;
540 Address addr;
541 int nbytes;
542 {
543     Intfunc *f;
544 
545     if (coredump) {
546 	error("no process to write to");
547     }
548     f = onsyserr(EIO, rwerr);
549     badaddr = addr;
550     pio(process, PWRITE, TEXTSEG, buff, addr, nbytes);
551     onsyserr(EIO, f);
552 }
553 
554 /*
555  * Read for the process' data area.
556  */
557 
558 public dread(buff, addr, nbytes)
559 char *buff;
560 Address addr;
561 int nbytes;
562 {
563     Intfunc *f;
564 
565     f = onsyserr(EIO, rwerr);
566     badaddr = addr;
567     if (coredump) {
568 	coredump_readdata(buff, addr, nbytes);
569     } else {
570 	pio(process, PREAD, DATASEG, buff, addr, nbytes);
571     }
572     onsyserr(EIO, f);
573 }
574 
575 /*
576  * Write to the process' data area.
577  */
578 
579 public dwrite(buff, addr, nbytes)
580 char *buff;
581 Address addr;
582 int nbytes;
583 {
584     Intfunc *f;
585 
586     if (coredump) {
587 	error("no process to write to");
588     }
589     f = onsyserr(EIO, rwerr);
590     badaddr = addr;
591     pio(process, PWRITE, DATASEG, buff, addr, nbytes);
592     onsyserr(EIO, f);
593 }
594 
595 /*
596  * Error handler.
597  */
598 
599 private rwerr()
600 {
601     error("bad read/write process address 0x%x", badaddr);
602 }
603 
604 /*
605  * Ptrace interface.
606  */
607 
608 /*
609  * This magic macro enables us to look at the process' registers
610  * in its user structure.  Very gross.
611  */
612 
613 #define regloc(reg)     (ctob(UPAGES) + ( sizeof(int) * (reg) ))
614 
615 #define WMASK           (~(sizeof(Word) - 1))
616 #define cachehash(addr) ((unsigned) ((addr >> 2) % CSIZE))
617 
618 #define FIRSTSIG        SIGINT
619 #define LASTSIG         SIGQUIT
620 #define ischild(pid)    ((pid) == 0)
621 #define traceme()       ptrace(0, 0, 0, 0)
622 #define setrep(n)       (1 << ((n)-1))
623 #define istraced(p)     (p->sigset&setrep(p->signo))
624 
625 /*
626  * Ptrace options (specified in first argument).
627  */
628 
629 #define UREAD   3       /* read from process's user structure */
630 #define UWRITE  6       /* write to process's user structure */
631 #define IREAD   1       /* read from process's instruction space */
632 #define IWRITE  4       /* write to process's instruction space */
633 #define DREAD   2       /* read from process's data space */
634 #define DWRITE  5       /* write to process's data space */
635 #define CONT    7       /* continue stopped process */
636 #define SSTEP   9       /* continue for approximately one instruction */
637 #define PKILL   8       /* terminate the process */
638 
639 /*
640  * Start up a new process by forking and exec-ing the
641  * given argument list, returning when the process is loaded
642  * and ready to execute.  The PROCESS information (pointed to
643  * by the first argument) is appropriately filled.
644  *
645  * If the given PROCESS structure is associated with an already running
646  * process, we terminate it.
647  */
648 
649 /* VARARGS2 */
650 private pstart(p, argv, infile, outfile)
651 Process p;
652 String argv[];
653 String infile;
654 String outfile;
655 {
656     int status;
657     File in, out;
658 
659     if (p->pid != 0) {          	/* child already running? */
660 	ptrace(PKILL, p->pid, 0, 0);    /* ... kill it! */
661     }
662     psigtrace(p, SIGTRAP, true);
663     if ((p->pid = fork()) == -1) {
664 	panic("can't fork");
665     }
666     if (ischild(p->pid)) {
667 	traceme();
668 	if (infile != nil) {
669 	    in = fopen(infile, "r");
670 	    if (in == nil) {
671 		printf("can't read %s\n", infile);
672 		exit(1);
673 	    }
674 	    fswap(0, fileno(in));
675 	}
676 	if (outfile != nil) {
677 	    out = fopen(outfile, "w");
678 	    if (out == nil) {
679 		printf("can't write %s\n", outfile);
680 		exit(1);
681 	    }
682 	    fswap(1, fileno(out));
683 	}
684 	execvp(argv[0], argv);
685 	panic("can't exec %s", argv[0]);
686     }
687     pwait(p->pid, &status);
688     getinfo(p, status);
689     if (p->status != STOPPED) {
690 	error("program could not begin execution");
691     }
692 }
693 
694 /*
695  * Continue a stopped process.  The argument points to a PROCESS structure.
696  * Before the process is restarted it's user area is modified according to
697  * the values in the structure.  When this routine finishes,
698  * the structure has the new values from the process's user area.
699  *
700  * Pcont terminates when the process stops with a signal pending that
701  * is being traced (via psigtrace), or when the process terminates.
702  */
703 
704 private pcont(p)
705 Process p;
706 {
707     int status;
708 
709     if (p->pid == 0) {
710 	error("program not active");
711     }
712     do {
713 	setinfo(p);
714 	sigs_off();
715 	if (ptrace(CONT, p->pid, p->reg[PROGCTR], p->signo) < 0) {
716 	    panic("can't continue process");
717 	}
718 	pwait(p->pid, &status);
719 	sigs_on();
720 	getinfo(p, status);
721     } while (p->status == STOPPED and not istraced(p));
722 }
723 
724 /*
725  * Single step as best ptrace can.
726  */
727 
728 public pstep(p)
729 Process p;
730 {
731     int status;
732 
733     setinfo(p);
734     sigs_off();
735     ptrace(SSTEP, p->pid, p->reg[PROGCTR], p->signo);
736     pwait(p->pid, &status);
737     sigs_on();
738     getinfo(p, status);
739 }
740 
741 /*
742  * Return from execution when the given signal is pending.
743  */
744 
745 public psigtrace(p, sig, sw)
746 Process p;
747 int sig;
748 Boolean sw;
749 {
750     if (sw) {
751 	p->sigset |= setrep(sig);
752     } else {
753 	p->sigset &= ~setrep(sig);
754     }
755 }
756 
757 /*
758  * Don't catch any signals.
759  * Particularly useful when letting a process finish uninhibited.
760  */
761 
762 public unsetsigtraces(p)
763 Process p;
764 {
765     p->sigset = 0;
766 }
767 
768 /*
769  * Turn off attention to signals not being caught.
770  */
771 
772 private Intfunc *sigfunc[NSIG];
773 
774 private sigs_off()
775 {
776     register int i;
777 
778     for (i = FIRSTSIG; i < LASTSIG; i++) {
779 	if (i != SIGKILL) {
780 	    sigfunc[i] = signal(i, SIG_IGN);
781 	}
782     }
783 }
784 
785 /*
786  * Turn back on attention to signals.
787  */
788 
789 private sigs_on()
790 {
791     register int i;
792 
793     for (i = FIRSTSIG; i < LASTSIG; i++) {
794 	if (i != SIGKILL) {
795 	    signal(i, sigfunc[i]);
796 	}
797     }
798 }
799 
800 /*
801  * Get process information from user area.
802  */
803 
804 private int rloc[] ={
805     R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, AP, FP, SP, PC
806 };
807 
808 private getinfo(p, status)
809 register Process p;
810 register int status;
811 {
812     register int i;
813 
814     p->signo = (status&0177);
815     p->exitval = ((status >> 8)&0377);
816     if (p->signo != STOPPED) {
817 	p->status = FINISHED;
818     } else {
819 	p->status = p->signo;
820 	p->signo = p->exitval;
821 	p->exitval = 0;
822 	p->mask = ptrace(UREAD, p->pid, regloc(PS), 0);
823 	for (i = 0; i < NREG; i++) {
824 	    p->reg[i] = ptrace(UREAD, p->pid, regloc(rloc[i]), 0);
825 	    p->oreg[i] = p->reg[i];
826 	}
827     }
828 }
829 
830 /*
831  * Set process's user area information from given process structure.
832  */
833 
834 private setinfo(p)
835 register Process p;
836 {
837     register int i;
838     register int r;
839 
840     if (istraced(p)) {
841 	p->signo = 0;
842     }
843     for (i = 0; i < NREG; i++) {
844 	if ((r = p->reg[i]) != p->oreg[i]) {
845 	    ptrace(UWRITE, p->pid, regloc(rloc[i]), r);
846 	}
847     }
848 }
849 
850 /*
851  * Structure for reading and writing by words, but dealing with bytes.
852  */
853 
854 typedef union {
855     Word pword;
856     Byte pbyte[sizeof(Word)];
857 } Pword;
858 
859 /*
860  * Read (write) from (to) the process' address space.
861  * We must deal with ptrace's inability to look anywhere other
862  * than at a word boundary.
863  */
864 
865 private Word fetch();
866 private store();
867 
868 private pio(p, op, seg, buff, addr, nbytes)
869 Process p;
870 PioOp op;
871 PioSeg seg;
872 char *buff;
873 Address addr;
874 int nbytes;
875 {
876     register int i;
877     register Address newaddr;
878     register char *cp;
879     char *bufend;
880     Pword w;
881     Address wordaddr;
882     int byteoff;
883 
884     if (p->status != STOPPED) {
885 	error("program is not active");
886     }
887     cp = buff;
888     newaddr = addr;
889     wordaddr = (newaddr&WMASK);
890     if (wordaddr != newaddr) {
891 	w.pword = fetch(p, seg, wordaddr);
892 	for (i = newaddr - wordaddr; i < sizeof(Word) and nbytes > 0; i++) {
893 	    if (op == PREAD) {
894 		*cp++ = w.pbyte[i];
895 	    } else {
896 		w.pbyte[i] = *cp++;
897 	    }
898 	    nbytes--;
899 	}
900 	if (op == PWRITE) {
901 	    store(p, seg, wordaddr, w.pword);
902 	}
903 	newaddr = wordaddr + sizeof(Word);
904     }
905     byteoff = (nbytes&(~WMASK));
906     nbytes -= byteoff;
907     bufend = cp + nbytes;
908     while (cp < bufend) {
909 	if (op == PREAD) {
910 	    *((Word *) cp) = fetch(p, seg, newaddr);
911 	} else {
912 	    store(p, seg, newaddr, *((Word *) cp));
913 	}
914 	cp += sizeof(Word);
915 	newaddr += sizeof(Word);
916     }
917     if (byteoff > 0) {
918 	w.pword = fetch(p, seg, newaddr);
919 	for (i = 0; i < byteoff; i++) {
920 	    if (op == PREAD) {
921 		*cp++ = w.pbyte[i];
922 	    } else {
923 		w.pbyte[i] = *cp++;
924 	    }
925 	}
926 	if (op == PWRITE) {
927 	    store(p, seg, newaddr, w.pword);
928 	}
929     }
930 }
931 
932 /*
933  * Get a word from a process at the given address.
934  * The address is assumed to be on a word boundary.
935  *
936  * A simple cache scheme is used to avoid redundant ptrace calls
937  * to the instruction space since it is assumed to be pure.
938  *
939  * It is necessary to use a write-through scheme so that
940  * breakpoints right next to each other don't interfere.
941  */
942 
943 private Integer nfetchs, nreads, nwrites;
944 
945 private Word fetch(p, seg, addr)
946 Process p;
947 PioSeg seg;
948 register int addr;
949 {
950     register CacheWord *wp;
951     register Word w;
952 
953     switch (seg) {
954 	case TEXTSEG:
955 	    ++nfetchs;
956 	    wp = &p->word[cachehash(addr)];
957 	    if (addr == 0 or wp->addr != addr) {
958 		++nreads;
959 		w = ptrace(IREAD, p->pid, addr, 0);
960 		wp->addr = addr;
961 		wp->val = w;
962 	    } else {
963 		w = wp->val;
964 	    }
965 	    break;
966 
967 	case DATASEG:
968 	    w = ptrace(DREAD, p->pid, addr, 0);
969 	    break;
970 
971 	default:
972 	    panic("fetch: bad seg %d", seg);
973 	    /* NOTREACHED */
974     }
975     return w;
976 }
977 
978 /*
979  * Put a word into the process' address space at the given address.
980  * The address is assumed to be on a word boundary.
981  */
982 
983 private store(p, seg, addr, data)
984 Process p;
985 PioSeg seg;
986 int addr;
987 Word data;
988 {
989     register CacheWord *wp;
990 
991     switch (seg) {
992 	case TEXTSEG:
993 	    ++nwrites;
994 	    wp = &p->word[cachehash(addr)];
995 	    wp->addr = addr;
996 	    wp->val = data;
997 	    ptrace(IWRITE, p->pid, addr, data);
998 	    break;
999 
1000 	case DATASEG:
1001 	    ptrace(DWRITE, p->pid, addr, data);
1002 	    break;
1003 
1004 	default:
1005 	    panic("store: bad seg %d", seg);
1006 	    /* NOTREACHED */
1007     }
1008 }
1009 
1010 public printptraceinfo()
1011 {
1012     printf("%d fetchs, %d reads, %d writes\n", nfetchs, nreads, nwrites);
1013 }
1014 
1015 /*
1016  * Swap file numbers so as to redirect standard input and output.
1017  */
1018 
1019 private fswap(oldfd, newfd)
1020 int oldfd;
1021 int newfd;
1022 {
1023     if (oldfd != newfd) {
1024 	close(oldfd);
1025 	dup(newfd);
1026 	close(newfd);
1027     }
1028 }
1029