xref: /original-bsd/old/libm/libm/IEEE/cabs.c (revision 7211505a)
1 /*
2  * Copyright (c) 1985 Regents of the University of California.
3  *
4  * Use and reproduction of this software are granted  in  accordance  with
5  * the terms and conditions specified in  the  Berkeley  Software  License
6  * Agreement (in particular, this entails acknowledgement of the programs'
7  * source, and inclusion of this notice) with the additional understanding
8  * that  all  recipients  should regard themselves as participants  in  an
9  * ongoing  research  project and hence should  feel  obligated  to report
10  * their  experiences (good or bad) with these elementary function  codes,
11  * using "sendbug 4bsd-bugs@BERKELEY", to the authors.
12  */
13 
14 #ifndef lint
15 static char sccsid[] = "@(#)cabs.c	1.3 (Berkeley) 06/29/87";
16 #endif not lint
17 
18 /* CABS(Z)
19  * RETURN THE ABSOLUTE VALUE OF THE COMPLEX NUMBER  Z = X + iY
20  * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
21  * CODED IN C BY K.C. NG, 11/28/84.
22  * REVISED BY K.C. NG, 7/12/85.
23  *
24  * Required kernel function :
25  *	hypot(x,y)
26  *
27  * Method :
28  *	cabs(z) = hypot(x,y) .
29  */
30 
31 double cabs(z)
32 struct { double x, y;} z;
33 {
34 	double hypot();
35 	return(hypot(z.x,z.y));
36 }
37 
38 
39 /* HYPOT(X,Y)
40  * RETURN THE SQUARE ROOT OF X^2 + Y^2  WHERE Z=X+iY
41  * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
42  * CODED IN C BY K.C. NG, 11/28/84;
43  * REVISED BY K.C. NG, 7/12/85.
44  *
45  * Required system supported functions :
46  *	copysign(x,y)
47  *	finite(x)
48  *	scalb(x,N)
49  *	sqrt(x)
50  *
51  * Method :
52  *	1. replace x by |x| and y by |y|, and swap x and
53  *	   y if y > x (hence x is never smaller than y).
54  *	2. Hypot(x,y) is computed by:
55  *	   Case I, x/y > 2
56  *
57  *				       y
58  *		hypot = x + -----------------------------
59  *			 		    2
60  *			    sqrt ( 1 + [x/y]  )  +  x/y
61  *
62  *	   Case II, x/y <= 2
63  *				                   y
64  *		hypot = x + --------------------------------------------------
65  *				          		     2
66  *				     			[x/y]   -  2
67  *			   (sqrt(2)+1) + (x-y)/y + -----------------------------
68  *			 		    			  2
69  *			    			  sqrt ( 1 + [x/y]  )  + sqrt(2)
70  *
71  *
72  *
73  * Special cases:
74  *	hypot(x,y) is INF if x or y is +INF or -INF; else
75  *	hypot(x,y) is NAN if x or y is NAN.
76  *
77  * Accuracy:
78  * 	hypot(x,y) returns the sqrt(x^2+y^2) with error less than 1 ulps (units
79  *	in the last place). See Kahan's "Interval Arithmetic Options in the
80  *	Proposed IEEE Floating Point Arithmetic Standard", Interval Mathematics
81  *      1980, Edited by Karl L.E. Nickel, pp 99-128. (A faster but less accurate
82  *	code follows in	comments.) In a test run with 500,000 random arguments
83  *	on a VAX, the maximum observed error was .959 ulps.
84  *
85  * Constants:
86  * The hexadecimal values are the intended ones for the following constants.
87  * The decimal values may be used, provided that the compiler will convert
88  * from decimal to binary accurately enough to produce the hexadecimal values
89  * shown.
90  */
91 
92 #if defined(VAX) || defined(TAHOE)	/* VAX D format */
93 /* static double */
94 /* r2p1hi =  2.4142135623730950345E0     , Hex  2^  2   *  .9A827999FCEF32 */
95 /* r2p1lo =  1.4349369327986523769E-17   , Hex  2^-55   *  .84597D89B3754B */
96 /* sqrt2  =  1.4142135623730950622E0     ; Hex  2^  1   *  .B504F333F9DE65 */
97 static long    r2p1hix[] = { 0x8279411a, 0xef3299fc};
98 static long    r2p1lox[] = { 0x597d2484, 0x754b89b3};
99 static long     sqrt2x[] = { 0x04f340b5, 0xde6533f9};
100 #define   r2p1hi    (*(double*)r2p1hix)
101 #define   r2p1lo    (*(double*)r2p1lox)
102 #define    sqrt2    (*(double*)sqrt2x)
103 #else		/* IEEE double format */
104 static double
105 r2p1hi =  2.4142135623730949234E0     , /*Hex  2^1     *  1.3504F333F9DE6 */
106 r2p1lo =  1.2537167179050217666E-16   , /*Hex  2^-53   *  1.21165F626CDD5 */
107 sqrt2  =  1.4142135623730951455E0     ; /*Hex  2^  0   *  1.6A09E667F3BCD */
108 #endif
109 
110 double hypot(x,y)
111 double x, y;
112 {
113 	static double zero=0, one=1,
114 		      small=1.0E-18;	/* fl(1+small)==1 */
115 	static ibig=30;	/* fl(1+2**(2*ibig))==1 */
116 	double copysign(),scalb(),logb(),sqrt(),t,r;
117 	int finite(), exp;
118 
119 	if(finite(x))
120 	    if(finite(y))
121 	    {
122 		x=copysign(x,one);
123 		y=copysign(y,one);
124 		if(y > x)
125 		    { t=x; x=y; y=t; }
126 		if(x == zero) return(zero);
127 		if(y == zero) return(x);
128 		exp= logb(x);
129 		if(exp-(int)logb(y) > ibig )
130 			/* raise inexact flag and return |x| */
131 		   { one+small; return(x); }
132 
133 	    /* start computing sqrt(x^2 + y^2) */
134 		r=x-y;
135 		if(r>y) { 	/* x/y > 2 */
136 		    r=x/y;
137 		    r=r+sqrt(one+r*r); }
138 		else {		/* 1 <= x/y <= 2 */
139 		    r/=y; t=r*(r+2.0);
140 		    r+=t/(sqrt2+sqrt(2.0+t));
141 		    r+=r2p1lo; r+=r2p1hi; }
142 
143 		r=y/r;
144 		return(x+r);
145 
146 	    }
147 
148 	    else if(y==y)   	   /* y is +-INF */
149 		     return(copysign(y,one));
150 	    else
151 		     return(y);	   /* y is NaN and x is finite */
152 
153 	else if(x==x) 		   /* x is +-INF */
154 	         return (copysign(x,one));
155 	else if(finite(y))
156 	         return(x);		   /* x is NaN, y is finite */
157 	else if(y!=y) return(y);  /* x and y is NaN */
158 	else return(copysign(y,one));   /* y is INF */
159 }
160 
161 /* A faster but less accurate version of cabs(x,y) */
162 #if 0
163 double hypot(x,y)
164 double x, y;
165 {
166 	static double zero=0, one=1;
167 		      small=1.0E-18;	/* fl(1+small)==1 */
168 	static ibig=30;	/* fl(1+2**(2*ibig))==1 */
169 	double copysign(),scalb(),logb(),sqrt(),temp;
170 	int finite(), exp;
171 
172 	if(finite(x))
173 	    if(finite(y))
174 	    {
175 		x=copysign(x,one);
176 		y=copysign(y,one);
177 		if(y > x)
178 		    { temp=x; x=y; y=temp; }
179 		if(x == zero) return(zero);
180 		if(y == zero) return(x);
181 		exp= logb(x);
182 		x=scalb(x,-exp);
183 		if(exp-(int)logb(y) > ibig )
184 			/* raise inexact flag and return |x| */
185 		   { one+small; return(scalb(x,exp)); }
186 		else y=scalb(y,-exp);
187 		return(scalb(sqrt(x*x+y*y),exp));
188 	    }
189 
190 	    else if(y==y)   	   /* y is +-INF */
191 		     return(copysign(y,one));
192 	    else
193 		     return(y);	   /* y is NaN and x is finite */
194 
195 	else if(x==x) 		   /* x is +-INF */
196 	         return (copysign(x,one));
197 	else if(finite(y))
198 	         return(x);		   /* x is NaN, y is finite */
199 	else if(y!=y) return(y);  	/* x and y is NaN */
200 	else return(copysign(y,one));   /* y is INF */
201 }
202 #endif
203