xref: /original-bsd/old/libm/libm/expm1.c (revision e59fb703)
1 /*
2  * Copyright (c) 1985 Regents of the University of California.
3  *
4  * Use and reproduction of this software are granted  in  accordance  with
5  * the terms and conditions specified in  the  Berkeley  Software  License
6  * Agreement (in particular, this entails acknowledgement of the programs'
7  * source, and inclusion of this notice) with the additional understanding
8  * that  all  recipients  should regard themselves as participants  in  an
9  * ongoing  research  project and hence should  feel  obligated  to report
10  * their  experiences (good or bad) with these elementary function  codes,
11  * using "sendbug 4bsd-bugs@BERKELEY", to the authors.
12  */
13 
14 #ifndef lint
15 static char sccsid[] = "@(#)expm1.c	1.2 (Berkeley) 08/21/85";
16 #endif not lint
17 
18 /* EXPM1(X)
19  * RETURN THE EXPONENTIAL OF X MINUS ONE
20  * DOUBLE PRECISION (IEEE 53 BITS, VAX D FORMAT 56 BITS)
21  * CODED IN C BY K.C. NG, 1/19/85;
22  * REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/21/85, 4/16/85.
23  *
24  * Required system supported functions:
25  *	scalb(x,n)
26  *	copysign(x,y)
27  *	finite(x)
28  *
29  * Kernel function:
30  *	exp__E(x,c)
31  *
32  * Method:
33  *	1. Argument Reduction: given the input x, find r and integer k such
34  *	   that
35  *	                   x = k*ln2 + r,  |r| <= 0.5*ln2 .
36  *	   r will be represented as r := z+c for better accuracy.
37  *
38  *	2. Compute EXPM1(r)=exp(r)-1 by
39  *
40  *			EXPM1(r=z+c) := z + exp__E(z,c)
41  *
42  *	3. EXPM1(x) =  2^k * ( EXPM1(r) + 1-2^-k ).
43  *
44  * 	Remarks:
45  *	   1. When k=1 and z < -0.25, we use the following formula for
46  *	      better accuracy:
47  *			EXPM1(x) = 2 * ( (z+0.5) + exp__E(z,c) )
48  *	   2. To avoid rounding error in 1-2^-k where k is large, we use
49  *			EXPM1(x) = 2^k * { [z+(exp__E(z,c)-2^-k )] + 1 }
50  *	      when k>56.
51  *
52  * Special cases:
53  *	EXPM1(INF) is INF, EXPM1(NaN) is NaN;
54  *	EXPM1(-INF)= -1;
55  *	for finite argument, only EXPM1(0)=0 is exact.
56  *
57  * Accuracy:
58  *	EXPM1(x) returns the exact (exp(x)-1) nearly rounded. In a test run with
59  *	1,166,000 random arguments on a VAX, the maximum observed error was
60  *	.872 ulps (units of the last place).
61  *
62  * Constants:
63  * The hexadecimal values are the intended ones for the following constants.
64  * The decimal values may be used, provided that the compiler will convert
65  * from decimal to binary accurately enough to produce the hexadecimal values
66  * shown.
67  */
68 
69 #ifdef VAX	/* VAX D format */
70 /* double static */
71 /* ln2hi  =  6.9314718055829871446E-1    , Hex  2^  0   *  .B17217F7D00000 */
72 /* ln2lo  =  1.6465949582897081279E-12   , Hex  2^-39   *  .E7BCD5E4F1D9CC */
73 /* lnhuge =  9.4961163736712506989E1     , Hex  2^  7   *  .BDEC1DA73E9010 */
74 /* invln2 =  1.4426950408889634148E0     ; Hex  2^  1   *  .B8AA3B295C17F1 */
75 static long     ln2hix[] = { 0x72174031, 0x0000f7d0};
76 static long     ln2lox[] = { 0xbcd52ce7, 0xd9cce4f1};
77 static long    lnhugex[] = { 0xec1d43bd, 0x9010a73e};
78 static long    invln2x[] = { 0xaa3b40b8, 0x17f1295c};
79 #define    ln2hi    (*(double*)ln2hix)
80 #define    ln2lo    (*(double*)ln2lox)
81 #define   lnhuge    (*(double*)lnhugex)
82 #define   invln2    (*(double*)invln2x)
83 #else	/* IEEE double */
84 double static
85 ln2hi  =  6.9314718036912381649E-1    , /*Hex  2^ -1   *  1.62E42FEE00000 */
86 ln2lo  =  1.9082149292705877000E-10   , /*Hex  2^-33   *  1.A39EF35793C76 */
87 lnhuge =  7.1602103751842355450E2     , /*Hex  2^  9   *  1.6602B15B7ECF2 */
88 invln2 =  1.4426950408889633870E0     ; /*Hex  2^  0   *  1.71547652B82FE */
89 #endif
90 
91 double expm1(x)
92 double x;
93 {
94 	double static one=1.0, half=1.0/2.0;
95 	double scalb(), copysign(), exp__E(), z,hi,lo,c;
96 	int k,finite();
97 #ifdef VAX
98 	static prec=56;
99 #else	/* IEEE double */
100 	static prec=53;
101 #endif
102 #ifndef VAX
103 	if(x!=x) return(x);	/* x is NaN */
104 #endif
105 
106 	if( x <= lnhuge ) {
107 		if( x >= -40.0 ) {
108 
109 		    /* argument reduction : x - k*ln2 */
110 			k= invln2 *x+copysign(0.5,x);	/* k=NINT(x/ln2) */
111 			hi=x-k*ln2hi ;
112 			z=hi-(lo=k*ln2lo);
113 			c=(hi-z)-lo;
114 
115 			if(k==0) return(z+exp__E(z,c));
116 			if(k==1)
117 			    if(z< -0.25)
118 				{x=z+half;x +=exp__E(z,c); return(x+x);}
119 			    else
120 				{z+=exp__E(z,c); x=half+z; return(x+x);}
121 		    /* end of k=1 */
122 
123 			else {
124 			    if(k<=prec)
125 			      { x=one-scalb(one,-k); z += exp__E(z,c);}
126 			    else if(k<100)
127 			      { x = exp__E(z,c)-scalb(one,-k); x+=z; z=one;}
128 			    else
129 			      { x = exp__E(z,c)+z; z=one;}
130 
131 			    return (scalb(x+z,k));
132 			}
133 		}
134 		/* end of x > lnunfl */
135 
136 		else
137 		     /* expm1(-big#) rounded to -1 (inexact) */
138 		     if(finite(x))
139 			 { ln2hi+ln2lo; return(-one);}
140 
141 		     /* expm1(-INF) is -1 */
142 		     else return(-one);
143 	}
144 	/* end of x < lnhuge */
145 
146 	else
147 	/*  expm1(INF) is INF, expm1(+big#) overflows to INF */
148 	    return( finite(x) ?  scalb(one,5000) : x);
149 }
150