xref: /original-bsd/old/libm/libm/log1p.c (revision e59fb703)
1 /*
2  * Copyright (c) 1985 Regents of the University of California.
3  *
4  * Use and reproduction of this software are granted  in  accordance  with
5  * the terms and conditions specified in  the  Berkeley  Software  License
6  * Agreement (in particular, this entails acknowledgement of the programs'
7  * source, and inclusion of this notice) with the additional understanding
8  * that  all  recipients  should regard themselves as participants  in  an
9  * ongoing  research  project and hence should  feel  obligated  to report
10  * their  experiences (good or bad) with these elementary function  codes,
11  * using "sendbug 4bsd-bugs@BERKELEY", to the authors.
12  */
13 
14 #ifndef lint
15 static char sccsid[] = "@(#)log1p.c	1.3 (Berkeley) 08/21/85";
16 #endif not lint
17 
18 /* LOG1P(x)
19  * RETURN THE LOGARITHM OF 1+x
20  * DOUBLE PRECISION (VAX D FORMAT 56 bits, IEEE DOUBLE 53 BITS)
21  * CODED IN C BY K.C. NG, 1/19/85;
22  * REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/24/85, 4/16/85.
23  *
24  * Required system supported functions:
25  *	scalb(x,n)
26  *	copysign(x,y)
27  *	logb(x)
28  *	finite(x)
29  *
30  * Required kernel function:
31  *	log__L(z)
32  *
33  * Method :
34  *	1. Argument Reduction: find k and f such that
35  *			1+x  = 2^k * (1+f),
36  *	   where  sqrt(2)/2 < 1+f < sqrt(2) .
37  *
38  *	2. Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
39  *		 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
40  *	   log(1+f) is computed by
41  *
42  *	     		log(1+f) = 2s + s*log__L(s*s)
43  *	   where
44  *		log__L(z) = z*(L1 + z*(L2 + z*(... (L6 + z*L7)...)))
45  *
46  *	   See log__L() for the values of the coefficients.
47  *
48  *	3. Finally,  log(1+x) = k*ln2 + log(1+f).
49  *
50  *	Remarks 1. In step 3 n*ln2 will be stored in two floating point numbers
51  *		   n*ln2hi + n*ln2lo, where ln2hi is chosen such that the last
52  *		   20 bits (for VAX D format), or the last 21 bits ( for IEEE
53  *		   double) is 0. This ensures n*ln2hi is exactly representable.
54  *		2. In step 1, f may not be representable. A correction term c
55  *	 	   for f is computed. It follows that the correction term for
56  *		   f - t (the leading term of log(1+f) in step 2) is c-c*x. We
57  *		   add this correction term to n*ln2lo to attenuate the error.
58  *
59  *
60  * Special cases:
61  *	log1p(x) is NaN with signal if x < -1; log1p(NaN) is NaN with no signal;
62  *	log1p(INF) is +INF; log1p(-1) is -INF with signal;
63  *	only log1p(0)=0 is exact for finite argument.
64  *
65  * Accuracy:
66  *	log1p(x) returns the exact log(1+x) nearly rounded. In a test run
67  *	with 1,536,000 random arguments on a VAX, the maximum observed
68  *	error was .846 ulps (units in the last place).
69  *
70  * Constants:
71  * The hexadecimal values are the intended ones for the following constants.
72  * The decimal values may be used, provided that the compiler will convert
73  * from decimal to binary accurately enough to produce the hexadecimal values
74  * shown.
75  */
76 
77 #ifdef VAX	/* VAX D format */
78 #include <errno.h>
79 
80 /* double static */
81 /* ln2hi  =  6.9314718055829871446E-1    , Hex  2^  0   *  .B17217F7D00000 */
82 /* ln2lo  =  1.6465949582897081279E-12   , Hex  2^-39   *  .E7BCD5E4F1D9CC */
83 /* sqrt2  =  1.4142135623730950622E0     ; Hex  2^  1   *  .B504F333F9DE65 */
84 static long     ln2hix[] = { 0x72174031, 0x0000f7d0};
85 static long     ln2lox[] = { 0xbcd52ce7, 0xd9cce4f1};
86 static long     sqrt2x[] = { 0x04f340b5, 0xde6533f9};
87 #define    ln2hi    (*(double*)ln2hix)
88 #define    ln2lo    (*(double*)ln2lox)
89 #define    sqrt2    (*(double*)sqrt2x)
90 #else	/* IEEE double */
91 double static
92 ln2hi  =  6.9314718036912381649E-1    , /*Hex  2^ -1   *  1.62E42FEE00000 */
93 ln2lo  =  1.9082149292705877000E-10   , /*Hex  2^-33   *  1.A39EF35793C76 */
94 sqrt2  =  1.4142135623730951455E0     ; /*Hex  2^  0   *  1.6A09E667F3BCD */
95 #endif
96 
97 double log1p(x)
98 double x;
99 {
100 	static double zero=0.0, negone= -1.0, one=1.0,
101 		      half=1.0/2.0, small=1.0E-20;   /* 1+small == 1 */
102 	double logb(),copysign(),scalb(),log__L(),z,s,t,c;
103 	int k,finite();
104 
105 #ifndef VAX
106 	if(x!=x) return(x);	/* x is NaN */
107 #endif
108 
109 	if(finite(x)) {
110 	   if( x > negone ) {
111 
112 	   /* argument reduction */
113 	      if(copysign(x,one)<small) return(x);
114 	      k=logb(one+x); z=scalb(x,-k); t=scalb(one,-k);
115 	      if(z+t >= sqrt2 )
116 		  { k += 1 ; z *= half; t *= half; }
117 	      t += negone; x = z + t;
118 	      c = (t-x)+z ;		/* correction term for x */
119 
120  	   /* compute log(1+x)  */
121               s = x/(2+x); t = x*x*half;
122 	      c += (k*ln2lo-c*x);
123 	      z = c+s*(t+log__L(s*s));
124 	      x += (z - t) ;
125 
126 	      return(k*ln2hi+x);
127 	   }
128 	/* end of if (x > negone) */
129 
130 	    else {
131 #ifdef VAX
132 		extern double infnan();
133 		if ( x == negone )
134 		    return (infnan(-ERANGE));	/* -INF */
135 		else
136 		    return (infnan(EDOM));	/* NaN */
137 #else	/* IEEE double */
138 		/* x = -1, return -INF with signal */
139 		if ( x == negone ) return( negone/zero );
140 
141 		/* negative argument for log, return NaN with signal */
142 	        else return ( zero / zero );
143 #endif
144 	    }
145 	}
146     /* end of if (finite(x)) */
147 
148     /* log(-INF) is NaN */
149 	else if(x<0)
150 	     return(zero/zero);
151 
152     /* log(+INF) is INF */
153 	else return(x);
154 }
155