xref: /original-bsd/old/libm/libm/pow.c (revision 3b6250d9)
1 /*
2  * Copyright (c) 1985 Regents of the University of California.
3  *
4  * Use and reproduction of this software are granted  in  accordance  with
5  * the terms and conditions specified in  the  Berkeley  Software  License
6  * Agreement (in particular, this entails acknowledgement of the programs'
7  * source, and inclusion of this notice) with the additional understanding
8  * that  all  recipients  should regard themselves as participants  in  an
9  * ongoing  research  project and hence should  feel  obligated  to report
10  * their  experiences (good or bad) with these elementary function  codes,
11  * using "sendbug 4bsd-bugs@BERKELEY", to the authors.
12  */
13 
14 #ifndef lint
15 static char sccsid[] = "@(#)pow.c	4.5 (Berkeley) 08/21/85";
16 #endif not lint
17 
18 /* POW(X,Y)
19  * RETURN X**Y
20  * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
21  * CODED IN C BY K.C. NG, 1/8/85;
22  * REVISED BY K.C. NG on 7/10/85.
23  *
24  * Required system supported functions:
25  *      scalb(x,n)
26  *      logb(x)
27  *	copysign(x,y)
28  *	finite(x)
29  *	drem(x,y)
30  *
31  * Required kernel functions:
32  *	exp__E(a,c)	...return  exp(a+c) - 1 - a*a/2
33  *	log__L(x)	...return  (log(1+x) - 2s)/s, s=x/(2+x)
34  *	pow_p(x,y)	...return  +(anything)**(finite non zero)
35  *
36  * Method
37  *	1. Compute and return log(x) in three pieces:
38  *		log(x) = n*ln2 + hi + lo,
39  *	   where n is an integer.
40  *	2. Perform y*log(x) by simulating muti-precision arithmetic and
41  *	   return the answer in three pieces:
42  *		y*log(x) = m*ln2 + hi + lo,
43  *	   where m is an integer.
44  *	3. Return x**y = exp(y*log(x))
45  *		= 2^m * ( exp(hi+lo) ).
46  *
47  * Special cases:
48  *	(anything) ** 0  is 1 ;
49  *	(anything) ** 1  is itself;
50  *	(anything) ** NaN is NaN;
51  *	NaN ** (anything except 0) is NaN;
52  *	+-(anything > 1) ** +INF is +INF;
53  *	+-(anything > 1) ** -INF is +0;
54  *	+-(anything < 1) ** +INF is +0;
55  *	+-(anything < 1) ** -INF is +INF;
56  *	+-1 ** +-INF is NaN and signal INVALID;
57  *	+0 ** +(anything except 0, NaN)  is +0;
58  *	-0 ** +(anything except 0, NaN, odd integer)  is +0;
59  *	+0 ** -(anything except 0, NaN)  is +INF and signal DIV-BY-ZERO;
60  *	-0 ** -(anything except 0, NaN, odd integer)  is +INF with signal;
61  *	-0 ** (odd integer) = -( +0 ** (odd integer) );
62  *	+INF ** +(anything except 0,NaN) is +INF;
63  *	+INF ** -(anything except 0,NaN) is +0;
64  *	-INF ** (odd integer) = -( +INF ** (odd integer) );
65  *	-INF ** (even integer) = ( +INF ** (even integer) );
66  *	-INF ** -(anything except integer,NaN) is NaN with signal;
67  *	-(x=anything) ** (k=integer) is (-1)**k * (x ** k);
68  *	-(anything except 0) ** (non-integer) is NaN with signal;
69  *
70  * Accuracy:
71  *	pow(x,y) returns x**y nearly rounded. In particular, on a SUN, a VAX,
72  *	and a Zilog Z8000,
73  *			pow(integer,integer)
74  *	always returns the correct integer provided it is representable.
75  *	In a test run with 100,000 random arguments with 0 < x, y < 20.0
76  *	on a VAX, the maximum observed error was 1.79 ulps (units in the
77  *	last place).
78  *
79  * Constants :
80  * The hexadecimal values are the intended ones for the following constants.
81  * The decimal values may be used, provided that the compiler will convert
82  * from decimal to binary accurately enough to produce the hexadecimal values
83  * shown.
84  */
85 
86 #ifdef VAX	/* VAX D format */
87 #include <errno.h>
88 extern double infnan();
89 
90 /* double static */
91 /* ln2hi  =  6.9314718055829871446E-1    , Hex  2^  0   *  .B17217F7D00000 */
92 /* ln2lo  =  1.6465949582897081279E-12   , Hex  2^-39   *  .E7BCD5E4F1D9CC */
93 /* invln2 =  1.4426950408889634148E0     , Hex  2^  1   *  .B8AA3B295C17F1 */
94 /* sqrt2  =  1.4142135623730950622E0     ; Hex  2^  1   *  .B504F333F9DE65 */
95 static long     ln2hix[] = { 0x72174031, 0x0000f7d0};
96 static long     ln2lox[] = { 0xbcd52ce7, 0xd9cce4f1};
97 static long    invln2x[] = { 0xaa3b40b8, 0x17f1295c};
98 static long     sqrt2x[] = { 0x04f340b5, 0xde6533f9};
99 #define    ln2hi    (*(double*)ln2hix)
100 #define    ln2lo    (*(double*)ln2lox)
101 #define   invln2    (*(double*)invln2x)
102 #define    sqrt2    (*(double*)sqrt2x)
103 #else	/* IEEE double */
104 double static
105 ln2hi  =  6.9314718036912381649E-1    , /*Hex  2^ -1   *  1.62E42FEE00000 */
106 ln2lo  =  1.9082149292705877000E-10   , /*Hex  2^-33   *  1.A39EF35793C76 */
107 invln2 =  1.4426950408889633870E0     , /*Hex  2^  0   *  1.71547652B82FE */
108 sqrt2  =  1.4142135623730951455E0     ; /*Hex  2^  0   *  1.6A09E667F3BCD */
109 #endif
110 
111 double static zero=0.0, half=1.0/2.0, one=1.0, two=2.0, negone= -1.0;
112 
113 double pow(x,y)
114 double x,y;
115 {
116 	double drem(),pow_p(),copysign(),t;
117 	int finite();
118 
119 	if     (y==zero)      return(one);
120 	else if(y==one
121 #ifndef VAX
122 		||x!=x
123 #endif
124 		) return( x );      /* if x is NaN or y=1 */
125 #ifndef VAX
126 	else if(y!=y)         return( y );      /* if y is NaN */
127 #endif
128 	else if(!finite(y))                     /* if y is INF */
129 	     if((t=copysign(x,one))==one) return(zero/zero);
130 	     else if(t>one) return((y>zero)?y:zero);
131 	     else return((y<zero)?-y:zero);
132 	else if(y==two)       return(x*x);
133 	else if(y==negone)    return(one/x);
134 
135     /* sign(x) = 1 */
136 	else if(copysign(one,x)==one) return(pow_p(x,y));
137 
138     /* sign(x)= -1 */
139 	/* if y is an even integer */
140 	else if ( (t=drem(y,two)) == zero)	return( pow_p(-x,y) );
141 
142 	/* if y is an odd integer */
143 	else if (copysign(t,one) == one) return( -pow_p(-x,y) );
144 
145 	/* Henceforth y is not an integer */
146 	else if(x==zero)	/* x is -0 */
147 	    return((y>zero)?-x:one/(-x));
148 	else {			/* return NaN */
149 #ifdef VAX
150 	    return (infnan(EDOM));	/* NaN */
151 #else	/* IEEE double */
152 	    return(zero/zero);
153 #endif
154 	}
155 }
156 
157 /* pow_p(x,y) return x**y for x with sign=1 and finite y */
158 static double pow_p(x,y)
159 double x,y;
160 {
161         double logb(),scalb(),copysign(),log__L(),exp__E();
162         double c,s,t,z,tx,ty;
163         float sx,sy;
164 	long k=0;
165         int n,m;
166 
167 	if(x==zero||!finite(x)) {           /* if x is +INF or +0 */
168 #ifdef VAX
169 	     return((y>zero)?x:infnan(ERANGE));	/* if y<zero, return +INF */
170 #else
171 	     return((y>zero)?x:one/x);
172 #endif
173 	}
174 	if(x==1.0) return(x);	/* if x=1.0, return 1 since y is finite */
175 
176     /* reduce x to z in [sqrt(1/2)-1, sqrt(2)-1] */
177         z=scalb(x,-(n=logb(x)));
178 #ifndef VAX	/* IEEE double */	/* subnormal number */
179         if(n <= -1022) {n += (m=logb(z)); z=scalb(z,-m);}
180 #endif
181         if(z >= sqrt2 ) {n += 1; z *= half;}  z -= one ;
182 
183     /* log(x) = nlog2+log(1+z) ~ nlog2 + t + tx */
184 	s=z/(two+z); c=z*z*half; tx=s*(c+log__L(s*s));
185 	t= z-(c-tx); tx += (z-t)-c;
186 
187    /* if y*log(x) is neither too big nor too small */
188 	if((s=logb(y)+logb(n+t)) < 12.0)
189 	    if(s>-60.0) {
190 
191 	/* compute y*log(x) ~ mlog2 + t + c */
192         	s=y*(n+invln2*t);
193                 m=s+copysign(half,s);   /* m := nint(y*log(x)) */
194 		k=y;
195 		if((double)k==y) {	/* if y is an integer */
196 		    k = m-k*n;
197 		    sx=t; tx+=(t-sx); }
198 		else	{		/* if y is not an integer */
199 		    k =m;
200 	 	    tx+=n*ln2lo;
201 		    sx=(c=n*ln2hi)+t; tx+=(c-sx)+t; }
202 	   /* end of checking whether k==y */
203 
204                 sy=y; ty=y-sy;          /* y ~ sy + ty */
205 		s=(double)sx*sy-k*ln2hi;        /* (sy+ty)*(sx+tx)-kln2 */
206 		z=(tx*ty-k*ln2lo);
207 		tx=tx*sy; ty=sx*ty;
208 		t=ty+z; t+=tx; t+=s;
209 		c= -((((t-s)-tx)-ty)-z);
210 
211 	    /* return exp(y*log(x)) */
212 		t += exp__E(t,c); return(scalb(one+t,m));
213 	     }
214 	/* end of if log(y*log(x)) > -60.0 */
215 
216 	    else
217 		/* exp(+- tiny) = 1 with inexact flag */
218 			{ln2hi+ln2lo; return(one);}
219 	    else if(copysign(one,y)*(n+invln2*t) <zero)
220 		/* exp(-(big#)) underflows to zero */
221 	        	return(scalb(one,-5000));
222 	    else
223 	        /* exp(+(big#)) overflows to INF */
224 	    		return(scalb(one, 5000));
225 
226 }
227