xref: /original-bsd/sbin/newfs/mkfs.c (revision 83e03edb)
1 /*
2  * Copyright (c) 1980 Regents of the University of California.
3  * All rights reserved.  The Berkeley software License Agreement
4  * specifies the terms and conditions for redistribution.
5  */
6 
7 #ifndef lint
8 static char sccsid[] = "@(#)mkfs.c	6.9 (Berkeley) 07/08/88";
9 #endif not lint
10 
11 #ifndef STANDALONE
12 #include <stdio.h>
13 #include <a.out.h>
14 #endif
15 
16 #include <sys/param.h>
17 #include <sys/inode.h>
18 #include <sys/fs.h>
19 #include <sys/dir.h>
20 #include <sys/disklabel.h>
21 #include <machine/endian.h>
22 
23 /*
24  * make file system for cylinder-group style file systems
25  */
26 
27 /*
28  * The size of a cylinder group is calculated by CGSIZE. The maximum size
29  * is limited by the fact that cylinder groups are at most one block.
30  * Its size is derived from the size of the maps maintained in the
31  * cylinder group and the (struct cg) size.
32  */
33 #define CGSIZE(fs) \
34     /* base cg */	(sizeof(struct cg) + \
35     /* blktot size */	(fs)->fs_cpg * sizeof(long) + \
36     /* blks size */	(fs)->fs_cpg * (fs)->fs_nrpos * sizeof(short) + \
37     /* inode map */	howmany((fs)->fs_ipg, NBBY) + \
38     /* block map */	howmany((fs)->fs_cpg * (fs)->fs_spc / NSPF(fs), NBBY))
39 
40 /*
41  * We limit the size of the inode map to be no more than a
42  * third of the cylinder group space, since we must leave at
43  * least an equal amount of space for the block map.
44  *
45  * N.B.: MAXIPG must be a multiple of INOPB(fs).
46  */
47 #define MAXIPG(fs)	roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs))
48 
49 #define UMASK		0755
50 #define MAXINOPB	(MAXBSIZE / sizeof(struct dinode))
51 #define POWEROF2(num)	(((num) & ((num) - 1)) == 0)
52 
53 /*
54  * variables set up by front end.
55  */
56 extern int	Nflag;		/* run mkfs without writing file system */
57 extern int	fssize;		/* file system size */
58 extern int	ntracks;	/* # tracks/cylinder */
59 extern int	nsectors;	/* # sectors/track */
60 extern int	nphyssectors;	/* # sectors/track including spares */
61 extern int	secpercyl;	/* sectors per cylinder */
62 extern int	sectorsize;	/* bytes/sector */
63 extern int	rpm;		/* revolutions/minute of drive */
64 extern int	interleave;	/* hardware sector interleave */
65 extern int	trackskew;	/* sector 0 skew, per track */
66 extern int	headswitch;	/* head switch time, usec */
67 extern int	trackseek;	/* track-to-track seek, usec */
68 extern int	fsize;		/* fragment size */
69 extern int	bsize;		/* block size */
70 extern int	cpg;		/* cylinders/cylinder group */
71 extern int	cpgflg;		/* cylinders/cylinder group flag was given */
72 extern int	minfree;	/* free space threshold */
73 extern int	opt;		/* optimization preference (space or time) */
74 extern int	density;	/* number of bytes per inode */
75 extern int	maxcontig;	/* max contiguous blocks to allocate */
76 extern int	rotdelay;	/* rotational delay between blocks */
77 extern int	maxbpg;		/* maximum blocks per file in a cyl group */
78 extern int	nrpos;		/* # of distinguished rotational positions */
79 extern int	bbsize;		/* boot block size */
80 extern int	sbsize;		/* superblock size */
81 
82 union {
83 	struct fs fs;
84 	char pad[SBSIZE];
85 } fsun;
86 #define	sblock	fsun.fs
87 struct	csum *fscs;
88 
89 union {
90 	struct cg cg;
91 	char pad[MAXBSIZE];
92 } cgun;
93 #define	acg	cgun.cg
94 
95 struct dinode zino[MAXBSIZE / sizeof(struct dinode)];
96 
97 int	fsi, fso;
98 time_t	utime;
99 daddr_t	alloc();
100 
101 mkfs(pp, fsys, fi, fo)
102 	struct partition *pp;
103 	char *fsys;
104 	int fi, fo;
105 {
106 	register long i, mincpc, mincpg, inospercg;
107 	long cylno, rpos, blk, j, warn = 0;
108 	long used, mincpgcnt, bpcg;
109 	long mapcramped, inodecramped;
110 	long postblsize, rotblsize, totalsbsize;
111 
112 #ifndef STANDALONE
113 	time(&utime);
114 #endif
115 	fsi = fi;
116 	fso = fo;
117 	/*
118 	 * Validate the given file system size.
119 	 * Verify that its last block can actually be accessed.
120 	 */
121 	if (fssize <= 0)
122 		printf("preposterous size %d\n", fssize), exit(1);
123 	wtfs(fssize - 1, sectorsize, (char *)&sblock);
124 	/*
125 	 * collect and verify the sector and track info
126 	 */
127 	sblock.fs_nsect = nsectors;
128 	sblock.fs_ntrak = ntracks;
129 	if (sblock.fs_ntrak <= 0)
130 		printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(1);
131 	if (sblock.fs_nsect <= 0)
132 		printf("preposterous nsect %d\n", sblock.fs_nsect), exit(1);
133 	/*
134 	 * collect and verify the block and fragment sizes
135 	 */
136 	sblock.fs_bsize = bsize;
137 	sblock.fs_fsize = fsize;
138 	if (!POWEROF2(sblock.fs_bsize)) {
139 		printf("block size must be a power of 2, not %d\n",
140 		    sblock.fs_bsize);
141 		exit(1);
142 	}
143 	if (!POWEROF2(sblock.fs_fsize)) {
144 		printf("fragment size must be a power of 2, not %d\n",
145 		    sblock.fs_fsize);
146 		exit(1);
147 	}
148 	if (sblock.fs_fsize < sectorsize) {
149 		printf("fragment size %d is too small, minimum is %d\n",
150 		    sblock.fs_fsize, sectorsize);
151 		exit(1);
152 	}
153 	if (sblock.fs_bsize < MINBSIZE) {
154 		printf("block size %d is too small, minimum is %d\n",
155 		    sblock.fs_bsize, MINBSIZE);
156 		exit(1);
157 	}
158 	if (sblock.fs_bsize < sblock.fs_fsize) {
159 		printf("block size (%d) cannot be smaller than fragment size (%d)\n",
160 		    sblock.fs_bsize, sblock.fs_fsize);
161 		exit(1);
162 	}
163 	sblock.fs_bmask = ~(sblock.fs_bsize - 1);
164 	sblock.fs_fmask = ~(sblock.fs_fsize - 1);
165 	/*
166 	 * Planning now for future expansion.
167 	 */
168 #	if (BYTE_ORDER == BIG_ENDIAN)
169 		sblock.fs_qbmask.val[0] = 0;
170 		sblock.fs_qbmask.val[1] = ~sblock.fs_bmask;
171 		sblock.fs_qfmask.val[0] = 0;
172 		sblock.fs_qfmask.val[1] = ~sblock.fs_fmask;
173 #	endif /* BIG_ENDIAN */
174 #	if (BYTE_ORDER == LITTLE_ENDIAN)
175 		sblock.fs_qbmask.val[0] = ~sblock.fs_bmask;
176 		sblock.fs_qbmask.val[1] = 0;
177 		sblock.fs_qfmask.val[0] = ~sblock.fs_fmask;
178 		sblock.fs_qfmask.val[1] = 0;
179 #	endif /* LITTLE_ENDIAN */
180 	for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
181 		sblock.fs_bshift++;
182 	for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
183 		sblock.fs_fshift++;
184 	sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
185 	for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
186 		sblock.fs_fragshift++;
187 	if (sblock.fs_frag > MAXFRAG) {
188 		printf("fragment size %d is too small, minimum with block size %d is %d\n",
189 		    sblock.fs_fsize, sblock.fs_bsize,
190 		    sblock.fs_bsize / MAXFRAG);
191 		exit(1);
192 	}
193 	sblock.fs_nrpos = nrpos;
194 	sblock.fs_nindir = sblock.fs_bsize / sizeof(daddr_t);
195 	sblock.fs_inopb = sblock.fs_bsize / sizeof(struct dinode);
196 	sblock.fs_nspf = sblock.fs_fsize / sectorsize;
197 	for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1)
198 		sblock.fs_fsbtodb++;
199 	sblock.fs_sblkno =
200 	    roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag);
201 	sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
202 	    roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag));
203 	sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
204 	sblock.fs_cgoffset = roundup(
205 	    howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag);
206 	for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1)
207 		sblock.fs_cgmask <<= 1;
208 	if (!POWEROF2(sblock.fs_ntrak))
209 		sblock.fs_cgmask <<= 1;
210 	/*
211 	 * Validate specified/determined secpercyl
212 	 * and calculate minimum cylinders per group.
213 	 */
214 	sblock.fs_spc = secpercyl;
215 	for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc;
216 	     sblock.fs_cpc > 1 && (i & 1) == 0;
217 	     sblock.fs_cpc >>= 1, i >>= 1)
218 		/* void */;
219 	mincpc = sblock.fs_cpc;
220 	bpcg = sblock.fs_spc * sectorsize;
221 	inospercg = roundup(bpcg / sizeof(struct dinode), INOPB(&sblock));
222 	if (inospercg > MAXIPG(&sblock))
223 		inospercg = MAXIPG(&sblock);
224 	used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock);
225 	mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used,
226 	    sblock.fs_spc);
227 	mincpg = roundup(mincpgcnt, mincpc);
228 	/*
229 	 * Insure that cylinder group with mincpg has enough space
230 	 * for block maps
231 	 */
232 	sblock.fs_cpg = mincpg;
233 	sblock.fs_ipg = inospercg;
234 	mapcramped = 0;
235 	while (CGSIZE(&sblock) > sblock.fs_bsize) {
236 		mapcramped = 1;
237 		if (sblock.fs_bsize < MAXBSIZE) {
238 			sblock.fs_bsize <<= 1;
239 			if ((i & 1) == 0) {
240 				i >>= 1;
241 			} else {
242 				sblock.fs_cpc <<= 1;
243 				mincpc <<= 1;
244 				mincpg = roundup(mincpgcnt, mincpc);
245 				sblock.fs_cpg = mincpg;
246 			}
247 			sblock.fs_frag <<= 1;
248 			sblock.fs_fragshift += 1;
249 			if (sblock.fs_frag <= MAXFRAG)
250 				continue;
251 		}
252 		if (sblock.fs_fsize == sblock.fs_bsize) {
253 			printf("There is no block size that");
254 			printf(" can support this disk\n");
255 			exit(1);
256 		}
257 		sblock.fs_frag >>= 1;
258 		sblock.fs_fragshift -= 1;
259 		sblock.fs_fsize <<= 1;
260 		sblock.fs_nspf <<= 1;
261 	}
262 	/*
263 	 * Insure that cylinder group with mincpg has enough space for inodes
264 	 */
265 	inodecramped = 0;
266 	used *= sectorsize;
267 	inospercg = roundup((mincpg * bpcg - used) / density, INOPB(&sblock));
268 	sblock.fs_ipg = inospercg;
269 	while (inospercg > MAXIPG(&sblock)) {
270 		inodecramped = 1;
271 		if (mincpc == 1 || sblock.fs_frag == 1 ||
272 		    sblock.fs_bsize == MINBSIZE)
273 			break;
274 		printf("With a block size of %d %s %d\n", sblock.fs_bsize,
275 		    "minimum bytes per inode is",
276 		    (mincpg * bpcg - used) / MAXIPG(&sblock) + 1);
277 		sblock.fs_bsize >>= 1;
278 		sblock.fs_frag >>= 1;
279 		sblock.fs_fragshift -= 1;
280 		mincpc >>= 1;
281 		sblock.fs_cpg = roundup(mincpgcnt, mincpc);
282 		if (CGSIZE(&sblock) > sblock.fs_bsize) {
283 			sblock.fs_bsize <<= 1;
284 			break;
285 		}
286 		mincpg = sblock.fs_cpg;
287 		inospercg =
288 		    roundup((mincpg * bpcg - used) / density, INOPB(&sblock));
289 		sblock.fs_ipg = inospercg;
290 	}
291 	if (inodecramped) {
292 		if (inospercg > MAXIPG(&sblock)) {
293 			printf("Minimum bytes per inode is %d\n",
294 			    (mincpg * bpcg - used) / MAXIPG(&sblock) + 1);
295 		} else if (!mapcramped) {
296 			printf("With %d bytes per inode, ", density);
297 			printf("minimum cylinders per group is %d\n", mincpg);
298 		}
299 	}
300 	if (mapcramped) {
301 		printf("With %d sectors per cylinder, ", sblock.fs_spc);
302 		printf("minimum cylinders per group is %d\n", mincpg);
303 	}
304 	if (inodecramped || mapcramped) {
305 		if (sblock.fs_bsize != bsize)
306 			printf("%s to be changed from %d to %d\n",
307 			    "This requires the block size",
308 			    bsize, sblock.fs_bsize);
309 		if (sblock.fs_fsize != fsize)
310 			printf("\t%s to be changed from %d to %d\n",
311 			    "and the fragment size",
312 			    fsize, sblock.fs_fsize);
313 		exit(1);
314 	}
315 	/*
316 	 * Calculate the number of cylinders per group
317 	 */
318 	sblock.fs_cpg = cpg;
319 	if (sblock.fs_cpg % mincpc != 0) {
320 		printf("%s groups must have a multiple of %d cylinders\n",
321 			cpgflg ? "Cylinder" : "Warning: cylinder", mincpc);
322 		sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc);
323 		if (!cpgflg)
324 			cpg = sblock.fs_cpg;
325 	}
326 	/*
327 	 * Must insure there is enough space for inodes
328 	 */
329 	sblock.fs_ipg = roundup((sblock.fs_cpg * bpcg - used) / density,
330 		INOPB(&sblock));
331 	while (sblock.fs_ipg > MAXIPG(&sblock)) {
332 		inodecramped = 1;
333 		sblock.fs_cpg -= mincpc;
334 		sblock.fs_ipg = roundup((sblock.fs_cpg * bpcg - used) / density,
335 			INOPB(&sblock));
336 	}
337 	/*
338 	 * Must insure there is enough space to hold block map
339 	 */
340 	while (CGSIZE(&sblock) > sblock.fs_bsize) {
341 		mapcramped = 1;
342 		sblock.fs_cpg -= mincpc;
343 		sblock.fs_ipg = roundup((sblock.fs_cpg * bpcg - used) / density,
344 			INOPB(&sblock));
345 	}
346 	sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock);
347 	if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) {
348 		printf("newfs: panic (fs_cpg * fs_spc) % NSPF != 0");
349 		exit(2);
350 	}
351 	if (sblock.fs_cpg < mincpg) {
352 		printf("cylinder groups must have at least %d cylinders\n",
353 			mincpg);
354 		exit(1);
355 	} else if (sblock.fs_cpg != cpg) {
356 		if (!cpgflg)
357 			printf("Warning: ");
358 		else if (!mapcramped && !inodecramped)
359 			exit(1);
360 		if (mapcramped && inodecramped)
361 			printf("Block size and bytes per inode restrict");
362 		else if (mapcramped)
363 			printf("Block size restricts");
364 		else
365 			printf("Bytes per inode restrict");
366 		printf(" cylinders per group to %d.\n", sblock.fs_cpg);
367 		if (cpgflg)
368 			exit(1);
369 	}
370 	sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
371 	/*
372 	 * Now have size for file system and nsect and ntrak.
373 	 * Determine number of cylinders and blocks in the file system.
374 	 */
375 	sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
376 	sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc;
377 	if (fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) {
378 		sblock.fs_ncyl++;
379 		warn = 1;
380 	}
381 	if (sblock.fs_ncyl < 1) {
382 		printf("file systems must have at least one cylinder\n");
383 		exit(1);
384 	}
385 	/*
386 	 * Determine feasability/values of rotational layout tables.
387 	 *
388 	 * The size of the rotational layout tables is limited by the
389 	 * size of the superblock, SBSIZE. The amount of space available
390 	 * for tables is calculated as (SBSIZE - sizeof (struct fs)).
391 	 * The size of these tables is inversely proportional to the block
392 	 * size of the file system. The size increases if sectors per track
393 	 * are not powers of two, because more cylinders must be described
394 	 * by the tables before the rotational pattern repeats (fs_cpc).
395 	 */
396 	sblock.fs_interleave = interleave;
397 	sblock.fs_trackskew = trackskew;
398 	sblock.fs_npsect = nphyssectors;
399 	sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT;
400 	sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
401 	if (sblock.fs_ntrak == 1) {
402 		sblock.fs_cpc = 0;
403 		goto next;
404 	}
405 	postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(short);
406 	rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock);
407 	totalsbsize = sizeof(struct fs) + rotblsize;
408 	if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) {
409 		/* use old static table space */
410 		sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) -
411 		    (char *)(&sblock.fs_link);
412 		sblock.fs_rotbloff = &sblock.fs_space[0] -
413 		    (u_char *)(&sblock.fs_link);
414 	} else {
415 		/* use dynamic table space */
416 		sblock.fs_postbloff = &sblock.fs_space[0] -
417 		    (u_char *)(&sblock.fs_link);
418 		sblock.fs_rotbloff = sblock.fs_postbloff + postblsize;
419 		totalsbsize += postblsize;
420 	}
421 	if (totalsbsize > SBSIZE ||
422 	    sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) {
423 		printf("%s %s %d %s %d.%s",
424 		    "Warning: insufficient space in super block for\n",
425 		    "rotational layout tables with nsect", sblock.fs_nsect,
426 		    "and ntrak", sblock.fs_ntrak,
427 		    "\nFile system performance may be impaired.\n");
428 		sblock.fs_cpc = 0;
429 		goto next;
430 	}
431 	sblock.fs_sbsize = fragroundup(&sblock, totalsbsize);
432 	/*
433 	 * calculate the available blocks for each rotational position
434 	 */
435 	for (cylno = 0; cylno < sblock.fs_cpc; cylno++)
436 		for (rpos = 0; rpos < sblock.fs_nrpos; rpos++)
437 			fs_postbl(&sblock, cylno)[rpos] = -1;
438 	for (i = (rotblsize - 1) * sblock.fs_frag;
439 	     i >= 0; i -= sblock.fs_frag) {
440 		cylno = cbtocylno(&sblock, i);
441 		rpos = cbtorpos(&sblock, i);
442 		blk = fragstoblks(&sblock, i);
443 		if (fs_postbl(&sblock, cylno)[rpos] == -1)
444 			fs_rotbl(&sblock)[blk] = 0;
445 		else
446 			fs_rotbl(&sblock)[blk] =
447 			    fs_postbl(&sblock, cylno)[rpos] - blk;
448 		fs_postbl(&sblock, cylno)[rpos] = blk;
449 	}
450 next:
451 	/*
452 	 * Compute/validate number of cylinder groups.
453 	 */
454 	sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
455 	if (sblock.fs_ncyl % sblock.fs_cpg)
456 		sblock.fs_ncg++;
457 	sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
458 	i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1);
459 	if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) {
460 		printf("inode blocks/cyl group (%d) >= data blocks (%d)\n",
461 		    cgdmin(&sblock, i) - cgbase(&sblock, i) / sblock.fs_frag,
462 		    sblock.fs_fpg / sblock.fs_frag);
463 		printf("number of cylinders per cylinder group (%d) %s.\n",
464 		    sblock.fs_cpg, "must be increased");
465 		exit(1);
466 	}
467 	j = sblock.fs_ncg - 1;
468 	if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg &&
469 	    cgdmin(&sblock, j) - cgbase(&sblock, j) > i) {
470 		printf("Warning: inode blocks/cyl group (%d) >= data blocks (%d) in last\n",
471 		    (cgdmin(&sblock, j) - cgbase(&sblock, j)) / sblock.fs_frag,
472 		    i / sblock.fs_frag);
473 		printf("    cylinder group. This implies %d sector(s) cannot be allocated.\n",
474 		    i * NSPF(&sblock));
475 		sblock.fs_ncg--;
476 		sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
477 		sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc /
478 		    NSPF(&sblock);
479 		warn = 0;
480 	}
481 	if (warn) {
482 		printf("Warning: %d sector(s) in last cylinder unallocated\n",
483 		    sblock.fs_spc -
484 		    (fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1)
485 		    * sblock.fs_spc));
486 	}
487 	/*
488 	 * fill in remaining fields of the super block
489 	 */
490 	sblock.fs_csaddr = cgdmin(&sblock, 0);
491 	sblock.fs_cssize =
492 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
493 	i = sblock.fs_bsize / sizeof(struct csum);
494 	sblock.fs_csmask = ~(i - 1);
495 	for (sblock.fs_csshift = 0; i > 1; i >>= 1)
496 		sblock.fs_csshift++;
497 	fscs = (struct csum *)calloc(1, sblock.fs_cssize);
498 	sblock.fs_magic = FS_MAGIC;
499 	sblock.fs_rotdelay = rotdelay;
500 	sblock.fs_minfree = minfree;
501 	sblock.fs_maxcontig = maxcontig;
502 	sblock.fs_headswitch = headswitch;
503 	sblock.fs_trkseek = trackseek;
504 	sblock.fs_maxbpg = maxbpg;
505 	sblock.fs_rps = rpm / 60;
506 	sblock.fs_optim = opt;
507 	sblock.fs_cgrotor = 0;
508 	sblock.fs_cstotal.cs_ndir = 0;
509 	sblock.fs_cstotal.cs_nbfree = 0;
510 	sblock.fs_cstotal.cs_nifree = 0;
511 	sblock.fs_cstotal.cs_nffree = 0;
512 	sblock.fs_fmod = 0;
513 	sblock.fs_ronly = 0;
514 	/*
515 	 * Dump out summary information about file system.
516 	 */
517 	printf("%s:\t%d sectors in %d cylinders of %d tracks, %d sectors\n",
518 	    fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
519 	    sblock.fs_ntrak, sblock.fs_nsect);
520 	printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n",
521 	    (float)sblock.fs_size * sblock.fs_fsize * 1e-6, sblock.fs_ncg,
522 	    sblock.fs_cpg, (float)sblock.fs_fpg * sblock.fs_fsize * 1e-6,
523 	    sblock.fs_ipg);
524 	/*
525 	 * Now build the cylinders group blocks and
526 	 * then print out indices of cylinder groups.
527 	 */
528 	printf("super-block backups (for fsck -b #) at:");
529 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
530 		initcg(cylno);
531 		if (cylno % 9 == 0)
532 			printf("\n");
533 		printf(" %d,", fsbtodb(&sblock, cgsblock(&sblock, cylno)));
534 	}
535 	printf("\n");
536 	if (Nflag)
537 		exit(0);
538 	/*
539 	 * Now construct the initial file system,
540 	 * then write out the super-block.
541 	 */
542 	fsinit();
543 	sblock.fs_time = utime;
544 	wtfs(SBOFF / sectorsize, sbsize, (char *)&sblock);
545 	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
546 		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
547 			sblock.fs_cssize - i < sblock.fs_bsize ?
548 			    sblock.fs_cssize - i : sblock.fs_bsize,
549 			((char *)fscs) + i);
550 	/*
551 	 * Write out the duplicate super blocks
552 	 */
553 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++)
554 		wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
555 		    sbsize, (char *)&sblock);
556 	/*
557 	 * Update information about this partion in pack
558 	 * label, to that it may be updated on disk.
559 	 */
560 	pp->p_fstype = FS_BSDFFS;
561 	pp->p_fsize = sblock.fs_fsize;
562 	pp->p_frag = sblock.fs_frag;
563 	pp->p_cpg = sblock.fs_cpg;
564 }
565 
566 /*
567  * Initialize a cylinder group.
568  */
569 initcg(cylno)
570 	int cylno;
571 {
572 	daddr_t cbase, d, dlower, dupper, dmax;
573 	long i, j, s;
574 	register struct csum *cs;
575 
576 	/*
577 	 * Determine block bounds for cylinder group.
578 	 * Allow space for super block summary information in first
579 	 * cylinder group.
580 	 */
581 	cbase = cgbase(&sblock, cylno);
582 	dmax = cbase + sblock.fs_fpg;
583 	if (dmax > sblock.fs_size)
584 		dmax = sblock.fs_size;
585 	dlower = cgsblock(&sblock, cylno) - cbase;
586 	dupper = cgdmin(&sblock, cylno) - cbase;
587 	if (cylno == 0)
588 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
589 	cs = fscs + cylno;
590 	acg.cg_time = utime;
591 	acg.cg_magic = CG_MAGIC;
592 	acg.cg_cgx = cylno;
593 	if (cylno == sblock.fs_ncg - 1)
594 		acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
595 	else
596 		acg.cg_ncyl = sblock.fs_cpg;
597 	acg.cg_niblk = sblock.fs_ipg;
598 	acg.cg_ndblk = dmax - cbase;
599 	acg.cg_cs.cs_ndir = 0;
600 	acg.cg_cs.cs_nffree = 0;
601 	acg.cg_cs.cs_nbfree = 0;
602 	acg.cg_cs.cs_nifree = 0;
603 	acg.cg_rotor = 0;
604 	acg.cg_frotor = 0;
605 	acg.cg_irotor = 0;
606 	acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_link);
607 	acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(long);
608 	acg.cg_iusedoff = acg.cg_boff +
609 		sblock.fs_cpg * sblock.fs_nrpos * sizeof(short);
610 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
611 	acg.cg_nextfreeoff = acg.cg_freeoff +
612 		howmany(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY);
613 	for (i = 0; i < sblock.fs_frag; i++) {
614 		acg.cg_frsum[i] = 0;
615 	}
616 	bzero((caddr_t)cg_inosused(&acg), acg.cg_freeoff - acg.cg_iusedoff);
617 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
618 	if (cylno == 0)
619 		for (i = 0; i < ROOTINO; i++) {
620 			setbit(cg_inosused(&acg), i);
621 			acg.cg_cs.cs_nifree--;
622 		}
623 	for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag)
624 		wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
625 		    sblock.fs_bsize, (char *)zino);
626 	bzero((caddr_t)cg_blktot(&acg), acg.cg_boff - acg.cg_btotoff);
627 	bzero((caddr_t)cg_blks(&sblock, &acg, 0),
628 	    acg.cg_iusedoff - acg.cg_boff);
629 	bzero((caddr_t)cg_blksfree(&acg), acg.cg_nextfreeoff - acg.cg_freeoff);
630 	if (cylno > 0) {
631 		/*
632 		 * In cylno 0, beginning space is reserved
633 		 * for boot and super blocks.
634 		 */
635 		for (d = 0; d < dlower; d += sblock.fs_frag) {
636 			setblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag);
637 			acg.cg_cs.cs_nbfree++;
638 			cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
639 			cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
640 			    [cbtorpos(&sblock, d)]++;
641 		}
642 		sblock.fs_dsize += dlower;
643 	}
644 	sblock.fs_dsize += acg.cg_ndblk - dupper;
645 	if (i = dupper % sblock.fs_frag) {
646 		acg.cg_frsum[sblock.fs_frag - i]++;
647 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
648 			setbit(cg_blksfree(&acg), dupper);
649 			acg.cg_cs.cs_nffree++;
650 		}
651 	}
652 	for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) {
653 		setblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag);
654 		acg.cg_cs.cs_nbfree++;
655 		cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
656 		cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
657 		    [cbtorpos(&sblock, d)]++;
658 		d += sblock.fs_frag;
659 	}
660 	if (d < dmax - cbase) {
661 		acg.cg_frsum[dmax - cbase - d]++;
662 		for (; d < dmax - cbase; d++) {
663 			setbit(cg_blksfree(&acg), d);
664 			acg.cg_cs.cs_nffree++;
665 		}
666 	}
667 	sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
668 	sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
669 	sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
670 	sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
671 	*cs = acg.cg_cs;
672 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
673 		sblock.fs_bsize, (char *)&acg);
674 }
675 
676 /*
677  * initialize the file system
678  */
679 struct inode node;
680 
681 #ifdef LOSTDIR
682 #define PREDEFDIR 3
683 #else
684 #define PREDEFDIR 2
685 #endif
686 
687 struct direct root_dir[] = {
688 	{ ROOTINO, sizeof(struct direct), 1, "." },
689 	{ ROOTINO, sizeof(struct direct), 2, ".." },
690 #ifdef LOSTDIR
691 	{ LOSTFOUNDINO, sizeof(struct direct), 10, "lost+found" },
692 #endif
693 };
694 #ifdef LOSTDIR
695 struct direct lost_found_dir[] = {
696 	{ LOSTFOUNDINO, sizeof(struct direct), 1, "." },
697 	{ ROOTINO, sizeof(struct direct), 2, ".." },
698 	{ 0, DIRBLKSIZ, 0, 0 },
699 };
700 #endif
701 char buf[MAXBSIZE];
702 
703 fsinit()
704 {
705 	int i;
706 
707 	/*
708 	 * initialize the node
709 	 */
710 	node.i_atime = utime;
711 	node.i_mtime = utime;
712 	node.i_ctime = utime;
713 #ifdef LOSTDIR
714 	/*
715 	 * create the lost+found directory
716 	 */
717 	(void)makedir(lost_found_dir, 2);
718 	for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
719 		bcopy(&lost_found_dir[2], &buf[i], DIRSIZ(&lost_found_dir[2]));
720 	node.i_number = LOSTFOUNDINO;
721 	node.i_mode = IFDIR | UMASK;
722 	node.i_nlink = 2;
723 	node.i_size = sblock.fs_bsize;
724 	node.i_db[0] = alloc(node.i_size, node.i_mode);
725 	node.i_blocks = btodb(fragroundup(&sblock, node.i_size));
726 	wtfs(fsbtodb(&sblock, node.i_db[0]), node.i_size, buf);
727 	iput(&node);
728 #endif
729 	/*
730 	 * create the root directory
731 	 */
732 	node.i_number = ROOTINO;
733 	node.i_mode = IFDIR | UMASK;
734 	node.i_nlink = PREDEFDIR;
735 	node.i_size = makedir(root_dir, PREDEFDIR);
736 	node.i_db[0] = alloc(sblock.fs_fsize, node.i_mode);
737 	node.i_blocks = btodb(fragroundup(&sblock, node.i_size));
738 	wtfs(fsbtodb(&sblock, node.i_db[0]), sblock.fs_fsize, buf);
739 	iput(&node);
740 }
741 
742 /*
743  * construct a set of directory entries in "buf".
744  * return size of directory.
745  */
746 makedir(protodir, entries)
747 	register struct direct *protodir;
748 	int entries;
749 {
750 	char *cp;
751 	int i, spcleft;
752 
753 	spcleft = DIRBLKSIZ;
754 	for (cp = buf, i = 0; i < entries - 1; i++) {
755 		protodir[i].d_reclen = DIRSIZ(&protodir[i]);
756 		bcopy(&protodir[i], cp, protodir[i].d_reclen);
757 		cp += protodir[i].d_reclen;
758 		spcleft -= protodir[i].d_reclen;
759 	}
760 	protodir[i].d_reclen = spcleft;
761 	bcopy(&protodir[i], cp, DIRSIZ(&protodir[i]));
762 	return (DIRBLKSIZ);
763 }
764 
765 /*
766  * allocate a block or frag
767  */
768 daddr_t
769 alloc(size, mode)
770 	int size;
771 	int mode;
772 {
773 	int i, frag;
774 	daddr_t d;
775 
776 	rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
777 	    (char *)&acg);
778 	if (acg.cg_magic != CG_MAGIC) {
779 		printf("cg 0: bad magic number\n");
780 		return (0);
781 	}
782 	if (acg.cg_cs.cs_nbfree == 0) {
783 		printf("first cylinder group ran out of space\n");
784 		return (0);
785 	}
786 	for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
787 		if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag))
788 			goto goth;
789 	printf("internal error: can't find block in cyl 0\n");
790 	return (0);
791 goth:
792 	clrblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag);
793 	acg.cg_cs.cs_nbfree--;
794 	sblock.fs_cstotal.cs_nbfree--;
795 	fscs[0].cs_nbfree--;
796 	if (mode & IFDIR) {
797 		acg.cg_cs.cs_ndir++;
798 		sblock.fs_cstotal.cs_ndir++;
799 		fscs[0].cs_ndir++;
800 	}
801 	cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
802 	cg_blks(&sblock, &acg, cbtocylno(&sblock, d))[cbtorpos(&sblock, d)]--;
803 	if (size != sblock.fs_bsize) {
804 		frag = howmany(size, sblock.fs_fsize);
805 		fscs[0].cs_nffree += sblock.fs_frag - frag;
806 		sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
807 		acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
808 		acg.cg_frsum[sblock.fs_frag - frag]++;
809 		for (i = frag; i < sblock.fs_frag; i++)
810 			setbit(cg_blksfree(&acg), d + i);
811 	}
812 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
813 	    (char *)&acg);
814 	return (d);
815 }
816 
817 /*
818  * Allocate an inode on the disk
819  */
820 iput(ip)
821 	register struct inode *ip;
822 {
823 	struct dinode buf[MAXINOPB];
824 	daddr_t d;
825 	int c;
826 
827 	c = itog(&sblock, ip->i_number);
828 	rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
829 	    (char *)&acg);
830 	if (acg.cg_magic != CG_MAGIC) {
831 		printf("cg 0: bad magic number\n");
832 		exit(1);
833 	}
834 	acg.cg_cs.cs_nifree--;
835 	setbit(cg_inosused(&acg), ip->i_number);
836 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
837 	    (char *)&acg);
838 	sblock.fs_cstotal.cs_nifree--;
839 	fscs[0].cs_nifree--;
840 	if (ip->i_number >= sblock.fs_ipg * sblock.fs_ncg) {
841 		printf("fsinit: inode value out of range (%d).\n",
842 		    ip->i_number);
843 		exit(1);
844 	}
845 	d = fsbtodb(&sblock, itod(&sblock, ip->i_number));
846 	rdfs(d, sblock.fs_bsize, buf);
847 	buf[itoo(&sblock, ip->i_number)].di_ic = ip->i_ic;
848 	wtfs(d, sblock.fs_bsize, buf);
849 }
850 
851 /*
852  * read a block from the file system
853  */
854 rdfs(bno, size, bf)
855 	daddr_t bno;
856 	int size;
857 	char *bf;
858 {
859 	int n;
860 
861 	if (lseek(fsi, bno * sectorsize, 0) < 0) {
862 		printf("seek error: %ld\n", bno);
863 		perror("rdfs");
864 		exit(1);
865 	}
866 	n = read(fsi, bf, size);
867 	if(n != size) {
868 		printf("read error: %ld\n", bno);
869 		perror("rdfs");
870 		exit(1);
871 	}
872 }
873 
874 /*
875  * write a block to the file system
876  */
877 wtfs(bno, size, bf)
878 	daddr_t bno;
879 	int size;
880 	char *bf;
881 {
882 	int n;
883 
884 	if (Nflag)
885 		return;
886 	if (lseek(fso, bno * sectorsize, 0) < 0) {
887 		printf("seek error: %ld\n", bno);
888 		perror("wtfs");
889 		exit(1);
890 	}
891 	n = write(fso, bf, size);
892 	if(n != size) {
893 		printf("write error: %ld\n", bno);
894 		perror("wtfs");
895 		exit(1);
896 	}
897 }
898 
899 /*
900  * check if a block is available
901  */
902 isblock(fs, cp, h)
903 	struct fs *fs;
904 	unsigned char *cp;
905 	int h;
906 {
907 	unsigned char mask;
908 
909 	switch (fs->fs_frag) {
910 	case 8:
911 		return (cp[h] == 0xff);
912 	case 4:
913 		mask = 0x0f << ((h & 0x1) << 2);
914 		return ((cp[h >> 1] & mask) == mask);
915 	case 2:
916 		mask = 0x03 << ((h & 0x3) << 1);
917 		return ((cp[h >> 2] & mask) == mask);
918 	case 1:
919 		mask = 0x01 << (h & 0x7);
920 		return ((cp[h >> 3] & mask) == mask);
921 	default:
922 #ifdef STANDALONE
923 		printf("isblock bad fs_frag %d\n", fs->fs_frag);
924 #else
925 		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
926 #endif
927 		return (0);
928 	}
929 }
930 
931 /*
932  * take a block out of the map
933  */
934 clrblock(fs, cp, h)
935 	struct fs *fs;
936 	unsigned char *cp;
937 	int h;
938 {
939 	switch ((fs)->fs_frag) {
940 	case 8:
941 		cp[h] = 0;
942 		return;
943 	case 4:
944 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
945 		return;
946 	case 2:
947 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
948 		return;
949 	case 1:
950 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
951 		return;
952 	default:
953 #ifdef STANDALONE
954 		printf("clrblock bad fs_frag %d\n", fs->fs_frag);
955 #else
956 		fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
957 #endif
958 		return;
959 	}
960 }
961 
962 /*
963  * put a block into the map
964  */
965 setblock(fs, cp, h)
966 	struct fs *fs;
967 	unsigned char *cp;
968 	int h;
969 {
970 	switch (fs->fs_frag) {
971 	case 8:
972 		cp[h] = 0xff;
973 		return;
974 	case 4:
975 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
976 		return;
977 	case 2:
978 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
979 		return;
980 	case 1:
981 		cp[h >> 3] |= (0x01 << (h & 0x7));
982 		return;
983 	default:
984 #ifdef STANDALONE
985 		printf("setblock bad fs_frag %d\n", fs->fs_frag);
986 #else
987 		fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
988 #endif
989 		return;
990 	}
991 }
992