xref: /original-bsd/sys/hp/hpux/hpux_compat.c (revision dd262573)
1 /*
2  * Copyright (c) 1988 University of Utah.
3  * Copyright (c) 1990 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * the Systems Programming Group of the University of Utah Computer
8  * Science Department.
9  *
10  * %sccs.include.redist.c%
11  *
12  * from: Utah $Hdr: hpux_compat.c 1.3 90/09/17$
13  *
14  *	@(#)hpux_compat.c	7.11 (Berkeley) 12/16/90
15  */
16 
17 /*
18  * Various HPUX compatibility routines
19  */
20 
21 #ifdef HPUXCOMPAT
22 
23 #include "sys/param.h"
24 #include "sys/systm.h"
25 #include "sys/user.h"
26 #include "sys/kernel.h"
27 #include "sys/proc.h"
28 #include "sys/buf.h"
29 #include "sys/wait.h"
30 #include "sys/file.h"
31 #include "sys/vnode.h"
32 #include "sys/ioctl.h"
33 #include "sys/uio.h"
34 #include "sys/ptrace.h"
35 #include "sys/stat.h"
36 #include "sys/syslog.h"
37 #include "sys/malloc.h"
38 #include "sys/mount.h"
39 #include "sys/ipc.h"
40 
41 #include "../include/cpu.h"
42 #include "../include/reg.h"
43 #include "../include/psl.h"
44 #include "../include/vmparam.h"
45 #include "hpux.h"
46 #include "hpux_termio.h"
47 
48 #ifdef DEBUG
49 int unimpresponse = 0;
50 #endif
51 
52 /* SYS5 style UTSNAME info */
53 struct hpuxutsname protoutsname = {
54 	"4.4bsd", "", "2.0", "B", "9000/3?0", ""
55 };
56 
57 /* 6.0 and later style context */
58 #ifdef FPCOPROC
59 char hpuxcontext[] =
60 	"standalone HP-MC68881 HP-MC68020 HP-MC68010 localroot default";
61 #else
62 char hpuxcontext[] =
63 	"standalone HP-MC68020 HP-MC68010 localroot default";
64 #endif
65 
66 /* YP domainname */
67 char	domainname[MAXHOSTNAMELEN] = "unknown";
68 int	domainnamelen = 7;
69 
70 #define NERR	79
71 #define BERR	1000
72 
73 /* indexed by BSD errno */
74 short bsdtohpuxerrnomap[NERR] = {
75 /*00*/	  0,   1,   2,   3,   4,   5,   6,   7,   8,   9,
76 /*10*/	 10,  45,  12,  13,  14,  15,  16,  17,  18,  19,
77 /*20*/	 20,  21,  22,  23,  24,  25,  26,  27,  28,  29,
78 /*30*/	 30,  31,  32,  33,  34, 246, 245, 244, 216, 217,
79 /*40*/	218, 219, 220, 221, 222, 223, 224, 225, 226, 227,
80 /*50*/	228, 229, 230, 231, 232, 233, 234, 235, 236, 237,
81 /*60*/	238, 239, 249, 248, 241, 242, 247,BERR,BERR,BERR,
82 /*70*/   70,  71,BERR,BERR,BERR,BERR,BERR,  46,BERR
83 };
84 
85 notimp(p, uap, retval, code, nargs)
86 	struct proc *p;
87 	int *uap, *retval;
88 	int code, nargs;
89 {
90 	int error = 0;
91 #ifdef DEBUG
92 	register int *argp = uap;
93 	extern char *hpuxsyscallnames[];
94 
95 	printf("HPUX %s(", hpuxsyscallnames[code]);
96 	if (nargs)
97 		while (nargs--)
98 			printf("%x%c", *argp++, nargs? ',' : ')');
99 	else
100 		printf(")");
101 	printf("\n");
102 	switch (unimpresponse) {
103 	case 0:
104 		error = nosys(p, uap, retval);
105 		break;
106 	case 1:
107 		error = EINVAL;
108 		break;
109 	}
110 #else
111 	error = nosys(p, uap, retval);
112 #endif
113 	uprintf("HP-UX system call %d not implemented\n", code);
114 	return (error);
115 }
116 
117 /*
118  * HPUX versions of wait and wait3 actually pass the parameters
119  * (status pointer, options, rusage) into the kernel rather than
120  * handling it in the C library stub.  We also need to map any
121  * termination signal from BSD to HPUX.
122  */
123 hpuxwait3(p, uap, retval)
124 	struct proc *p;
125 	struct args {
126 		int	*status;
127 		int	options;
128 		int	rusage;
129 	} *uap;
130 	int *retval;
131 {
132 	/* rusage pointer must be zero */
133 	if (uap->rusage)
134 		return (EINVAL);
135 	u.u_ar0[PS] = PSL_ALLCC;
136 	u.u_ar0[R0] = uap->options;
137 	u.u_ar0[R1] = uap->rusage;
138 	return (hpuxwait(p, uap, retval));
139 }
140 
141 hpuxwait(p, uap, retval)
142 	struct proc *p;
143 	struct args {
144 		int	*status;
145 	} *uap;
146 	int *retval;
147 {
148 	int sig, *statp, error;
149 
150 	statp = uap->status;	/* owait clobbers first arg */
151 	error = owait(p, uap, retval);
152 	/*
153 	 * HP-UX wait always returns EINTR when interrupted by a signal
154 	 * (well, unless its emulating a BSD process, but we don't bother...)
155 	 */
156 	if (error == ERESTART)
157 		error = EINTR;
158 	if (error)
159 		return (error);
160 	sig = retval[1] & 0xFF;
161 	if (sig == WSTOPPED) {
162 		sig = (retval[1] >> 8) & 0xFF;
163 		retval[1] = (bsdtohpuxsig(sig) << 8) | WSTOPPED;
164 	} else if (sig)
165 		retval[1] = (retval[1] & 0xFF00) |
166 			bsdtohpuxsig(sig & 0x7F) | (sig & 0x80);
167 	if (statp)
168 		if (suword((caddr_t)statp, retval[1]))
169 			error = EFAULT;
170 	return (error);
171 }
172 
173 hpuxwaitpid(p, uap, retval)
174 	struct proc *p;
175 	struct args {
176 		int	pid;
177 		int	*status;
178 		int	options;
179 		struct	rusage *rusage;	/* wait4 arg */
180 	} *uap;
181 	int *retval;
182 {
183 	int sig, *statp, error;
184 
185 	uap->rusage = 0;
186 	error = wait4(p, uap, retval);
187 	/*
188 	 * HP-UX wait always returns EINTR when interrupted by a signal
189 	 * (well, unless its emulating a BSD process, but we don't bother...)
190 	 */
191 	if (error == ERESTART)
192 		error = EINTR;
193 	if (error)
194 		return (error);
195 	sig = retval[1] & 0xFF;
196 	if (sig == WSTOPPED) {
197 		sig = (retval[1] >> 8) & 0xFF;
198 		retval[1] = (bsdtohpuxsig(sig) << 8) | WSTOPPED;
199 	} else if (sig)
200 		retval[1] = (retval[1] & 0xFF00) |
201 			bsdtohpuxsig(sig & 0x7F) | (sig & 0x80);
202 	if (statp)
203 		if (suword((caddr_t)statp, retval[1]))
204 			error = EFAULT;
205 	return (error);
206 }
207 
208 /*
209  * Must remap some bits in the mode mask.
210  * O_CREAT, O_TRUNC, and O_EXCL must be remapped,
211  * O_SYNCIO (0100000) is removed entirely.
212  */
213 hpuxopen(p, uap, retval)
214 	struct proc *p;
215 	register struct args {
216 		char	*fname;
217 		int	mode;
218 		int	crtmode;
219 	} *uap;
220 	int *retval;
221 {
222 	int mode;
223 
224 	mode = uap->mode;
225 	uap->mode &= ~(HPUXFSYNCIO|HPUXFEXCL|HPUXFTRUNC|HPUXFCREAT);
226 	if (mode & HPUXFCREAT) {
227 		/*
228 		 * simulate the pre-NFS behavior that opening a
229 		 * file for READ+CREATE ignores the CREATE (unless
230 		 * EXCL is set in which case we will return the
231 		 * proper error).
232 		 */
233 		if ((mode & HPUXFEXCL) || ((mode-FOPEN) & FWRITE))
234 			uap->mode |= FCREAT;
235 	}
236 	if (mode & HPUXFTRUNC)
237 		uap->mode |= FTRUNC;
238 	if (mode & HPUXFEXCL)
239 		uap->mode |= FEXCL;
240 	return (open(p, uap, retval));
241 }
242 
243 hpuxfcntl(p, uap, retval)
244 	struct proc *p;
245 	register struct args {
246 		int	fdes;
247 		int	cmd;
248 		int	arg;
249 	} *uap;
250 	int *retval;
251 {
252 	int mode, error;
253 
254 	switch (uap->cmd) {
255 	case F_SETFL:
256 		uap->arg &= ~(HPUXFSYNCIO|HPUXFREMOTE|FUSECACHE);
257 		break;
258 	case F_GETFL:
259 	case F_DUPFD:
260 	case F_GETFD:
261 	case F_SETFD:
262 		break;
263 	default:
264 		return (EINVAL);
265 	}
266 	error = fcntl(p, uap, retval);
267 	if (error == 0 && uap->arg == F_GETFL) {
268 		mode = *retval;
269 		*retval &= ~(FCREAT|FTRUNC|FEXCL|FUSECACHE);
270 		if (mode & FCREAT)
271 			*retval |= HPUXFCREAT;
272 		if (mode & FTRUNC)
273 			*retval |= HPUXFTRUNC;
274 		if (mode & FEXCL)
275 			*retval |= HPUXFEXCL;
276 	}
277 	return (error);
278 }
279 
280 /*
281  * Read and write should return a 0 count when an operation
282  * on a VNODE would block, not an error.  Sockets appear to
283  * return EWOULDBLOCK (at least in 6.2).  This is probably
284  * not entirely correct, since the behavior is only defined
285  * for pipes and tty type devices.
286  */
287 hpuxread(p, uap, retval)
288 	struct proc *p;
289 	struct args {
290 		int	fd;
291 	} *uap;
292 	int *retval;
293 {
294 	int error;
295 
296 	error = read(p, uap, retval);
297 	if (error == EWOULDBLOCK &&
298 	    u.u_ofile[uap->fd]->f_type == DTYPE_VNODE) {
299 		error = 0;
300 		*retval = 0;
301 	}
302 	return (error);
303 }
304 
305 hpuxwrite(p, uap, retval)
306 	struct proc *p;
307 	struct args {
308 		int	fd;
309 	} *uap;
310 	int *retval;
311 {
312 	int error;
313 
314 	error = write(p, uap, retval);
315 	if (error == EWOULDBLOCK &&
316 	    u.u_ofile[uap->fd]->f_type == DTYPE_VNODE) {
317 		error = 0;
318 		*retval = 0;
319 	}
320 	return (error);
321 }
322 
323 hpuxreadv(p, uap, retval)
324 	struct proc *p;
325 	struct args {
326 		int	fd;
327 	} *uap;
328 	int *retval;
329 {
330 	int error;
331 
332 	error = readv(p, uap, retval);
333 	if (error == EWOULDBLOCK &&
334 	    u.u_ofile[uap->fd]->f_type == DTYPE_VNODE) {
335 		error = 0;
336 		*retval = 0;
337 	}
338 	return (error);
339 }
340 
341 hpuxwritev(p, uap, retval)
342 	struct proc *p;
343 	struct args {
344 		int	fd;
345 	} *uap;
346 	int *retval;
347 {
348 	int error;
349 
350 	error = writev(p, uap, retval);
351 	if (error == EWOULDBLOCK &&
352 	    u.u_ofile[uap->fd]->f_type == DTYPE_VNODE) {
353 		error = 0;
354 		*retval = 0;
355 	}
356 	return (error);
357 }
358 
359 /*
360  * 4.3bsd dup allows dup2 to come in on the same syscall entry
361  * and hence allows two arguments.  HPUX dup has only one arg.
362  */
363 hpuxdup(p, uap, retval)
364 	struct proc *p;
365 	register struct args {
366 		int	i;
367 	} *uap;
368 	int *retval;
369 {
370 	struct file *fp;
371 	int fd, error;
372 
373 	if ((unsigned)uap->i >= NOFILE || (fp = u.u_ofile[uap->i]) == NULL)
374 		return (EBADF);
375 	if (error = ufalloc(0, &fd))
376 		return (error);
377 	*retval = fd;
378 	u.u_ofile[fd] = fp;
379 	u.u_pofile[fd] = u.u_pofile[uap->i] &~ UF_EXCLOSE;
380 	fp->f_count++;
381 	if (fd > u.u_lastfile)
382 		u.u_lastfile = fd;
383 	return (0);
384 }
385 
386 hpuxutssys(p, uap, retval)
387 	struct proc *p;
388 	register struct args {
389 		struct hpuxutsname *uts;
390 		int dev;
391 		int request;
392 	} *uap;
393 	int *retval;
394 {
395 	register int i;
396 	int error;
397 
398 	switch (uap->request) {
399 	/* uname */
400 	case 0:
401 		/* fill in machine type */
402 		switch (machineid) {
403 		case HP_320:
404 			protoutsname.machine[6] = '2';
405 			break;
406 		/* includes 318 and 319 */
407 		case HP_330:
408 			protoutsname.machine[6] = '3';
409 			break;
410 		case HP_340:
411 			protoutsname.machine[6] = '4';
412 			break;
413 		case HP_350:
414 			protoutsname.machine[6] = '5';
415 			break;
416 		case HP_360:
417 			protoutsname.machine[6] = '6';
418 			break;
419 		case HP_370:
420 			protoutsname.machine[6] = '7';
421 			break;
422 		/* includes 345 */
423 		case HP_375:
424 			protoutsname.machine[6] = '7';
425 			protoutsname.machine[7] = '5';
426 			break;
427 		}
428 		/* copy hostname (sans domain) to nodename */
429 		for (i = 0; i < 9 && hostname[i] != '.'; i++)
430 			protoutsname.nodename[i] = hostname[i];
431 		error = copyout((caddr_t)&protoutsname, (caddr_t)uap->uts,
432 				sizeof(struct hpuxutsname));
433 		break;
434 
435 	/* gethostname */
436 	case 5:
437 		/* uap->dev is length */
438 		if (uap->dev > hostnamelen + 1)
439 			uap->dev = hostnamelen + 1;
440 		error = copyout((caddr_t)hostname, (caddr_t)uap->uts,
441 				uap->dev);
442 		break;
443 
444 	case 1:	/* ?? */
445 	case 2:	/* ustat */
446 	case 3:	/* ?? */
447 	case 4:	/* sethostname */
448 	default:
449 		error = EINVAL;
450 		break;
451 	}
452 	return (error);
453 }
454 
455 hpuxstat(p, uap, retval)
456 	struct proc *p;
457 	struct args {
458 		char	*fname;
459 		struct hpuxstat *hsb;
460 	} *uap;
461 	int *retval;
462 {
463 	return (hpuxstat1(uap->fname, uap->hsb, FOLLOW));
464 }
465 
466 hpuxlstat(p, uap, retval)
467 	struct proc *p;
468 	struct args {
469 		char	*fname;
470 		struct hpuxstat *hsb;
471 	} *uap;
472 	int *retval;
473 {
474 	return (hpuxstat1(uap->fname, uap->hsb, NOFOLLOW));
475 }
476 
477 hpuxfstat(p, uap, retval)
478 	struct proc *p;
479 	register struct args {
480 		int	fdes;
481 		struct	hpuxstat *hsb;
482 	} *uap;
483 	int *retval;
484 {
485 	register struct file *fp;
486 	struct stat sb;
487 	int error;
488 
489 	if ((unsigned)uap->fdes >= NOFILE ||
490 	    (fp = u.u_ofile[uap->fdes]) == NULL)
491 		return (EBADF);
492 
493 	switch (fp->f_type) {
494 
495 	case DTYPE_VNODE:
496 		error = vn_stat((struct vnode *)fp->f_data, &sb);
497 		break;
498 
499 	case DTYPE_SOCKET:
500 		error = soo_stat((struct socket *)fp->f_data, &sb);
501 		break;
502 
503 	default:
504 		panic("fstat");
505 		/*NOTREACHED*/
506 	}
507 	/* is this right for sockets?? */
508 	if (error == 0)
509 		error = bsdtohpuxstat(&sb, uap->hsb);
510 	return (error);
511 }
512 
513 hpuxulimit(p, uap, retval)
514 	struct proc *p;
515 	register struct args {
516 		int	cmd;
517 		long	newlimit;
518 	} *uap;
519 	off_t *retval;
520 {
521 	struct rlimit *limp;
522 	int error = 0;
523 
524 	limp = &u.u_rlimit[RLIMIT_FSIZE];
525 	switch (uap->cmd) {
526 	case 2:
527 		uap->newlimit *= 512;
528 		if (uap->newlimit > limp->rlim_max &&
529 		    (error = suser(u.u_cred, &u.u_acflag)))
530 			break;
531 		limp->rlim_cur = limp->rlim_max = uap->newlimit;
532 		/* else fall into... */
533 
534 	case 1:
535 		*retval = limp->rlim_max / 512;
536 		break;
537 
538 	case 3:
539 		limp = &u.u_rlimit[RLIMIT_DATA];
540 		*retval = ctob(u.u_tsize) + limp->rlim_max;
541 		break;
542 
543 	default:
544 		error = EINVAL;
545 		break;
546 	}
547 	return (error);
548 }
549 
550 /*
551  * Map "real time" priorities 0 (high) thru 127 (low) into nice
552  * values -16 (high) thru -1 (low).
553  */
554 hpuxrtprio(cp, uap, retval)
555 	struct proc *cp;
556 	register struct args {
557 		int pid;
558 		int prio;
559 	} *uap;
560 	int *retval;
561 {
562 	struct proc *p;
563 	int nice, error;
564 
565 	if (uap->prio < RTPRIO_MIN && uap->prio > RTPRIO_MAX &&
566 	    uap->prio != RTPRIO_NOCHG && uap->prio != RTPRIO_RTOFF)
567 		return (EINVAL);
568 	if (uap->pid == 0)
569 		p = cp;
570 	else if ((p = pfind(uap->pid)) == 0)
571 		return (ESRCH);
572 	nice = p->p_nice;
573 	if (nice < NZERO)
574 		*retval = (nice + 16) << 3;
575 	else
576 		*retval = RTPRIO_RTOFF;
577 	switch (uap->prio) {
578 
579 	case RTPRIO_NOCHG:
580 		return (0);
581 
582 	case RTPRIO_RTOFF:
583 		if (nice >= NZERO)
584 			return (0);
585 		nice = NZERO;
586 		break;
587 
588 	default:
589 		nice = (uap->prio >> 3) - 16;
590 		break;
591 	}
592 	error = donice(cp, p, nice);
593 	if (error == EACCES)
594 		error = EPERM;
595 	return (error);
596 }
597 
598 hpuxadvise(p, uap, retval)
599 	struct proc *p;
600 	struct args {
601 		int	arg;
602 	} *uap;
603 	int *retval;
604 {
605 	int error = 0;
606 
607 	switch (uap->arg) {
608 	case 0:
609 		u.u_pcb.pcb_flags |= PCB_HPUXMMAP;
610 		break;
611 	case 1:
612 		ICIA();
613 		break;
614 	case 2:
615 		DCIA();
616 		break;
617 	default:
618 		error = EINVAL;
619 		break;
620 	}
621 	return (error);
622 }
623 
624 hpuxptrace(p, uap, retval)
625 	struct proc *p;
626 	struct args {
627 		int	req;
628 		int	pid;
629 		int	*addr;
630 		int	data;
631 	} *uap;
632 	int *retval;
633 {
634 	int error;
635 
636 	if (uap->req == PT_STEP || uap->req == PT_CONTINUE) {
637 		if (uap->data) {
638 			uap->data = hpuxtobsdsig(uap->data);
639 			if (uap->data == 0)
640 				uap->data = NSIG;
641 		}
642 	}
643 	error = ptrace(p, uap, retval);
644 	return (error);
645 }
646 
647 hpuxgetdomainname(p, uap, retval)
648 	struct proc *p;
649 	register struct args {
650 		char	*domainname;
651 		u_int	len;
652 	} *uap;
653 	int *retval;
654 {
655 	if (uap->len > domainnamelen + 1)
656 		uap->len = domainnamelen + 1;
657 	return (copyout(domainname, uap->domainname, uap->len));
658 }
659 
660 hpuxsetdomainname(p, uap, retval)
661 	struct proc *p;
662 	register struct args {
663 		char	*domainname;
664 		u_int	len;
665 	} *uap;
666 	int *retval;
667 {
668 	int error;
669 
670 	if (error = suser(u.u_cred, &u.u_acflag))
671 		return (error);
672 	if (uap->len > sizeof (domainname) - 1)
673 		return (EINVAL);
674 	domainnamelen = uap->len;
675 	error = copyin(uap->domainname, domainname, uap->len);
676 	domainname[domainnamelen] = 0;
677 	return (error);
678 }
679 
680 #ifdef SYSVSHM
681 hpuxshmat(p, uap, retval)
682 	struct proc *p;
683 	int *uap, *retval;
684 {
685 	return (shmat(p, uap, retval));
686 }
687 
688 hpuxshmctl(p, uap, retval)
689 	struct proc *p;
690 	int *uap, *retval;
691 {
692 	return (shmctl(p, uap, retval));
693 }
694 
695 hpuxshmdt(p, uap, retval)
696 	struct proc *p;
697 	int *uap, *retval;
698 {
699 	return (shmdt(p, uap, retval));
700 }
701 
702 hpuxshmget(p, uap, retval)
703 	struct proc *p;
704 	int *uap, *retval;
705 {
706 	return (shmget(p, uap, retval));
707 }
708 #endif
709 
710 /*
711  * Fake semaphore routines, just don't return an error.
712  * Should be adequate for starbase to run.
713  */
714 hpuxsemctl(p, uap, retval)
715 	struct proc *p;
716 	struct args {
717 		int semid;
718 		u_int semnum;
719 		int cmd;
720 		int arg;
721 	} *uap;
722 	int *retval;
723 {
724 	/* XXX: should do something here */
725 	return (0);
726 }
727 
728 hpuxsemget(p, uap, retval)
729 	struct proc *p;
730 	struct args {
731 		key_t key;
732 		int nsems;
733 		int semflg;
734 	} *uap;
735 	int *retval;
736 {
737 	/* XXX: should do something here */
738 	return (0);
739 }
740 
741 hpuxsemop(p, uap, retval)
742 	struct proc *p;
743 	struct args {
744 		int semid;
745 		struct sembuf *sops;
746 		u_int nsops;
747 	} *uap;
748 	int *retval;
749 {
750 	/* XXX: should do something here */
751 	return (0);
752 }
753 
754 /* convert from BSD to HPUX errno */
755 bsdtohpuxerrno(err)
756 	int err;
757 {
758 	if (err < 0 || err >= NERR)
759 		return(BERR);
760 	return((int)bsdtohpuxerrnomap[err]);
761 }
762 
763 hpuxstat1(fname, hsb, follow)
764 	char *fname;
765 	struct hpuxstat *hsb;
766 	int follow;
767 {
768 	register struct nameidata *ndp = &u.u_nd;
769 	struct stat sb;
770 	int error;
771 
772 	ndp->ni_nameiop = LOOKUP | LOCKLEAF | follow;
773 	ndp->ni_segflg = UIO_USERSPACE;
774 	ndp->ni_dirp = fname;
775 	if (error = namei(ndp))
776 		return (error);
777 	error = vn_stat(ndp->ni_vp, &sb);
778 	vput(ndp->ni_vp);
779 	if (error == 0)
780 		error = bsdtohpuxstat(&sb, hsb);
781 	return (error);
782 }
783 
784 #include "grf.h"
785 
786 bsdtohpuxstat(sb, hsb)
787 	struct stat *sb;
788 	struct hpuxstat *hsb;
789 {
790 	struct hpuxstat ds;
791 
792 	bzero((caddr_t)&ds, sizeof(ds));
793 	ds.hst_dev = sb->st_dev;
794 	ds.hst_ino = (u_long)sb->st_ino;
795 	ds.hst_mode = sb->st_mode;
796 	ds.hst_nlink = sb->st_nlink;
797 	ds.hst_uid = (u_short)sb->st_uid;
798 	ds.hst_gid = (u_short)sb->st_gid;
799 #if NGRF > 0
800 	/* XXX: I don't want to talk about it... */
801 	if ((sb->st_mode & S_IFMT) == S_IFCHR && major(sb->st_rdev) == 10)
802 		ds.hst_rdev = grfdevno(sb->st_rdev);
803 	else
804 #endif
805 		ds.hst_rdev = bsdtohpuxdev(sb->st_rdev);
806 	ds.hst_size = sb->st_size;
807 	ds.hst_atime = sb->st_atime;
808 	ds.hst_mtime = sb->st_mtime;
809 	ds.hst_ctime = sb->st_ctime;
810 	ds.hst_blksize = sb->st_blksize;
811 	ds.hst_blocks = sb->st_blocks;
812 	return(copyout((caddr_t)&ds, (caddr_t)hsb, sizeof(ds)));
813 }
814 
815 hpuxtobsdioctl(com)
816 	int com;
817 {
818 	switch (com) {
819 	case HPUXTIOCSLTC:
820 		com = TIOCSLTC; break;
821 	case HPUXTIOCGLTC:
822 		com = TIOCGLTC; break;
823 	case HPUXTIOCSPGRP:
824 		com = TIOCSPGRP; break;
825 	case HPUXTIOCGPGRP:
826 		com = TIOCGPGRP; break;
827 	case HPUXTIOCLBIS:
828 		com = TIOCLBIS; break;
829 	case HPUXTIOCLBIC:
830 		com = TIOCLBIC; break;
831 	case HPUXTIOCLSET:
832 		com = TIOCLSET; break;
833 	case HPUXTIOCLGET:
834 		com = TIOCLGET; break;
835 	}
836 	return(com);
837 }
838 
839 /*
840  * HPUX ioctl system call.  The differences here are:
841  *	IOC_IN also means IOC_VOID if the size portion is zero.
842  *	no FIOCLEX/FIONCLEX/FIONBIO/FIOASYNC/FIOGETOWN/FIOSETOWN
843  *	the sgttyb struct is 2 bytes longer
844  */
845 hpuxioctl(p, uap, retval)
846 	struct proc *p;
847 	register struct args {
848 		int	fdes;
849 		int	cmd;
850 		caddr_t	cmarg;
851 	} *uap;
852 	int *retval;
853 {
854 	register struct file *fp;
855 	register int com, error;
856 	register u_int size;
857 	caddr_t memp = 0;
858 #define STK_PARAMS	128
859 	char stkbuf[STK_PARAMS];
860 	caddr_t data = stkbuf;
861 
862 	com = uap->cmd;
863 
864 	/* XXX */
865 	if (com == HPUXTIOCGETP || com == HPUXTIOCSETP)
866 		return (getsettty(uap->fdes, com, uap->cmarg));
867 
868 	if ((unsigned)uap->fdes >= NOFILE ||
869 	    (fp = u.u_ofile[uap->fdes]) == NULL)
870 		return (EBADF);
871 	if ((fp->f_flag & (FREAD|FWRITE)) == 0)
872 		return (EBADF);
873 
874 	/*
875 	 * Interpret high order word to find
876 	 * amount of data to be copied to/from the
877 	 * user's address space.
878 	 */
879 	size = IOCPARM_LEN(com);
880 	if (size > IOCPARM_MAX)
881 		return (ENOTTY);
882 	if (size > sizeof (stkbuf)) {
883 		memp = (caddr_t)malloc((u_long)size, M_IOCTLOPS, M_WAITOK);
884 		data = memp;
885 	}
886 	if (com&IOC_IN) {
887 		if (size) {
888 			error = copyin(uap->cmarg, data, (u_int)size);
889 			if (error) {
890 				if (memp)
891 					free(memp, M_IOCTLOPS);
892 				return (error);
893 			}
894 		} else
895 			*(caddr_t *)data = uap->cmarg;
896 	} else if ((com&IOC_OUT) && size)
897 		/*
898 		 * Zero the buffer so the user always
899 		 * gets back something deterministic.
900 		 */
901 		bzero(data, size);
902 	else if (com&IOC_VOID)
903 		*(caddr_t *)data = uap->cmarg;
904 
905 	switch (com) {
906 
907 	case HPUXTIOCCONS:
908 		*(int *)data = 1;
909 		error = (*fp->f_ops->fo_ioctl)(fp, TIOCCONS, data);
910 		break;
911 
912 	/* BSD-style job control ioctls */
913 	case HPUXTIOCLBIS:
914 	case HPUXTIOCLBIC:
915 	case HPUXTIOCLSET:
916 		*(int *)data &= HPUXLTOSTOP;
917 		if (*(int *)data & HPUXLTOSTOP)
918 			*(int *)data = LTOSTOP;
919 		/* fall into */
920 	case HPUXTIOCLGET:
921 	case HPUXTIOCSLTC:
922 	case HPUXTIOCGLTC:
923 	case HPUXTIOCSPGRP:
924 	case HPUXTIOCGPGRP:
925 		error = (*fp->f_ops->fo_ioctl)(fp, hpuxtobsdioctl(com), data);
926 		if (error == 0 && com == HPUXTIOCLGET) {
927 			*(int *)data &= LTOSTOP;
928 			if (*(int *)data & LTOSTOP)
929 				*(int *)data = HPUXLTOSTOP;
930 		}
931 		break;
932 
933 	/* SYS 5 termio */
934 	case HPUXTCGETA:
935 	case HPUXTCSETA:
936 	case HPUXTCSETAW:
937 	case HPUXTCSETAF:
938 		error = hpuxtermio(fp, com, data);
939 		break;
940 
941 	default:
942 		error = (*fp->f_ops->fo_ioctl)(fp, com, data);
943 		break;
944 	}
945 	/*
946 	 * Copy any data to user, size was
947 	 * already set and checked above.
948 	 */
949 	if (error == 0 && (com&IOC_OUT) && size)
950 		error = copyout(data, uap->cmarg, (u_int)size);
951 	if (memp)
952 		free(memp, M_IOCTLOPS);
953 	return (error);
954 }
955 
956 /*
957  * Man page lies, behaviour here is based on observed behaviour.
958  */
959 hpuxgetcontext(p, uap, retval)
960 	struct proc *p;
961 	struct args {
962 		char *buf;
963 		int len;
964 	} *uap;
965 	int *retval;
966 {
967 	int error = 0;
968 	register int len;
969 
970 	len = MIN(uap->len, sizeof(hpuxcontext));
971 	if (len)
972 		error = copyout(hpuxcontext, uap->buf, (u_int)len);
973 	if (error == 0)
974 		*retval = sizeof(hpuxcontext);
975 	return (error);
976 }
977 
978 /*
979  * This is the equivalent of BSD getpgrp but with more restrictions.
980  * Note we do not check the real uid or "saved" uid.
981  */
982 hpuxgetpgrp2(cp, uap, retval)
983 	struct proc *cp;
984 	register struct args {
985 		int pid;
986 	} *uap;
987 	int *retval;
988 {
989 	register struct proc *p;
990 
991 	if (uap->pid == 0)
992 		uap->pid = cp->p_pid;
993 	p = pfind(uap->pid);
994 	if (p == 0)
995 		return (ESRCH);
996 	if (u.u_uid && p->p_uid != u.u_uid && !inferior(p))
997 		return (EPERM);
998 	*retval = p->p_pgid;
999 	return (0);
1000 }
1001 
1002 /*
1003  * This is the equivalent of BSD setpgrp but with more restrictions.
1004  * Note we do not check the real uid or "saved" uid or pgrp.
1005  */
1006 hpuxsetpgrp2(p, uap, retval)
1007 	struct proc *p;
1008 	struct args {
1009 		int	pid;
1010 		int	pgrp;
1011 	} *uap;
1012 	int *retval;
1013 {
1014 	/* empirically determined */
1015 	if (uap->pgrp < 0 || uap->pgrp >= 30000)
1016 		return (EINVAL);
1017 	return (setpgrp(p, uap, retval));
1018 }
1019 
1020 /*
1021  * XXX Same as BSD setre[ug]id right now.  Need to consider saved ids.
1022  */
1023 hpuxsetresuid(p, uap, retval)
1024 	struct proc *p;
1025 	struct args {
1026 		int	ruid;
1027 		int	euid;
1028 		int	suid;
1029 	} *uap;
1030 	int *retval;
1031 {
1032 	return (osetreuid(p, uap, retval));
1033 }
1034 
1035 hpuxsetresgid(p, uap, retval)
1036 	struct proc *p;
1037 	struct args {
1038 		int	rgid;
1039 		int	egid;
1040 		int	sgid;
1041 	} *uap;
1042 	int *retval;
1043 {
1044 	return (osetregid(p, uap, retval));
1045 }
1046 
1047 /*
1048  * XXX: simple recognition hack to see if we can make grmd work.
1049  */
1050 hpuxlockf(p, uap, retval)
1051 	struct proc *p;
1052 	struct args {
1053 		int fd;
1054 		int func;
1055 		long size;
1056 	} *uap;
1057 	int *retval;
1058 {
1059 #ifdef DEBUG
1060 	log(LOG_DEBUG, "%d: lockf(%d, %d, %d)\n",
1061 	    p->p_pid, uap->fd, uap->func, uap->size);
1062 #endif
1063 	return (0);
1064 }
1065 
1066 hpuxgetaccess(p, uap, retval)
1067 	register struct proc *p;
1068 	register struct args {
1069 		char	*path;
1070 		int	uid;
1071 		int	ngroups;
1072 		int	*gidset;
1073 		void	*label;
1074 		void	*privs;
1075 	} *uap;
1076 	int *retval;
1077 {
1078 	struct nameidata *ndp = &u.u_nd;
1079 	int lgroups[NGROUPS];
1080 	int error = 0;
1081 	register struct ucred *cred;
1082 	register struct vnode *vp;
1083 
1084 	/*
1085 	 * Build an appropriate credential structure
1086 	 */
1087 	cred = crdup(ndp->ni_cred);
1088 	switch (uap->uid) {
1089 	case 65502:	/* UID_EUID */
1090 		break;
1091 	case 65503:	/* UID_RUID */
1092 		cred->cr_uid = p->p_ruid;
1093 		break;
1094 	case 65504:	/* UID_SUID */
1095 		error = EINVAL;
1096 		break;
1097 	default:
1098 		if (uap->uid > 65504)
1099 			error = EINVAL;
1100 		cred->cr_uid = uap->uid;
1101 		break;
1102 	}
1103 	switch (uap->ngroups) {
1104 	case -1:	/* NGROUPS_EGID */
1105 		cred->cr_ngroups = 1;
1106 		break;
1107 	case -5:	/* NGROUPS_EGID_SUPP */
1108 		break;
1109 	case -2:	/* NGROUPS_RGID */
1110 		cred->cr_ngroups = 1;
1111 		cred->cr_gid = p->p_rgid;
1112 		break;
1113 	case -6:	/* NGROUPS_RGID_SUPP */
1114 		cred->cr_gid = p->p_rgid;
1115 		break;
1116 	case -3:	/* NGROUPS_SGID */
1117 	case -7:	/* NGROUPS_SGID_SUPP */
1118 		error = EINVAL;
1119 		break;
1120 	case -4:	/* NGROUPS_SUPP */
1121 		if (cred->cr_ngroups > 1)
1122 			cred->cr_gid = cred->cr_groups[1];
1123 		else
1124 			error = EINVAL;
1125 		break;
1126 	default:
1127 		if (uap->ngroups > 0 && uap->ngroups <= NGROUPS)
1128 			error = copyin((caddr_t)uap->gidset,
1129 				       (caddr_t)&lgroups[0],
1130 				       uap->ngroups * sizeof(lgroups[0]));
1131 		else
1132 			error = EINVAL;
1133 		if (error == 0) {
1134 			int gid;
1135 
1136 			for (gid = 0; gid < uap->ngroups; gid++)
1137 				cred->cr_groups[gid] = lgroups[gid];
1138 			cred->cr_ngroups = uap->ngroups;
1139 		}
1140 		break;
1141 	}
1142 	/*
1143 	 * Lookup file using caller's effective IDs.
1144 	 */
1145 	if (error == 0) {
1146 		ndp->ni_nameiop = LOOKUP | FOLLOW | LOCKLEAF;
1147 		ndp->ni_segflg = UIO_USERSPACE;
1148 		ndp->ni_dirp = uap->path;
1149 		error = namei(ndp);
1150 	}
1151 	if (error) {
1152 		crfree(cred);
1153 		return (error);
1154 	}
1155 	/*
1156 	 * Use the constructed credentials for access checks.
1157 	 */
1158 	vp = ndp->ni_vp;
1159 	*retval = 0;
1160 	if (VOP_ACCESS(vp, VREAD, cred) == 0)
1161 		*retval |= R_OK;
1162 	if (vn_writechk(vp) == 0 && VOP_ACCESS(vp, VWRITE, cred) == 0)
1163 		*retval |= W_OK;
1164 	/* XXX we return X_OK for root on VREG even if not */
1165 	if (VOP_ACCESS(vp, VEXEC, cred) == 0)
1166 		*retval |= X_OK;
1167 	vput(vp);
1168 	crfree(cred);
1169 	return (error);
1170 }
1171 
1172 /*
1173  * Brutal hack!  Map HPUX u-area offsets into BSD u offsets.
1174  * No apologies offered, if you don't like it, rewrite it!
1175  */
1176 
1177 #define UOFF(f)		((int)&((struct user *)0)->f)
1178 #define HPUOFF(f)	((int)&((struct hpuxuser *)0)->f)
1179 
1180 /* simplified FP structure */
1181 struct bsdfp {
1182 	int save[54];
1183 	int reg[24];
1184 	int ctrl[3];
1185 };
1186 
1187 hpuxtobsduoff(off)
1188 	int *off;
1189 {
1190 	struct hpuxfp *hp;
1191 	struct bsdfp *bp;
1192 	register u_int raddr;
1193 
1194 	/* u_ar0 field */
1195 	if ((int)off == HPUOFF(hpuxu_ar0))
1196 		return(UOFF(u_ar0));
1197 
1198 #ifdef FPCOPROC
1199 	/* 68881 registers from PCB */
1200 	hp = (struct hpuxfp *)HPUOFF(hpuxu_fp);
1201 	bp = (struct bsdfp *)UOFF(u_pcb.pcb_fpregs);
1202 	if (off >= hp->hpfp_ctrl && off < &hp->hpfp_ctrl[3])
1203 		return((int)&bp->ctrl[off - hp->hpfp_ctrl]);
1204 	if (off >= hp->hpfp_reg && off < &hp->hpfp_reg[24])
1205 		return((int)&bp->reg[off - hp->hpfp_reg]);
1206 #endif
1207 
1208 	/*
1209 	 * Everything else we recognize comes from the kernel stack,
1210 	 * so we convert off to an absolute address (if not already)
1211 	 * for simplicity.
1212 	 */
1213 	if (off < (int *)ctob(UPAGES))
1214 		off = (int *)((u_int)off + (u_int)&u);
1215 
1216 	/*
1217 	 * 68020 registers.
1218 	 * We know that the HPUX registers are in the same order as ours.
1219 	 * The only difference is that their PS is 2 bytes instead of a
1220 	 * padded 4 like ours throwing the alignment off.
1221 	 */
1222 	if (off >= u.u_ar0 && off < &u.u_ar0[18]) {
1223 		/*
1224 		 * PS: return low word and high word of PC as HP-UX would
1225 		 * (e.g. &u.u_ar0[16.5]).
1226 		 */
1227 		if (off == &u.u_ar0[PS])
1228 			raddr = (u_int) &((short *)u.u_ar0)[PS*2+1];
1229 		/*
1230 		 * PC: off will be &u.u_ar0[16.5]
1231 		 */
1232 		else if (off == (int *)&(((short *)u.u_ar0)[PS*2+1]))
1233 			raddr = (u_int) &u.u_ar0[PC];
1234 		/*
1235 		 * D0-D7, A0-A7: easy
1236 		 */
1237 		else
1238 			raddr = (u_int) &u.u_ar0[(int)(off - u.u_ar0)];
1239 		return((int)(raddr - (u_int)&u));
1240 	}
1241 
1242 	/* everything else */
1243 	return(-1);
1244 }
1245 
1246 /*
1247  * Kludge up a uarea dump so that HPUX debuggers can find out
1248  * what they need.  IMPORTANT NOTE: we do not EVEN attempt to
1249  * convert the entire user struct.
1250  */
1251 hpuxdumpu(vp, cred)
1252 	struct vnode *vp;
1253 	struct ucred *cred;
1254 {
1255 	int error;
1256 	struct hpuxuser *faku;
1257 	struct bsdfp *bp;
1258 	short *foop;
1259 
1260 	faku = (struct hpuxuser *)malloc((u_long)ctob(1), M_TEMP, M_WAITOK);
1261 	/*
1262 	 * Make sure there is no mistake about this
1263 	 * being a real user structure.
1264 	 */
1265 	bzero((caddr_t)faku, ctob(1));
1266 	/*
1267 	 * Fill in the process sizes.
1268 	 */
1269 	faku->hpuxu_tsize = u.u_tsize;
1270 	faku->hpuxu_dsize = u.u_dsize;
1271 	faku->hpuxu_ssize = u.u_ssize;
1272 	/*
1273 	 * Fill in the exec header for CDB.
1274 	 * This was saved back in exec().  As far as I can tell CDB
1275 	 * only uses this information to verify that a particular
1276 	 * core file goes with a particular binary.
1277 	 */
1278 	bcopy((caddr_t)u.u_pcb.pcb_exec,
1279 	      (caddr_t)&faku->hpuxu_exdata, sizeof (struct hpux_exec));
1280 	/*
1281 	 * Adjust user's saved registers (on kernel stack) to reflect
1282 	 * HPUX order.  Note that HPUX saves the SR as 2 bytes not 4
1283 	 * so we have to move it up.
1284 	 */
1285 	faku->hpuxu_ar0 = u.u_ar0;
1286 	foop = (short *) u.u_ar0;
1287 	foop[32] = foop[33];
1288 	foop[33] = foop[34];
1289 	foop[34] = foop[35];
1290 #ifdef FPCOPROC
1291 	/*
1292 	 * Copy 68881 registers from our PCB format to HPUX format
1293 	 */
1294 	bp = (struct bsdfp *) &u.u_pcb.pcb_fpregs;
1295 	bcopy((caddr_t)bp->save, (caddr_t)faku->hpuxu_fp.hpfp_save,
1296 	      sizeof(bp->save));
1297 	bcopy((caddr_t)bp->ctrl, (caddr_t)faku->hpuxu_fp.hpfp_ctrl,
1298 	      sizeof(bp->ctrl));
1299 	bcopy((caddr_t)bp->reg, (caddr_t)faku->hpuxu_fp.hpfp_reg,
1300 	      sizeof(bp->reg));
1301 #endif
1302 	/*
1303 	 * Slay the dragon
1304 	 */
1305 	faku->hpuxu_dragon = -1;
1306 	/*
1307 	 * Dump this artfully constructed page in place of the
1308 	 * user struct page.
1309 	 */
1310 	error = vn_rdwr(UIO_WRITE, vp,
1311 			(caddr_t)faku, ctob(1), (off_t)0,
1312 			UIO_SYSSPACE, IO_NODELOCKED|IO_UNIT, cred, (int *)0);
1313 	/*
1314 	 * Dump the remaining UPAGES-1 pages normally
1315 	 */
1316 	if (!error)
1317 		error = vn_rdwr(UIO_WRITE, vp, ((caddr_t)&u)+ctob(1),
1318 				ctob(UPAGES-1), (off_t)ctob(1), UIO_SYSSPACE,
1319 				IO_NODELOCKED|IO_UNIT, cred, (int *)0);
1320 	free((caddr_t)faku, M_TEMP);
1321 	return(error);
1322 }
1323 
1324 /*
1325  * The remaining routines are essentially the same as those in kern_xxx.c
1326  * and vfs_xxx.c as defined under "#ifdef COMPAT".  We replicate them here
1327  * to avoid HPUXCOMPAT dependencies in those files and to make sure that
1328  * HP-UX compatibility still works even when COMPAT is not defined.
1329  */
1330 /* #ifdef COMPAT */
1331 
1332 #define HPUX_HZ	50
1333 
1334 #include "sys/times.h"
1335 
1336 /* from old timeb.h */
1337 struct hpuxtimeb {
1338 	time_t	time;
1339 	u_short	millitm;
1340 	short	timezone;
1341 	short	dstflag;
1342 };
1343 
1344 /* ye ole stat structure */
1345 struct	ohpuxstat {
1346 	dev_t	ohst_dev;
1347 	u_short	ohst_ino;
1348 	u_short ohst_mode;
1349 	short  	ohst_nlink;
1350 	short  	ohst_uid;
1351 	short  	ohst_gid;
1352 	dev_t	ohst_rdev;
1353 	int	ohst_size;
1354 	int	ohst_atime;
1355 	int	ohst_mtime;
1356 	int	ohst_ctime;
1357 };
1358 
1359 /*
1360  * SYS V style setpgrp()
1361  */
1362 ohpuxsetpgrp(p, uap, retval)
1363 	register struct proc *p;
1364 	int *uap, *retval;
1365 {
1366 	if (p->p_pid != p->p_pgid)
1367 		pgmv(p, p->p_pid, 0);
1368 	*retval = p->p_pgid;
1369 	return (0);
1370 }
1371 
1372 ohpuxtime(p, uap, retval)
1373 	struct proc *p;
1374 	register struct args {
1375 		long	*tp;
1376 	} *uap;
1377 	time_t *retval;
1378 {
1379 	int error = 0;
1380 
1381 	if (uap->tp)
1382 		error = copyout((caddr_t)&time.tv_sec, (caddr_t)uap->tp,
1383 				sizeof (long));
1384 	*retval = time.tv_sec;
1385 	return (error);
1386 }
1387 
1388 ohpuxstime(p, uap, retval)
1389 	struct proc *p;
1390 	register struct args {
1391 		int	time;
1392 	} *uap;
1393 	int *retval;
1394 {
1395 	struct timeval tv;
1396 	int s, error;
1397 
1398 	tv.tv_sec = uap->time;
1399 	tv.tv_usec = 0;
1400 	if (error = suser(u.u_cred, &u.u_acflag))
1401 		return (error);
1402 
1403 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
1404 	boottime.tv_sec += tv.tv_sec - time.tv_sec;
1405 	s = splhigh(); time = tv; splx(s);
1406 	resettodr();
1407 	return (0);
1408 }
1409 
1410 ohpuxftime(p, uap, retval)
1411 	struct proc *p;
1412 	register struct args {
1413 		struct	hpuxtimeb *tp;
1414 	} *uap;
1415 	int *retval;
1416 {
1417 	struct hpuxtimeb tb;
1418 	int s;
1419 
1420 	s = splhigh();
1421 	tb.time = time.tv_sec;
1422 	tb.millitm = time.tv_usec / 1000;
1423 	splx(s);
1424 	tb.timezone = tz.tz_minuteswest;
1425 	tb.dstflag = tz.tz_dsttime;
1426 	return (copyout((caddr_t)&tb, (caddr_t)uap->tp, sizeof (tb)));
1427 }
1428 
1429 ohpuxalarm(p, uap, retval)
1430 	register struct proc *p;
1431 	register struct args {
1432 		int	deltat;
1433 	} *uap;
1434 	int *retval;
1435 {
1436 	int s = splhigh();
1437 
1438 	untimeout(realitexpire, (caddr_t)p);
1439 	timerclear(&p->p_realtimer.it_interval);
1440 	*retval = 0;
1441 	if (timerisset(&p->p_realtimer.it_value) &&
1442 	    timercmp(&p->p_realtimer.it_value, &time, >))
1443 		*retval = p->p_realtimer.it_value.tv_sec - time.tv_sec;
1444 	if (uap->deltat == 0) {
1445 		timerclear(&p->p_realtimer.it_value);
1446 		splx(s);
1447 		return (0);
1448 	}
1449 	p->p_realtimer.it_value = time;
1450 	p->p_realtimer.it_value.tv_sec += uap->deltat;
1451 	timeout(realitexpire, (caddr_t)p, hzto(&p->p_realtimer.it_value));
1452 	splx(s);
1453 	return (0);
1454 }
1455 
1456 ohpuxnice(p, uap, retval)
1457 	register struct proc *p;
1458 	register struct args {
1459 		int	niceness;
1460 	} *uap;
1461 	int *retval;
1462 {
1463 	int error;
1464 
1465 	error = donice(p, p, (p->p_nice-NZERO)+uap->niceness);
1466 	if (error == 0)
1467 		*retval = p->p_nice - NZERO;
1468 	return (error);
1469 }
1470 
1471 ohpuxtimes(p, uap, retval)
1472 	struct proc *p;
1473 	register struct args {
1474 		struct	tms *tmsb;
1475 	} *uap;
1476 	time_t *retval;
1477 {
1478 	struct tms atms;
1479 	int error;
1480 
1481 	atms.tms_utime = hpuxscale(&u.u_ru.ru_utime);
1482 	atms.tms_stime = hpuxscale(&u.u_ru.ru_stime);
1483 	atms.tms_cutime = hpuxscale(&u.u_cru.ru_utime);
1484 	atms.tms_cstime = hpuxscale(&u.u_cru.ru_stime);
1485 	error = copyout((caddr_t)&atms, (caddr_t)uap->tmsb, sizeof (atms));
1486 	if (error == 0)
1487 		*retval = hpuxscale(&time) - hpuxscale(&boottime);
1488 	return (error);
1489 }
1490 
1491 /*
1492  * Doesn't exactly do what the documentation says.
1493  * What we really do is return 1/HPUX_HZ-th of a second since that
1494  * is what HP-UX returns.
1495  */
1496 hpuxscale(tvp)
1497 	register struct timeval *tvp;
1498 {
1499 	return (tvp->tv_sec * HPUX_HZ + tvp->tv_usec * HPUX_HZ / 1000000);
1500 }
1501 
1502 /*
1503  * Set IUPD and IACC times on file.
1504  * Can't set ICHG.
1505  */
1506 ohpuxutime(p, uap, retval)
1507 	struct proc *p;
1508 	register struct a {
1509 		char	*fname;
1510 		time_t	*tptr;
1511 	} *uap;
1512 	int *retval;
1513 {
1514 	struct vattr vattr;
1515 	time_t tv[2];
1516 	register struct vnode *vp;
1517 	register struct nameidata *ndp = &u.u_nd;
1518 	int error;
1519 
1520 	if (uap->tptr) {
1521 		error = copyin((caddr_t)uap->tptr, (caddr_t)tv, sizeof (tv));
1522 		if (error)
1523 			return (error);
1524 	} else
1525 		tv[0] = tv[1] = time.tv_sec;
1526 	ndp->ni_nameiop = LOOKUP | FOLLOW | LOCKLEAF;
1527 	ndp->ni_segflg = UIO_USERSPACE;
1528 	ndp->ni_dirp = uap->fname;
1529 	vattr_null(&vattr);
1530 	vattr.va_atime.tv_sec = tv[0];
1531 	vattr.va_atime.tv_usec = 0;
1532 	vattr.va_mtime.tv_sec = tv[1];
1533 	vattr.va_mtime.tv_usec = 0;
1534 	if (error = namei(ndp))
1535 		return (error);
1536 	vp = ndp->ni_vp;
1537 	if (vp->v_mount->mnt_flag & MNT_RDONLY)
1538 		error = EROFS;
1539 	else
1540 		error = VOP_SETATTR(vp, &vattr, ndp->ni_cred);
1541 	vput(vp);
1542 	return (error);
1543 }
1544 
1545 ohpuxpause(p, uap, retval)
1546 	struct proc *p;
1547 	int *uap, *retval;
1548 {
1549 	(void) tsleep((caddr_t)&u, PPAUSE | PCATCH, "pause", 0);
1550 	/* always return EINTR rather than ERESTART... */
1551 	return (EINTR);
1552 }
1553 
1554 /*
1555  * The old fstat system call.
1556  */
1557 ohpuxfstat(p, uap, retval)
1558 	struct proc *p;
1559 	register struct args {
1560 		int	fd;
1561 		struct ohpuxstat *sb;
1562 	} *uap;
1563 	int *retval;
1564 {
1565 	struct file *fp;
1566 
1567 	if ((unsigned)uap->fd >= NOFILE || (fp = u.u_ofile[uap->fd]) == NULL)
1568 		return (EBADF);
1569 	if (fp->f_type != DTYPE_VNODE)
1570 		return (EINVAL);
1571 	return (ohpuxstat1((struct vnode *)fp->f_data, uap->sb));
1572 }
1573 
1574 /*
1575  * Old stat system call.  This version follows links.
1576  */
1577 ohpuxstat(p, uap, retval)
1578 	struct proc *p;
1579 	register struct args {
1580 		char	*fname;
1581 		struct ohpuxstat *sb;
1582 	} *uap;
1583 	int *retval;
1584 {
1585 	register struct nameidata *ndp = &u.u_nd;
1586 	int error;
1587 
1588 	ndp->ni_nameiop = LOOKUP | LOCKLEAF | FOLLOW;
1589 	ndp->ni_segflg = UIO_USERSPACE;
1590 	ndp->ni_dirp = uap->fname;
1591 	if (error = namei(ndp))
1592 		return (error);
1593 	error = ohpuxstat1(ndp->ni_vp, uap->sb);
1594 	vput(ndp->ni_vp);
1595 	return (error);
1596 }
1597 
1598 int
1599 ohpuxstat1(vp, ub)
1600 	register struct vnode *vp;
1601 	struct ohpuxstat *ub;
1602 {
1603 	struct ohpuxstat ds;
1604 	struct vattr vattr;
1605 	register int error;
1606 
1607 	error = VOP_GETATTR(vp, &vattr, u.u_cred);
1608 	if (error)
1609 		return(error);
1610 	/*
1611 	 * Copy from inode table
1612 	 */
1613 	ds.ohst_dev = vattr.va_fsid;
1614 	ds.ohst_ino = (short)vattr.va_fileid;
1615 	ds.ohst_mode = (u_short)vattr.va_mode;
1616 	ds.ohst_nlink = vattr.va_nlink;
1617 	ds.ohst_uid = (short)vattr.va_uid;
1618 	ds.ohst_gid = (short)vattr.va_gid;
1619 	ds.ohst_rdev = (dev_t)vattr.va_rdev;
1620 	ds.ohst_size = (int)vattr.va_size;
1621 	ds.ohst_atime = (int)vattr.va_atime.tv_sec;
1622 	ds.ohst_mtime = (int)vattr.va_mtime.tv_sec;
1623 	ds.ohst_ctime = (int)vattr.va_ctime.tv_sec;
1624 	return (copyout((caddr_t)&ds, (caddr_t)ub, sizeof(ds)));
1625 }
1626 /* #endif */
1627 
1628 #endif
1629