xref: /original-bsd/sys/hp300/dev/rd.c (revision dbcb808a)
1 /*
2  * Copyright (c) 1988 University of Utah.
3  * Copyright (c) 1982, 1990 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * the Systems Programming Group of the University of Utah Computer
8  * Science Department.
9  *
10  * %sccs.include.redist.c%
11  *
12  * from: Utah $Hdr: rd.c 1.38 90/10/12$
13  *
14  *	@(#)rd.c	7.17 (Berkeley) 10/11/92
15  */
16 
17 /*
18  * CS80/SS80 disk driver
19  */
20 #include "rd.h"
21 #if NRD > 0
22 
23 #include <sys/param.h>
24 #include <sys/systm.h>
25 #include <sys/errno.h>
26 #include <sys/dkstat.h>
27 #include <sys/disklabel.h>
28 #include <sys/buf.h>
29 #include <sys/uio.h>
30 
31 #include <hp/dev/device.h>
32 #include <hp300/dev/rdreg.h>
33 
34 #include <vm/vm_param.h>
35 #include <vm/lock.h>
36 #include <vm/vm_prot.h>
37 #include <vm/pmap.h>
38 
39 int	rdinit(), rdstart(), rdgo(), rdintr();
40 struct	driver rddriver = {
41 	rdinit, "rd", rdstart, rdgo, rdintr,
42 };
43 
44 struct	rd_softc {
45 	struct	hp_device *sc_hd;
46 	int	sc_flags;
47 	short	sc_type;
48 	short	sc_punit;
49 	char	*sc_addr;
50 	int	sc_resid;
51 	u_int	sc_wpms;
52 	struct	rdinfo *sc_info;
53 	struct	devqueue sc_dq;
54 	struct	rd_iocmd sc_ioc;
55 	struct	rd_rscmd sc_rsc;
56 	struct	rd_stat sc_stat;
57 	struct	rd_ssmcmd sc_ssmc;
58 	struct	rd_srcmd sc_src;
59 	struct	rd_clearcmd sc_clear;
60 } rd_softc[NRD];
61 
62 /* sc_flags values */
63 #define	RDF_ALIVE	0x1
64 #define	RDF_SEEK	0x2
65 #define RDF_SWAIT	0x4
66 
67 struct	size {
68 	daddr_t	nblocks;
69 	int	cyloff;
70 };
71 
72 #ifdef DEBUG
73 int rddebug = 0x80;
74 #define RDB_FOLLOW	0x01
75 #define RDB_STATUS	0x02
76 #define RDB_IDENT	0x04
77 #define RDB_IO		0x08
78 #define RDB_ASYNC	0x10
79 #define RDB_ERROR	0x80
80 #define RDB_DUMP	0x80000000
81 
82 struct rdstats {
83 	long	rdretries;
84 	long	rdresets;
85 	long	rdtimeouts;
86 	long	rdpolltries;
87 	long	rdpollwaits;
88 } rdstats[NRD];
89 
90 /* error message tables */
91 char *err_reject[] = {
92 	0, 0,
93 	"channel parity error",		/* 0x2000 */
94 	0, 0,
95 	"illegal opcode",		/* 0x0400 */
96 	"module addressing",		/* 0x0200 */
97 	"address bounds",		/* 0x0100 */
98 	"parameter bounds",		/* 0x0080 */
99 	"illegal parameter",		/* 0x0040 */
100 	"message sequence",		/* 0x0020 */
101 	0,
102 	"message length",		/* 0x0008 */
103 	0, 0, 0
104 };
105 
106 char *err_fault[] = {
107 	0,
108 	"cross unit",			/* 0x4000 */
109 	0,
110 	"controller fault",		/* 0x1000 */
111 	0, 0,
112 	"unit fault",			/* 0x0200 */
113 	0,
114 	"diagnostic result",		/* 0x0080 */
115 	0,
116 	"operator release request",	/* 0x0020 */
117 	"diagnostic release request",	/* 0x0010 */
118 	"internal maintenance release request",	/* 0x0008 */
119 	0,
120 	"power fail",			/* 0x0002 */
121 	"retransmit"			/* 0x0001 */
122 };
123 
124 char *err_access[] = {
125 	"illegal parallel operation",	/* 0x8000 */
126 	"uninitialized media",		/* 0x4000 */
127 	"no spares available",		/* 0x2000 */
128 	"not ready",			/* 0x1000 */
129 	"write protect",		/* 0x0800 */
130 	"no data found",		/* 0x0400 */
131 	0, 0,
132 	"unrecoverable data overflow",	/* 0x0080 */
133 	"unrecoverable data",		/* 0x0040 */
134 	0,
135 	"end of file",			/* 0x0010 */
136 	"end of volume",		/* 0x0008 */
137 	0, 0, 0
138 };
139 
140 char *err_info[] = {
141 	"operator release request",	/* 0x8000 */
142 	"diagnostic release request",	/* 0x4000 */
143 	"internal maintenance release request",	/* 0x2000 */
144 	"media wear",			/* 0x1000 */
145 	"latency induced",		/* 0x0800 */
146 	0, 0,
147 	"auto sparing invoked",		/* 0x0100 */
148 	0,
149 	"recoverable data overflow",	/* 0x0040 */
150 	"marginal data",		/* 0x0020 */
151 	"recoverable data",		/* 0x0010 */
152 	0,
153 	"maintenance track overflow",	/* 0x0004 */
154 	0, 0
155 };
156 #endif
157 
158 /*
159  * CS/80 partitions.  We reserve the first cylinder for a LIF
160  * style boot directory (the 8k allowed in the BSD filesystem
161  * is just way too small).  This boot area is outside of all but
162  * the C partition.  This implies that you cannot use the C
163  * partition on a bootable disk since the filesystem would overlay
164  * the boot area.  You must use the A partition.
165  *
166  * These maps support four basic layouts:
167  *
168  *	A/B/G:   This is the "traditional" setup for a bootable disk.
169  *	         A is the root partition, B the swap, and G a user partition.
170  *	A/D/H:   This is a setup for bootable systems requiring more swap
171  *		 (e.g. those who use HPCL).  It has A as the root, D as a
172  *		 larger swap, and H as a smaller user partition.
173  *	A/D/E/F: Similar to A/D/H with E and F breaking H into two partitions.
174  *		 E could be used for /usr and F for users.
175  *	C:       This gives a single, non-bootable, large user filesystem.
176  *	         Good for second drives on a machine (e.g. /usr/src).
177  */
178 struct size rd7945A_sizes[8] = {
179 	RDSZ(15904),	1,		/* A=cyl 1 thru 142 */
180 	RDSZ(20160),	143,		/* B=cyl 143 thru 322 */
181 	RDSZ(108416),	0,		/* C=cyl 0 thru 967 */
182 	RDSZ(40320),	143,		/* D=cyl 143 thru 502 */
183 	RDSZ(0),	0,		/* E=<undefined> */
184 	RDSZ(0),	0,		/* F=<undefined> */
185 	RDSZ(72240),	323,		/* G=cyl 323 thru 967 */
186 	RDSZ(52080),	503,		/* H=cyl 503 thru 967 */
187 }, rd9134D_sizes[8] = {
188 	RDSZ(15936),	1,		/* A=cyl 1 thru 166 */
189 	RDSZ(13056),	167,		/* B=cyl 167 thru 302 */
190 	RDSZ(29088),	0,		/* C=cyl 0 thru 302 */
191 	RDSZ(0),	0,		/* D=<undefined> */
192 	RDSZ(0),	0,		/* E=<undefined> */
193 	RDSZ(0),	0,		/* F=<undefined> */
194 	RDSZ(0),	0,		/* G=<undefined> */
195 	RDSZ(0),	0,		/* H=<undefined> */
196 }, rd9122S_sizes[8] = {
197 	RDSZ(0),	0,		/* A=<undefined> */
198 	RDSZ(0),	0,		/* B=<undefined> */
199 	RDSZ(1232),	0,		/* C=cyl 0 thru 76 */
200 	RDSZ(0),	0,		/* D=<undefined> */
201 	RDSZ(0),	0,		/* E=<undefined> */
202 	RDSZ(0),	0,		/* F=<undefined> */
203 	RDSZ(0),	0,		/* G=<undefined> */
204 	RDSZ(0),	0,		/* H=<undefined> */
205 }, rd7912P_sizes[8] = {
206 	RDSZ(15904),	0,		/* A=cyl 1 thru 71 */
207 	RDSZ(22400),	72,		/* B=cyl 72 thru 171 */
208 	RDSZ(128128),	0,		/* C=cyl 0 thru 571 */
209 	RDSZ(42560),	72,		/* D=cyl 72 thru 261 */
210 	RDSZ(0),	292,		/* E=<undefined> */
211 	RDSZ(0),	542,		/* F=<undefined> */
212 	RDSZ(89600),	172,		/* G=cyl 221 thru 571 */
213 	RDSZ(69440),	262,		/* H=cyl 262 thru 571 */
214 }, rd7914P_sizes[8] = {
215 	RDSZ(15904),	1,		/* A=cyl 1 thru 71 */
216 	RDSZ(40320),	72,		/* B=cyl 72 thru 251 */
217 	RDSZ(258048),	0,		/* C=cyl 0 thru 1151 */
218 	RDSZ(64960),	72,		/* D=cyl 72 thru 361 */
219 	RDSZ(98560),	362,		/* E=cyl 362 thru 801 */
220 	RDSZ(78400),	802,		/* F=cyl 802 thru 1151 */
221 	RDSZ(201600),	252,		/* G=cyl 221 thru 1151 */
222 	RDSZ(176960),	362,		/* H=cyl 362 thru 1151 */
223 }, rd7933H_sizes[8] = {
224 	RDSZ(16146),	1,		/* A=cyl 1 thru 27 */
225 	RDSZ(66976),	28,		/* B=cyl 28 thru 139 */
226 	RDSZ(789958),	0,		/* C=cyl 0 thru 1320 */
227 	RDSZ(16146),	140,		/* D=cyl 140 thru 166 */
228 	RDSZ(165646),	167,		/* E=cyl 167 thru 443 */
229 	RDSZ(165646),	444,		/* F=cyl 444 thru 720 */
230 	RDSZ(706238),	140,		/* G=cyl 140 thru 1320 */
231 	RDSZ(358800),	721,		/* H=cyl 721 thru 1320 */
232 }, rd9134L_sizes[8] = {
233 	RDSZ(15920),	1,		/* A=cyl 1 thru 199 */
234 	RDSZ(20000),	200,		/* B=cyl 200 thru 449 */
235 	RDSZ(77840),	0,		/* C=cyl 0 thru 972 */
236 	RDSZ(32000),	200,		/* D=cyl 200 thru 599 */
237 	RDSZ(0),	0,		/* E=<undefined> */
238 	RDSZ(0),	0,		/* F=<undefined> */
239 	RDSZ(41840),	450,		/* G=cyl 450 thru 972 */
240 	RDSZ(29840),	600,		/* H=cyl 600 thru 972 */
241 }, rd7957A_sizes[8] = {
242 	RDSZ(16016),	1,		/* A=cyl 1 thru 104 */
243 	RDSZ(24640),	105,		/* B=cyl 105 thru 264 */
244 	RDSZ(159544),	0,		/* C=cyl 0 thru 1035 */
245 	RDSZ(42350),	105,		/* D=cyl 105 thru 379 */
246 	RDSZ(54824),	380,		/* E=cyl 380 thru 735 */
247 	RDSZ(46200),	736,		/* F=cyl 736 thru 1035 */
248 	RDSZ(118734),	265,		/* G=cyl 265 thru 1035 */
249 	RDSZ(101024),	380,		/* H=cyl 380 thru 1035 */
250 }, rd7958A_sizes[8] = {
251 	RDSZ(16128),	1,		/* A=cyl 1 thru 64 */
252 	RDSZ(32256),	65,		/* B=cyl 65 thru 192 */
253 	RDSZ(255276),	0,		/* C=cyl 0 thru 1012 */
254 	RDSZ(48384),	65,		/* D=cyl 65 thru 256 */
255 	RDSZ(100800),	257,		/* E=cyl 257 thru 656 */
256 	RDSZ(89712),	657,		/* F=cyl 657 thru 1012 */
257 	RDSZ(206640),	193,		/* G=cyl 193 thru 1012 */
258 	RDSZ(190512),	257,		/* H=cyl 257 thru 1012 */
259 }, rd7957B_sizes[8] = {
260 	RDSZ(16002),	1,		/* A=cyl 1 thru 127 */
261 	RDSZ(32760),	128,		/* B=cyl 128 thru 387 */
262 	RDSZ(159894),	0,		/* C=cyl 0 thru 1268 */
263 	RDSZ(49140),	128,		/* D=cyl 128 thru 517 */
264 	RDSZ(50400),	518,		/* E=cyl 518 thru 917 */
265 	RDSZ(44226),	918,		/* F=cyl 918 thru 1268 */
266 	RDSZ(111006),	388,		/* G=cyl 388 thru 1268 */
267 	RDSZ(94626),	518,		/* H=cyl 518 thru 1268 */
268 }, rd7958B_sizes[8] = {
269 	RDSZ(16254),	1,		/* A=cyl 1 thru 43 */
270 	RDSZ(32886),	44,		/* B=cyl 44 thru 130 */
271 	RDSZ(297108),	0,		/* C=cyl 0 thru 785 */
272 	RDSZ(49140),	44,		/* D=cyl 44 thru 173 */
273 	RDSZ(121716),	174,		/* E=cyl 174 thru 495 */
274 	RDSZ(109620),	496,		/* F=cyl 496 thru 785 */
275 	RDSZ(247590),	131,		/* G=cyl 131 thru 785 */
276 	RDSZ(231336),	174,		/* H=cyl 174 thru 785 */
277 }, rd7959B_sizes[8] = {
278 	RDSZ(16254),	1,		/* A=cyl 1 thru 43 */
279 	RDSZ(49140),	44,		/* B=cyl 44 thru 173 */
280 	RDSZ(594216),	0,		/* C=cyl 0 thru 1571 */
281 	RDSZ(65772),	44,		/* D=cyl 44 thru 217 */
282 	RDSZ(303912),	218,		/* E=cyl 218 thru 1021 */
283 	RDSZ(207900),	1022,		/* F=cyl 1022 thru 1571 */
284 	RDSZ(528444),	174,		/* G=cyl 174 thru 1571 */
285 	RDSZ(511812),	218,		/* H=cyl 218 thru 1571 */
286 }, rd2200A_sizes[8] = {
287 	RDSZ(16272),	1,		/* A=cyl 1 thru 36 */
288 	RDSZ(49720),	37,		/* B=cyl 37 thru 146 */
289 	RDSZ(654948),	0,		/* C=cyl 0 thru 1448 */
290 	RDSZ(65992),	37,		/* D=cyl 37 thru 182 */
291 	RDSZ(304648),	183,		/* E=cyl 183 thru 856 */
292 	RDSZ(267584),	857,		/* F=cyl 857 thru 1448 */
293 	RDSZ(588504),	147,		/* G=cyl 147 thru 1448 */
294 	RDSZ(572232),	183,		/* H=cyl 183 thru 1448 */
295 }, rd2203A_sizes[8] = {
296 	/* modelled after the 7937; i.e. bogus */
297 	RDSZ(16272),	1,		/* A=cyl 1 thru 18 */
298 	RDSZ(67800),	19,		/* B=cyl 19 thru 93 */
299 	RDSZ(1309896),	0,		/* C=cyl 0 thru 1448 */
300 	RDSZ(16272),	94,		/* D=cyl 19 thru 111 */
301 	RDSZ(305552),	112,		/* E=cyl 112 thru 449 */
302 	RDSZ(305552),	450,		/* F=cyl 450 thru 787 */
303 	RDSZ(1224920),	94,		/* G=cyl 94 thru 1448 */
304 	RDSZ(597544),	788,		/* H=cyl 788 thru 1448 */
305 
306 #if DEV_BSIZE == 512
307 /*
308  * These values would not work for 1k,
309  * since the number of cylinders would be different.
310  */
311 }, rd7936H_sizes[8] = {
312 	RDSZ(16359),	1,		/* A=cyl 1 thru 19 */
313 	RDSZ(67158),	20,		/* B=cyl 20 thru 97 */
314 	RDSZ(600978),	0,		/* C=cyl 0 thru 697 */
315 	RDSZ(16359),	98,		/* D=cyl 98 thru 116 */
316 	RDSZ(120540),	117,		/* E=cyl 117 thru 256 */
317 	RDSZ(120540),	256,		/* F=cyl 256 thru 396 */
318 	RDSZ(516600),	98,		/* G=cyl 98 thru 697 */
319 	RDSZ(259161),	397,		/* H=cyl 397 thru 697 */
320 }, rd7937H_sizes[8] = {
321 	RDSZ(15990),	1,		/* A=cyl 1 thru 10 */
322 	RDSZ(67158),	11,		/* B=cyl 11 thru 52 */
323 	RDSZ(1116102),	0,		/* C=cyl 0 thru 697 */
324 	RDSZ(124722),	53,		/* D=cyl 53 thru 130 */
325 	RDSZ(163098),	131,		/* E=cyl 131 thru 232 */
326 	RDSZ(287820),	233,		/* F=cyl 233 thru 412 */
327 	RDSZ(1031355),	53,		/* G=cyl 53 thru 697 */
328 	RDSZ(455715),	413,		/* H=cyl 413 thru 697 */
329 #endif
330 };
331 
332 struct	rdinfo {
333 	int	nbpt;		/* DEV_BSIZE blocks per track */
334 	int	ntpc;		/* tracks per cylinder */
335 	int	nbpc;		/* blocks per cylinder */
336 	struct	size *sizes;	/* default partition info (if no disklabel) */
337 	short	hwid;		/* 2 byte HW id */
338 	short	maxunum;	/* maximum allowed unit number */
339 	char	*desc;		/* drive type description */
340 };
341 
342 struct rdinfo rdinfo[] = {
343 	NRD7945ABPT,	NRD7945ATRK,	NRD7945ABPT * NRD7945ATRK,
344 	rd7945A_sizes,	RD7946AID,	0,	"7945A",
345 	NRD9134DBPT,	NRD9134DTRK,	NRD9134DBPT * NRD9134DTRK,
346 	rd9134D_sizes,	RD9134DID,	1,	"9134D",
347 	NRD9122SBPT,	NRD9122STRK,	NRD9122SBPT * NRD9122STRK,
348 	rd9122S_sizes,	RD9134LID,	1,	"9122S",
349 	NRD7912PBPT,	NRD7912PTRK,	NRD7912PBPT * NRD7912PTRK,
350 	rd7912P_sizes,	RD7912PID,	0,	"7912P",
351 	NRD7914PBPT,	NRD7914PTRK,	NRD7914PBPT * NRD7914PTRK,
352 	rd7914P_sizes,	RD7914PID,	0,	"7914P",
353 	NRD7958ABPT,	NRD7958ATRK,	NRD7958ABPT * NRD7958ATRK,
354 	rd7958A_sizes,	RD7958AID,	0,	"7958A",
355 	NRD7957ABPT,	NRD7957ATRK,	NRD7957ABPT * NRD7957ATRK,
356 	rd7957A_sizes,	RD7957AID,	0,	"7957A",
357 	NRD7933HBPT,	NRD7933HTRK,	NRD7933HBPT * NRD7933HTRK,
358 	rd7933H_sizes,	RD7933HID,	0,	"7933H",
359 	NRD9134LBPT,	NRD9134LTRK,	NRD9134LBPT * NRD9134LTRK,
360 	rd9134L_sizes,	RD9134LID,	1,	"9134L",
361 	NRD7936HBPT,	NRD7936HTRK,	NRD7936HBPT * NRD7936HTRK,
362 	rd7936H_sizes,	RD7936HID,	0,	"7936H",
363 	NRD7937HBPT,	NRD7937HTRK,	NRD7937HBPT * NRD7937HTRK,
364 	rd7937H_sizes,	RD7937HID,	0,	"7937H",
365 	NRD7914PBPT,	NRD7914PTRK,	NRD7914PBPT * NRD7914PTRK,
366 	rd7914P_sizes,	RD7914CTID,	0,	"7914CT",
367 	NRD7945ABPT,	NRD7945ATRK,	NRD7945ABPT * NRD7945ATRK,
368 	rd7945A_sizes,	RD7946AID,	0,	"7946A",
369 	NRD9122SBPT,	NRD9122STRK,	NRD9122SBPT * NRD9122STRK,
370 	rd9122S_sizes,	RD9134LID,	1,	"9122D",
371 	NRD7957BBPT,	NRD7957BTRK,	NRD7957BBPT * NRD7957BTRK,
372 	rd7957B_sizes,	RD7957BID,	0,	"7957B",
373 	NRD7958BBPT,	NRD7958BTRK,	NRD7958BBPT * NRD7958BTRK,
374 	rd7958B_sizes,	RD7958BID,	0,	"7958B",
375 	NRD7959BBPT,	NRD7959BTRK,	NRD7959BBPT * NRD7959BTRK,
376 	rd7959B_sizes,	RD7959BID,	0,	"7959B",
377 	NRD2200ABPT,	NRD2200ATRK,	NRD2200ABPT * NRD2200ATRK,
378 	rd2200A_sizes,	RD2200AID,	0,	"2200A",
379 	NRD2203ABPT,	NRD2203ATRK,	NRD2203ABPT * NRD2203ATRK,
380 	rd2203A_sizes,	RD2203AID,	0,	"2203A",
381 };
382 int nrdinfo = sizeof(rdinfo) / sizeof(rdinfo[0]);
383 
384 struct	buf rdtab[NRD];
385 
386 #define	rdunit(x)	(minor(x) >> 3)
387 #define rdpart(x)	(minor(x) & 0x7)
388 #define	rdpunit(x)	((x) & 7)
389 #define	b_cylin		b_resid
390 #define	RDRETRY		5
391 #define RDWAITC		1	/* min time for timeout in seconds */
392 
393 int rderrthresh = RDRETRY-1;	/* when to start reporting errors */
394 
395 rdinit(hd)
396 	register struct hp_device *hd;
397 {
398 	register struct rd_softc *rs = &rd_softc[hd->hp_unit];
399 
400 	rs->sc_hd = hd;
401 	rs->sc_punit = rdpunit(hd->hp_flags);
402 	rs->sc_type = rdident(rs, hd);
403 	if (rs->sc_type < 0)
404 		return(0);
405 	rs->sc_dq.dq_ctlr = hd->hp_ctlr;
406 	rs->sc_dq.dq_unit = hd->hp_unit;
407 	rs->sc_dq.dq_slave = hd->hp_slave;
408 	rs->sc_dq.dq_driver = &rddriver;
409 	rs->sc_info = &rdinfo[rs->sc_type];
410 	rs->sc_flags = RDF_ALIVE;
411 #ifdef DEBUG
412 	/* always report errors */
413 	if (rddebug & RDB_ERROR)
414 		rderrthresh = 0;
415 #endif
416 	return(1);
417 }
418 
419 rdident(rs, hd)
420 	struct rd_softc *rs;
421 	struct hp_device *hd;
422 {
423 	struct rd_describe desc;
424 	u_char stat, cmd[3];
425 	int unit, lunit;
426 	char name[7];
427 	register int ctlr, slave, id, i;
428 
429 	ctlr = hd->hp_ctlr;
430 	slave = hd->hp_slave;
431 	unit = rs->sc_punit;
432 	lunit = hd->hp_unit;
433 
434 	/*
435 	 * Grab device id and make sure:
436 	 * 1. It is a CS80 device.
437 	 * 2. It is one of the types we support.
438 	 * 3. If it is a 7946, we are accessing the disk unit (0)
439 	 */
440 	id = hpibid(ctlr, slave);
441 #ifdef DEBUG
442 	if (rddebug & RDB_IDENT)
443 		printf("hpibid(%d, %d) -> %x\n", ctlr, slave, id);
444 #endif
445 	if ((id & 0x200) == 0)
446 		return(-1);
447 	for (i = 0; i < nrdinfo; i++)
448 		if (id == rdinfo[i].hwid)
449 			break;
450 	if (i == nrdinfo || unit > rdinfo[i].maxunum)
451 		return(-1);
452 	id = i;
453 
454 	/*
455 	 * Reset drive and collect device description.
456 	 * Don't really use the description info right now but
457 	 * might come in handy in the future (for disk labels).
458 	 */
459 	rdreset(rs, hd);
460 	cmd[0] = C_SUNIT(unit);
461 	cmd[1] = C_SVOL(0);
462 	cmd[2] = C_DESC;
463 	hpibsend(ctlr, slave, C_CMD, cmd, sizeof(cmd));
464 	hpibrecv(ctlr, slave, C_EXEC, &desc, 37);
465 	hpibrecv(ctlr, slave, C_QSTAT, &stat, sizeof(stat));
466 	bzero(name, sizeof(name));
467 	if (!stat) {
468 		register int n = desc.d_name;
469 		for (i = 5; i >= 0; i--) {
470 			name[i] = (n & 0xf) + '0';
471 			n >>= 4;
472 		}
473 		/* use drive characteristics to calculate xfer rate */
474 		rs->sc_wpms = 1000000 * (desc.d_sectsize/2) / desc.d_blocktime;
475 	}
476 #ifdef DEBUG
477 	if (rddebug & RDB_IDENT) {
478 		printf("rd%d: name: %x ('%s')\n",
479 		       lunit, desc.d_name, name);
480 		printf("  iuw %x, maxxfr %d, ctype %d\n",
481 		       desc.d_iuw, desc.d_cmaxxfr, desc.d_ctype);
482 		printf("  utype %d, bps %d, blkbuf %d, burst %d, blktime %d\n",
483 		       desc.d_utype, desc.d_sectsize,
484 		       desc.d_blkbuf, desc.d_burstsize, desc.d_blocktime);
485 		printf("  avxfr %d, ort %d, atp %d, maxint %d, fv %x, rv %x\n",
486 		       desc.d_uavexfr, desc.d_retry, desc.d_access,
487 		       desc.d_maxint, desc.d_fvbyte, desc.d_rvbyte);
488 		printf("  maxcyl/head/sect %d/%d/%d, maxvsect %d, inter %d\n",
489 		       desc.d_maxcyl, desc.d_maxhead, desc.d_maxsect,
490 		       desc.d_maxvsectl, desc.d_interleave);
491 	}
492 #endif
493 	/*
494 	 * Take care of a couple of anomolies:
495 	 * 1. 7945A and 7946A both return same HW id
496 	 * 2. 9122S and 9134D both return same HW id
497 	 * 3. 9122D and 9134L both return same HW id
498 	 */
499 	switch (rdinfo[id].hwid) {
500 	case RD7946AID:
501 		if (bcmp(name, "079450", 6) == 0)
502 			id = RD7945A;
503 		else
504 			id = RD7946A;
505 		break;
506 
507 	case RD9134LID:
508 		if (bcmp(name, "091340", 6) == 0)
509 			id = RD9134L;
510 		else
511 			id = RD9122D;
512 		break;
513 
514 	case RD9134DID:
515 		if (bcmp(name, "091220", 6) == 0)
516 			id = RD9122S;
517 		else
518 			id = RD9134D;
519 		break;
520 	}
521 	printf("rd%d: %s\n", lunit, rdinfo[id].desc);
522 	return(id);
523 }
524 
525 rdreset(rs, hd)
526 	register struct rd_softc *rs;
527 	register struct hp_device *hd;
528 {
529 	u_char stat;
530 
531 	rs->sc_clear.c_unit = C_SUNIT(rs->sc_punit);
532 	rs->sc_clear.c_cmd = C_CLEAR;
533 	hpibsend(hd->hp_ctlr, hd->hp_slave, C_TCMD, &rs->sc_clear,
534 		sizeof(rs->sc_clear));
535 	hpibswait(hd->hp_ctlr, hd->hp_slave);
536 	hpibrecv(hd->hp_ctlr, hd->hp_slave, C_QSTAT, &stat, sizeof(stat));
537 	rs->sc_src.c_unit = C_SUNIT(RDCTLR);
538 	rs->sc_src.c_nop = C_NOP;
539 	rs->sc_src.c_cmd = C_SREL;
540 	rs->sc_src.c_param = C_REL;
541 	hpibsend(hd->hp_ctlr, hd->hp_slave, C_CMD, &rs->sc_src,
542 		sizeof(rs->sc_src));
543 	hpibswait(hd->hp_ctlr, hd->hp_slave);
544 	hpibrecv(hd->hp_ctlr, hd->hp_slave, C_QSTAT, &stat, sizeof(stat));
545 	rs->sc_ssmc.c_unit = C_SUNIT(rs->sc_punit);
546 	rs->sc_ssmc.c_cmd = C_SSM;
547 	rs->sc_ssmc.c_refm = REF_MASK;
548 	rs->sc_ssmc.c_fefm = FEF_MASK;
549 	rs->sc_ssmc.c_aefm = AEF_MASK;
550 	rs->sc_ssmc.c_iefm = IEF_MASK;
551 	hpibsend(hd->hp_ctlr, hd->hp_slave, C_CMD, &rs->sc_ssmc,
552 		sizeof(rs->sc_ssmc));
553 	hpibswait(hd->hp_ctlr, hd->hp_slave);
554 	hpibrecv(hd->hp_ctlr, hd->hp_slave, C_QSTAT, &stat, sizeof(stat));
555 #ifdef DEBUG
556 	rdstats[hd->hp_unit].rdresets++;
557 #endif
558 }
559 
560 int
561 rdopen(dev, flags, mode, p)
562 	dev_t dev;
563 	int flags, mode;
564 	struct proc *p;
565 {
566 	register int unit = rdunit(dev);
567 	register struct rd_softc *rs = &rd_softc[unit];
568 
569 	if (unit >= NRD || (rs->sc_flags & RDF_ALIVE) == 0)
570 		return(ENXIO);
571 	if (rs->sc_hd->hp_dk >= 0) {
572 		/* guess at xfer rate based on 3600 rpm (60 rps) */
573 		if (rs->sc_wpms == 0)
574 			rs->sc_wpms = 60 * rs->sc_info->nbpt * DEV_BSIZE / 2;
575 		dk_wpms[rs->sc_hd->hp_dk] = rs->sc_wpms;
576 	}
577 	return(0);
578 }
579 
580 rdstrategy(bp)
581 	register struct buf *bp;
582 {
583 	register int unit = rdunit(bp->b_dev);
584 	register struct rd_softc *rs = &rd_softc[unit];
585 	register struct size *pinfo = &rs->sc_info->sizes[rdpart(bp->b_dev)];
586 	register struct buf *dp = &rdtab[unit];
587 	register daddr_t bn;
588 	register int sz, s;
589 
590 #ifdef DEBUG
591 	if (rddebug & RDB_FOLLOW)
592 		printf("rdstrategy(%x): dev %x, bn %x, bcount %x, %c\n",
593 		       bp, bp->b_dev, bp->b_blkno, bp->b_bcount,
594 		       (bp->b_flags & B_READ) ? 'R' : 'W');
595 #endif
596 	bn = bp->b_blkno;
597 	sz = howmany(bp->b_bcount, DEV_BSIZE);
598 	if (bn < 0 || bn + sz > pinfo->nblocks) {
599 		sz = pinfo->nblocks - bn;
600 		if (sz == 0) {
601 			bp->b_resid = bp->b_bcount;
602 			goto done;
603 		}
604 		if (sz < 0) {
605 			bp->b_error = EINVAL;
606 			bp->b_flags |= B_ERROR;
607 			goto done;
608 		}
609 		bp->b_bcount = dbtob(sz);
610 	}
611 	bp->b_cylin = bn / rs->sc_info->nbpc + pinfo->cyloff;
612 	s = splbio();
613 	disksort(dp, bp);
614 	if (dp->b_active == 0) {
615 		dp->b_active = 1;
616 		rdustart(unit);
617 	}
618 	splx(s);
619 	return;
620 done:
621 	biodone(bp);
622 }
623 
624 /*
625  * Called from timeout() when handling maintenance releases
626  */
627 void
628 rdrestart(arg)
629 	void *arg;
630 {
631 	int s = splbio();
632 	rdustart((int)arg);
633 	splx(s);
634 }
635 
636 rdustart(unit)
637 	register int unit;
638 {
639 	register struct buf *bp;
640 	register struct rd_softc *rs = &rd_softc[unit];
641 
642 	bp = rdtab[unit].b_actf;
643 	rs->sc_addr = bp->b_un.b_addr;
644 	rs->sc_resid = bp->b_bcount;
645 	if (hpibreq(&rs->sc_dq))
646 		rdstart(unit);
647 }
648 
649 rdstart(unit)
650 	register int unit;
651 {
652 	register struct rd_softc *rs = &rd_softc[unit];
653 	register struct buf *bp = rdtab[unit].b_actf;
654 	register struct hp_device *hp = rs->sc_hd;
655 	register int part;
656 
657 again:
658 #ifdef DEBUG
659 	if (rddebug & RDB_FOLLOW)
660 		printf("rdstart(%d): bp %x, %c\n", unit, bp,
661 		       (bp->b_flags & B_READ) ? 'R' : 'W');
662 #endif
663 	part = rdpart(bp->b_dev);
664 	rs->sc_flags |= RDF_SEEK;
665 	rs->sc_ioc.c_unit = C_SUNIT(rs->sc_punit);
666 	rs->sc_ioc.c_volume = C_SVOL(0);
667 	rs->sc_ioc.c_saddr = C_SADDR;
668 	rs->sc_ioc.c_hiaddr = 0;
669 	rs->sc_ioc.c_addr = RDBTOS(bp->b_blkno + rs->sc_info->nbpc *
670 		rs->sc_info->sizes[part].cyloff);
671 	rs->sc_ioc.c_nop2 = C_NOP;
672 	rs->sc_ioc.c_slen = C_SLEN;
673 	rs->sc_ioc.c_len = rs->sc_resid;
674 	rs->sc_ioc.c_cmd = bp->b_flags & B_READ ? C_READ : C_WRITE;
675 #ifdef DEBUG
676 	if (rddebug & RDB_IO)
677 		printf("rdstart: hpibsend(%x, %x, %x, %x, %x)\n",
678 		       hp->hp_ctlr, hp->hp_slave, C_CMD,
679 		       &rs->sc_ioc.c_unit, sizeof(rs->sc_ioc)-2);
680 #endif
681 	if (hpibsend(hp->hp_ctlr, hp->hp_slave, C_CMD, &rs->sc_ioc.c_unit,
682 		     sizeof(rs->sc_ioc)-2) == sizeof(rs->sc_ioc)-2) {
683 		if (hp->hp_dk >= 0) {
684 			dk_busy |= 1 << hp->hp_dk;
685 			dk_seek[hp->hp_dk]++;
686 		}
687 #ifdef DEBUG
688 		if (rddebug & RDB_IO)
689 			printf("rdstart: hpibawait(%x)\n", hp->hp_ctlr);
690 #endif
691 		hpibawait(hp->hp_ctlr);
692 		return;
693 	}
694 	/*
695 	 * Experience has shown that the hpibwait in this hpibsend will
696 	 * occasionally timeout.  It appears to occur mostly on old 7914
697 	 * drives with full maintenance tracks.  We should probably
698 	 * integrate this with the backoff code in rderror.
699 	 */
700 #ifdef DEBUG
701 	if (rddebug & RDB_ERROR)
702 		printf("rd%d: rdstart: cmd %x adr %d blk %d len %d ecnt %d\n",
703 		       unit, rs->sc_ioc.c_cmd, rs->sc_ioc.c_addr,
704 		       bp->b_blkno, rs->sc_resid, rdtab[unit].b_errcnt);
705 	rdstats[unit].rdretries++;
706 #endif
707 	rs->sc_flags &= ~RDF_SEEK;
708 	rdreset(rs, hp);
709 	if (rdtab[unit].b_errcnt++ < RDRETRY)
710 		goto again;
711 	printf("rd%d: rdstart err: cmd 0x%x sect %d blk %d len %d\n",
712 	       unit, rs->sc_ioc.c_cmd, rs->sc_ioc.c_addr,
713 	       bp->b_blkno, rs->sc_resid);
714 	rdtab[unit].b_errcnt = 0;
715 	rdtab[unit].b_actf = bp->b_actf;
716 	bp->b_flags |= B_ERROR;
717 	bp->b_error = EIO;
718 	bp->b_resid = 0;
719 	biodone(bp);
720 	hpibfree(&rs->sc_dq);
721 	bp = rdtab[unit].b_actf;
722 	if (bp == NULL) {
723 		rdtab[unit].b_active = 0;
724 		return;
725 	}
726 	rs->sc_addr = bp->b_un.b_addr;
727 	rs->sc_resid = bp->b_bcount;
728 	if (hpibreq(&rs->sc_dq))
729 		goto again;
730 }
731 
732 rdgo(unit)
733 	register int unit;
734 {
735 	register struct rd_softc *rs = &rd_softc[unit];
736 	register struct hp_device *hp = rs->sc_hd;
737 	struct buf *bp = rdtab[unit].b_actf;
738 
739 	if (hp->hp_dk >= 0) {
740 		dk_busy |= 1 << hp->hp_dk;
741 		dk_xfer[hp->hp_dk]++;
742 		dk_wds[hp->hp_dk] += rs->sc_resid >> 6;
743 	}
744 	hpibgo(hp->hp_ctlr, hp->hp_slave, C_EXEC,
745 	       rs->sc_addr, rs->sc_resid, bp->b_flags & B_READ);
746 }
747 
748 rdintr(unit)
749 	register int unit;
750 {
751 	register struct rd_softc *rs = &rd_softc[unit];
752 	register struct buf *bp = rdtab[unit].b_actf;
753 	register struct hp_device *hp = rs->sc_hd;
754 	u_char stat = 13;	/* in case hpibrecv fails */
755 	int rv, restart;
756 
757 #ifdef DEBUG
758 	if (rddebug & RDB_FOLLOW)
759 		printf("rdintr(%d): bp %x, %c, flags %x\n", unit, bp,
760 		       (bp->b_flags & B_READ) ? 'R' : 'W', rs->sc_flags);
761 	if (bp == NULL) {
762 		printf("rd%d: bp == NULL\n", unit);
763 		return;
764 	}
765 #endif
766 	if (hp->hp_dk >= 0)
767 		dk_busy &= ~(1 << hp->hp_dk);
768 	if (rs->sc_flags & RDF_SEEK) {
769 		rs->sc_flags &= ~RDF_SEEK;
770 		if (hpibustart(hp->hp_ctlr))
771 			rdgo(unit);
772 		return;
773 	}
774 	if ((rs->sc_flags & RDF_SWAIT) == 0) {
775 #ifdef DEBUG
776 		rdstats[unit].rdpolltries++;
777 #endif
778 		if (hpibpptest(hp->hp_ctlr, hp->hp_slave) == 0) {
779 #ifdef DEBUG
780 			rdstats[unit].rdpollwaits++;
781 #endif
782 			if (hp->hp_dk >= 0)
783 				dk_busy |= 1 << hp->hp_dk;
784 			rs->sc_flags |= RDF_SWAIT;
785 			hpibawait(hp->hp_ctlr);
786 			return;
787 		}
788 	} else
789 		rs->sc_flags &= ~RDF_SWAIT;
790 	rv = hpibrecv(hp->hp_ctlr, hp->hp_slave, C_QSTAT, &stat, 1);
791 	if (rv != 1 || stat) {
792 #ifdef DEBUG
793 		if (rddebug & RDB_ERROR)
794 			printf("rdintr: recv failed or bad stat %d\n", stat);
795 #endif
796 		restart = rderror(unit);
797 #ifdef DEBUG
798 		rdstats[unit].rdretries++;
799 #endif
800 		if (rdtab[unit].b_errcnt++ < RDRETRY) {
801 			if (restart)
802 				rdstart(unit);
803 			return;
804 		}
805 		bp->b_flags |= B_ERROR;
806 		bp->b_error = EIO;
807 	}
808 	rdtab[unit].b_errcnt = 0;
809 	rdtab[unit].b_actf = bp->b_actf;
810 	bp->b_resid = 0;
811 	biodone(bp);
812 	hpibfree(&rs->sc_dq);
813 	if (rdtab[unit].b_actf)
814 		rdustart(unit);
815 	else
816 		rdtab[unit].b_active = 0;
817 }
818 
819 rdstatus(rs)
820 	register struct rd_softc *rs;
821 {
822 	register int c, s;
823 	u_char stat;
824 	int rv;
825 
826 	c = rs->sc_hd->hp_ctlr;
827 	s = rs->sc_hd->hp_slave;
828 	rs->sc_rsc.c_unit = C_SUNIT(rs->sc_punit);
829 	rs->sc_rsc.c_sram = C_SRAM;
830 	rs->sc_rsc.c_ram = C_RAM;
831 	rs->sc_rsc.c_cmd = C_STATUS;
832 	bzero((caddr_t)&rs->sc_stat, sizeof(rs->sc_stat));
833 	rv = hpibsend(c, s, C_CMD, &rs->sc_rsc, sizeof(rs->sc_rsc));
834 	if (rv != sizeof(rs->sc_rsc)) {
835 #ifdef DEBUG
836 		if (rddebug & RDB_STATUS)
837 			printf("rdstatus: send C_CMD failed %d != %d\n",
838 			       rv, sizeof(rs->sc_rsc));
839 #endif
840 		return(1);
841 	}
842 	rv = hpibrecv(c, s, C_EXEC, &rs->sc_stat, sizeof(rs->sc_stat));
843 	if (rv != sizeof(rs->sc_stat)) {
844 #ifdef DEBUG
845 		if (rddebug & RDB_STATUS)
846 			printf("rdstatus: send C_EXEC failed %d != %d\n",
847 			       rv, sizeof(rs->sc_stat));
848 #endif
849 		return(1);
850 	}
851 	rv = hpibrecv(c, s, C_QSTAT, &stat, 1);
852 	if (rv != 1 || stat) {
853 #ifdef DEBUG
854 		if (rddebug & RDB_STATUS)
855 			printf("rdstatus: recv failed %d or bad stat %d\n",
856 			       rv, stat);
857 #endif
858 		return(1);
859 	}
860 	return(0);
861 }
862 
863 /*
864  * Deal with errors.
865  * Returns 1 if request should be restarted,
866  * 0 if we should just quietly give up.
867  */
868 rderror(unit)
869 	int unit;
870 {
871 	struct rd_softc *rs = &rd_softc[unit];
872 	register struct rd_stat *sp;
873 	struct buf *bp;
874 	daddr_t hwbn, pbn;
875 
876 	if (rdstatus(rs)) {
877 #ifdef DEBUG
878 		printf("rd%d: couldn't get status\n", unit);
879 #endif
880 		rdreset(rs, rs->sc_hd);
881 		return(1);
882 	}
883 	sp = &rs->sc_stat;
884 	if (sp->c_fef & FEF_REXMT)
885 		return(1);
886 	if (sp->c_fef & FEF_PF) {
887 		rdreset(rs, rs->sc_hd);
888 		return(1);
889 	}
890 	/*
891 	 * Unit requests release for internal maintenance.
892 	 * We just delay awhile and try again later.  Use expontially
893 	 * increasing backoff ala ethernet drivers since we don't really
894 	 * know how long the maintenance will take.  With RDWAITC and
895 	 * RDRETRY as defined, the range is 1 to 32 seconds.
896 	 */
897 	if (sp->c_fef & FEF_IMR) {
898 		extern int hz;
899 		int rdtimo = RDWAITC << rdtab[unit].b_errcnt;
900 #ifdef DEBUG
901 		printf("rd%d: internal maintenance, %d second timeout\n",
902 		       unit, rdtimo);
903 		rdstats[unit].rdtimeouts++;
904 #endif
905 		hpibfree(&rs->sc_dq);
906 		timeout(rdrestart, (void *)unit, rdtimo * hz);
907 		return(0);
908 	}
909 	/*
910 	 * Only report error if we have reached the error reporting
911 	 * threshhold.  By default, this will only report after the
912 	 * retry limit has been exceeded.
913 	 */
914 	if (rdtab[unit].b_errcnt < rderrthresh)
915 		return(1);
916 
917 	/*
918 	 * First conjure up the block number at which the error occured.
919 	 * Note that not all errors report a block number, in that case
920 	 * we just use b_blkno.
921  	 */
922 	bp = rdtab[unit].b_actf;
923 	pbn = rs->sc_info->nbpc *
924 		rs->sc_info->sizes[rdpart(bp->b_dev)].cyloff;
925 	if ((sp->c_fef & FEF_CU) || (sp->c_fef & FEF_DR) ||
926 	    (sp->c_ief & IEF_RRMASK)) {
927 		hwbn = RDBTOS(pbn + bp->b_blkno);
928 		pbn = bp->b_blkno;
929 	} else {
930 		hwbn = sp->c_blk;
931 		pbn = RDSTOB(hwbn) - pbn;
932 	}
933 	/*
934 	 * Now output a generic message suitable for badsect.
935 	 * Note that we don't use harderr cuz it just prints
936 	 * out b_blkno which is just the beginning block number
937 	 * of the transfer, not necessary where the error occured.
938 	 */
939 	printf("rd%d%c: hard error sn%d\n",
940 	       rdunit(bp->b_dev), 'a'+rdpart(bp->b_dev), pbn);
941 	/*
942 	 * Now report the status as returned by the hardware with
943 	 * attempt at interpretation (unless debugging).
944 	 */
945 	printf("rd%d %s error:",
946 	       unit, (bp->b_flags & B_READ) ? "read" : "write");
947 #ifdef DEBUG
948 	if (rddebug & RDB_ERROR) {
949 		/* status info */
950 		printf("\n    volume: %d, unit: %d\n",
951 		       (sp->c_vu>>4)&0xF, sp->c_vu&0xF);
952 		rdprinterr("reject", sp->c_ref, err_reject);
953 		rdprinterr("fault", sp->c_fef, err_fault);
954 		rdprinterr("access", sp->c_aef, err_access);
955 		rdprinterr("info", sp->c_ief, err_info);
956 		printf("    block: %d, P1-P10: ", hwbn);
957 		printf("%s", hexstr(*(u_int *)&sp->c_raw[0], 8));
958 		printf("%s", hexstr(*(u_int *)&sp->c_raw[4], 8));
959 		printf("%s\n", hexstr(*(u_short *)&sp->c_raw[8], 4));
960 		/* command */
961 		printf("    ioc: ");
962 		printf("%s", hexstr(*(u_int *)&rs->sc_ioc.c_pad, 8));
963 		printf("%s", hexstr(*(u_short *)&rs->sc_ioc.c_hiaddr, 4));
964 		printf("%s", hexstr(*(u_int *)&rs->sc_ioc.c_addr, 8));
965 		printf("%s", hexstr(*(u_short *)&rs->sc_ioc.c_nop2, 4));
966 		printf("%s", hexstr(*(u_int *)&rs->sc_ioc.c_len, 8));
967 		printf("%s\n", hexstr(*(u_short *)&rs->sc_ioc.c_cmd, 4));
968 		return(1);
969 	}
970 #endif
971 	printf(" v%d u%d, R0x%x F0x%x A0x%x I0x%x\n",
972 	       (sp->c_vu>>4)&0xF, sp->c_vu&0xF,
973 	       sp->c_ref, sp->c_fef, sp->c_aef, sp->c_ief);
974 	printf("P1-P10: ");
975 	printf("%s", hexstr(*(u_int *)&sp->c_raw[0], 8));
976 	printf("%s", hexstr(*(u_int *)&sp->c_raw[4], 8));
977 	printf("%s\n", hexstr(*(u_short *)&sp->c_raw[8], 4));
978 	return(1);
979 }
980 
981 int
982 rdread(dev, uio, flags)
983 	dev_t dev;
984 	struct uio *uio;
985 	int flags;
986 {
987 	register int unit = rdunit(dev);
988 
989 	return (physio(rdstrategy, NULL, dev, B_READ, minphys, uio));
990 }
991 
992 int
993 rdwrite(dev, uio, flags)
994 	dev_t dev;
995 	struct uio *uio;
996 	int flags;
997 {
998 	register int unit = rdunit(dev);
999 
1000 	return (physio(rdstrategy, NULL, dev, B_WRITE, minphys, uio));
1001 }
1002 
1003 int
1004 rdioctl(dev, cmd, data, flag, p)
1005 	dev_t dev;
1006 	int cmd;
1007 	caddr_t data;
1008 	int flag;
1009 	struct proc *p;
1010 {
1011 	return(EINVAL);
1012 }
1013 
1014 int
1015 rdsize(dev)
1016 	dev_t dev;
1017 {
1018 	register int unit = rdunit(dev);
1019 	register struct rd_softc *rs = &rd_softc[unit];
1020 
1021 	if (unit >= NRD || (rs->sc_flags & RDF_ALIVE) == 0)
1022 		return(-1);
1023 	return(rs->sc_info->sizes[rdpart(dev)].nblocks);
1024 }
1025 
1026 #ifdef DEBUG
1027 rdprinterr(str, err, tab)
1028 	char *str;
1029 	short err;
1030 	char *tab[];
1031 {
1032 	register int i;
1033 	int printed;
1034 
1035 	if (err == 0)
1036 		return;
1037 	printf("    %s error field:", str, err);
1038 	printed = 0;
1039 	for (i = 0; i < 16; i++)
1040 		if (err & (0x8000 >> i))
1041 			printf("%s%s", printed++ ? " + " : " ", tab[i]);
1042 	printf("\n");
1043 }
1044 #endif
1045 
1046 /*
1047  * Non-interrupt driven, non-dma dump routine.
1048  */
1049 int
1050 rddump(dev)
1051 	dev_t dev;
1052 {
1053 	int part = rdpart(dev);
1054 	int unit = rdunit(dev);
1055 	register struct rd_softc *rs = &rd_softc[unit];
1056 	register struct hp_device *hp = rs->sc_hd;
1057 	register daddr_t baddr;
1058 	register int maddr, pages, i;
1059 	char stat;
1060 	extern int lowram, dumpsize;
1061 #ifdef DEBUG
1062 	extern int pmapdebug;
1063 	pmapdebug = 0;
1064 #endif
1065 
1066 	pages = dumpsize;
1067 #ifdef DEBUG
1068 	if (rddebug & RDB_DUMP)
1069 		printf("rddump(%x): u %d p %d dumplo %d ram %x pmem %d\n",
1070 		       dev, unit, part, dumplo, lowram, ctod(pages));
1071 #endif
1072 	/* is drive ok? */
1073 	if (unit >= NRD || (rs->sc_flags & RDF_ALIVE) == 0)
1074 		return (ENXIO);
1075 	/* HPIB idle? */
1076 	if (!hpibreq(&rs->sc_dq)) {
1077 #ifdef DEBUG
1078 		/* is this a safe thing to do?? */
1079 		hpibreset(hp->hp_ctlr);
1080 		rdreset(rs, rs->sc_hd);
1081 		printf("[ drive %d reset ] ", unit);
1082 #else
1083 		return (EFAULT);
1084 #endif
1085 	}
1086 	/* dump parameters in range? */
1087 	if (dumplo < 0 || dumplo >= rs->sc_info->sizes[part].nblocks)
1088 		return (EINVAL);
1089 	if (dumplo + ctod(pages) > rs->sc_info->sizes[part].nblocks)
1090 		pages = dtoc(rs->sc_info->sizes[part].nblocks - dumplo);
1091 	maddr = lowram;
1092 	baddr = dumplo + rs->sc_info->nbpc * rs->sc_info->sizes[part].cyloff;
1093 #ifdef DEBUG
1094 	if (rddebug & RDB_DUMP)
1095 		printf("rddump: dumping %d pages from %x to disk block %d\n",
1096 		       pages, maddr, baddr);
1097 #endif
1098 	for (i = 0; i < pages; i++) {
1099 #ifdef DEBUG
1100 #define NPGMB	(1024*1024/NBPG)
1101 		/* print out how many Mbs we have dumped */
1102 		if (i && (i % NPGMB) == 0)
1103 			printf("%d ", i / NPGMB);
1104 #undef NPBMG
1105 #endif
1106 		rs->sc_ioc.c_unit = C_SUNIT(rs->sc_punit);
1107 		rs->sc_ioc.c_volume = C_SVOL(0);
1108 		rs->sc_ioc.c_saddr = C_SADDR;
1109 		rs->sc_ioc.c_hiaddr = 0;
1110 		rs->sc_ioc.c_addr = RDBTOS(baddr);
1111 		rs->sc_ioc.c_nop2 = C_NOP;
1112 		rs->sc_ioc.c_slen = C_SLEN;
1113 		rs->sc_ioc.c_len = NBPG;
1114 		rs->sc_ioc.c_cmd = C_WRITE;
1115 		hpibsend(hp->hp_ctlr, hp->hp_slave, C_CMD,
1116 			 &rs->sc_ioc.c_unit, sizeof(rs->sc_ioc)-2);
1117 		if (hpibswait(hp->hp_ctlr, hp->hp_slave)) {
1118 #ifdef DEBUG
1119 			if (rddebug & RDB_DUMP)
1120 				printf("rddump: IOC wait timeout\n");
1121 #endif
1122 			return (EIO);
1123 		}
1124 		pmap_enter(kernel_pmap, (vm_offset_t)vmmap, maddr,
1125 		    VM_PROT_READ, TRUE);
1126 		hpibsend(hp->hp_ctlr, hp->hp_slave, C_EXEC, vmmap, NBPG);
1127 		if (hpibswait(hp->hp_ctlr, hp->hp_slave)) {
1128 #ifdef DEBUG
1129 			if (rddebug & RDB_DUMP)
1130 				printf("rddump: write wait timeout\n");
1131 #endif
1132 		}
1133 		hpibrecv(hp->hp_ctlr, hp->hp_slave, C_QSTAT, &stat, 1);
1134 		if (stat) {
1135 #ifdef DEBUG
1136 			if (rddebug & RDB_DUMP)
1137 				printf("rddump: write failed, status %x\n",
1138 				       stat);
1139 #endif
1140 			return (EIO);
1141 		}
1142 		maddr += NBPG;
1143 		baddr += ctod(1);
1144 	}
1145 	return (0);
1146 }
1147 #endif
1148