1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * the Systems Programming Group of the University of Utah Computer
7  * Science Department.
8  *
9  * %sccs.include.redist.c%
10  *
11  *	@(#)pmap_bootstrap.c	7.2 (Berkeley) 06/15/92
12  */
13 
14 #include "param.h"
15 #include "pte.h"
16 #include "clockreg.h"
17 #include "../include/vmparam.h"
18 #include "../include/cpu.h"
19 
20 #include "vm/vm.h"
21 
22 /*
23  * Allocate various and sundry SYSMAPs used in the days of old VM
24  * and not yet converted.  XXX.
25  */
26 #define BSDVM_COMPAT	1
27 
28 #define RELOC(v, t)	*((t*)((u_int)&(v) + firstpa))
29 
30 extern char *etext;
31 extern int Sysptsize;
32 extern char *extiobase, *proc0paddr;
33 extern struct ste *Sysseg;
34 extern struct pte *Sysptmap, *Sysmap;
35 extern vm_offset_t Umap, CLKbase, MMUbase;
36 
37 extern int maxmem, physmem;
38 extern vm_offset_t avail_start, avail_end, virtual_avail, virtual_end;
39 extern vm_size_t mem_size;
40 extern int pmap_aliasmask, protection_codes[];
41 #if defined(DYNPGSIZE)
42 extern int hppagesperpage;
43 #endif
44 
45 #if BSDVM_COMPAT
46 #include "msgbuf.h"
47 
48 /*
49  * All those kernel PT submaps that BSD is so fond of
50  */
51 struct pte	*CMAP1, *CMAP2, *mmap;
52 caddr_t		CADDR1, CADDR2, vmmap;
53 struct pte	*msgbufmap;
54 struct msgbuf	*msgbufp;
55 #endif
56 
57 /*
58  * Bootstrap the VM system.
59  *
60  * Called with MMU off so we must relocate all global references by `firstpa'
61  * (don't call any functions here!)  `nextpa' is the first available physical
62  * memory address.  Returns an updated first PA reflecting the memory we
63  * have allocated.  MMU is still off when we return.
64  *
65  * XXX assumes sizeof(u_int) == sizeof(struct pte)
66  * XXX a PIC compiler would make this much easier.
67  */
68 void
69 pmap_bootstrap(nextpa, firstpa)
70 	vm_offset_t nextpa;
71 	register vm_offset_t firstpa;
72 {
73 	vm_offset_t kstpa, kptpa, iiopa, eiopa, kptmpa, lkptpa, p0upa;
74 	u_int nptpages, kstsize;
75 	register u_int protoste, protopte, *ste, *pte, *epte;
76 
77 	/*
78 	 * Calculate important physical addresses:
79 	 *
80 	 *	kstpa		kernel segment table	1 page (!040)
81 	 *						N pages (040)
82 	 *
83 	 *	kptpa		statically allocated
84 	 *			kernel PT pages		Sysptsize+ pages
85 	 *
86 	 *	iiopa		internal IO space
87 	 *			PT pages		IIOMAPSIZE pages
88 	 *
89 	 *	eiopa		external IO space
90 	 *			PT pages		EIOMAPSIZE pages
91 	 *
92 	 * [ Sysptsize is the number of pages of PT, IIOMAPSIZE and
93 	 *   EIOMAPSIZE are the number of PTEs, hence we need to round
94 	 *   the total to a page boundary with IO maps at the end. ]
95 	 *
96 	 *	kptmpa		kernel PT map		1 page
97 	 *
98 	 *	lkptpa		last kernel PT page	1 page
99 	 *
100 	 *	p0upa		proc 0 u-area		UPAGES pages
101 	 *
102 	 * The KVA corresponding to any of these PAs is:
103 	 *	(PA - firstpa + KERNBASE).
104 	 */
105 	if (RELOC(mmutype, int) == MMU_68040)
106 		kstsize = MAXKL2SIZE / (NPTEPG/SG4_LEV2SIZE);
107 	else
108 		kstsize = 1;
109 	kstpa = nextpa;
110 	nextpa += kstsize * NBPG;
111 	kptpa = nextpa;
112 	nptpages = RELOC(Sysptsize, int) +
113 		(IIOMAPSIZE + EIOMAPSIZE + NPTEPG - 1) / NPTEPG;
114 	nextpa += nptpages * NBPG;
115 	eiopa = nextpa - EIOMAPSIZE * sizeof(struct pte);
116 	iiopa = eiopa - IIOMAPSIZE * sizeof(struct pte);
117 	kptmpa = nextpa;
118 	nextpa += NBPG;
119 	lkptpa = nextpa;
120 	nextpa += NBPG;
121 	p0upa = nextpa;
122 	nextpa += UPAGES * NBPG;
123 
124 	/*
125 	 * Initialize segment table and kernel page table map.
126 	 *
127 	 * On 68030s and earlier MMUs the two are identical except for
128 	 * the valid bits so both are initialized with essentially the
129 	 * same values.  On the 68040, which has a mandatory 3-level
130 	 * structure, the segment table holds the level 1 table and part
131 	 * (or all) of the level 2 table and hence is considerably
132 	 * different.  Here the first level consists of 128 descriptors
133 	 * (512 bytes) each mapping 32mb of address space.  Each of these
134 	 * points to blocks of 128 second level descriptors (512 bytes)
135 	 * each mapping 256kb.  Note that there may be additional "segment
136 	 * table" pages depending on how large MAXKL2SIZE is.
137 	 *
138 	 * Portions of the last segment of KVA space (0xFFF00000 -
139 	 * 0xFFFFFFFF) are mapped for a couple of purposes.  0xFFF00000
140 	 * for UPAGES is used for mapping the current process u-area
141 	 * (u + kernel stack).  The very last page (0xFFFFF000) is mapped
142 	 * to the last physical page of RAM to give us a region in which
143 	 * PA == VA.  We use the first part of this page for enabling
144 	 * and disabling mapping.  The last part of this page also contains
145 	 * info left by the boot ROM.
146 	 *
147 	 * XXX cramming two levels of mapping into the single "segment"
148 	 * table on the 68040 is intended as a temporary hack to get things
149 	 * working.  The 224mb of address space that this allows will most
150 	 * likely be insufficient in the future (at least for the kernel).
151 	 */
152 	if (RELOC(mmutype, int) == MMU_68040) {
153 		register int num;
154 
155 		/*
156 		 * First invalidate the entire "segment table" pages
157 		 * (levels 1 and 2 have the same "invalid" value).
158 		 */
159 		pte = (u_int *)kstpa;
160 		epte = &pte[kstsize * NPTEPG];
161 		while (pte < epte)
162 			*pte++ = SG_NV;
163 		/*
164 		 * Initialize level 2 descriptors (which immediately
165 		 * follow the level 1 table).  We need:
166 		 *	NPTEPG / SG4_LEV3SIZE
167 		 * level 2 descriptors to map each of the nptpages+1
168 		 * pages of PTEs.  Note that we set the "used" bit
169 		 * now to save the HW the expense of doing it.
170 		 */
171 		num = (nptpages + 1) * (NPTEPG / SG4_LEV3SIZE);
172 		pte = &((u_int *)kstpa)[SG4_LEV1SIZE];
173 		epte = &pte[num];
174 		protoste = kptpa | SG_U | SG_RW | SG_V;
175 		while (pte < epte) {
176 			*pte++ = protoste;
177 			protoste += (SG4_LEV3SIZE * sizeof(struct ste));
178 		}
179 		/*
180 		 * Initialize level 1 descriptors.  We need:
181 		 *	roundup(num, SG4_LEV2SIZE) / SG4_LEV2SIZE
182 		 * level 1 descriptors to map the `num' level 2's.
183 		 */
184 		pte = (u_int *)kstpa;
185 		epte = &pte[roundup(num, SG4_LEV2SIZE) / SG4_LEV2SIZE];
186 		protoste = (u_int)&pte[SG4_LEV1SIZE] | SG_U | SG_RW | SG_V;
187 		while (pte < epte) {
188 			*pte++ = protoste;
189 			protoste += (SG4_LEV2SIZE * sizeof(struct ste));
190 		}
191 		/*
192 		 * Initialize the final level 1 descriptor to map the last
193 		 * block of level 2 descriptors.
194 		 */
195 		ste = &((u_int *)kstpa)[SG4_LEV1SIZE-1];
196 		pte = &((u_int *)kstpa)[kstsize*NPTEPG - SG4_LEV2SIZE];
197 		*ste = (u_int)pte | SG_U | SG_RW | SG_V;
198 		/*
199 		 * Now initialize the final portion of that block of
200 		 * descriptors to map the "last PT page".
201 		 */
202 		pte = &((u_int *)kstpa)[kstsize*NPTEPG - NPTEPG/SG4_LEV3SIZE];
203 		epte = &pte[NPTEPG/SG4_LEV3SIZE];
204 		protoste = lkptpa | SG_U | SG_RW | SG_V;
205 		while (pte < epte) {
206 			*pte++ = protoste;
207 			protoste += (SG4_LEV3SIZE * sizeof(struct ste));
208 		}
209 		/*
210 		 * Initialize Sysptmap
211 		 */
212 		pte = (u_int *)kptmpa;
213 		epte = &pte[nptpages+1];
214 		protopte = kptpa | PG_RW | PG_CI | PG_V;
215 		while (pte < epte) {
216 			*pte++ = protopte;
217 			protopte += NBPG;
218 		}
219 		pte = &((u_int *)kptmpa)[NPTEPG-1];
220 		*pte = lkptpa | PG_RW | PG_CI | PG_V;
221 	} else {
222 		/*
223 		 * Map the page table pages in both the HW segment table
224 		 * and the software Sysptmap.  Note that Sysptmap is also
225 		 * considered a PT page hence the +1.
226 		 */
227 		ste = (u_int *)kstpa;
228 		pte = (u_int *)kptmpa;
229 		epte = &pte[nptpages+1];
230 		protoste = kptpa | SG_RW | SG_V;
231 		protopte = kptpa | PG_RW | PG_CI | PG_V;
232 		while (pte < epte) {
233 			*ste++ = protoste;
234 			*pte++ = protopte;
235 			protoste += NBPG;
236 			protopte += NBPG;
237 		}
238 		/*
239 		 * Invalidate all but the last remaining entries in both.
240 		 */
241 		epte = &((u_int *)kptmpa)[NPTEPG-1];
242 		while (pte < epte) {
243 			*ste++ = SG_NV;
244 			*pte++ = PG_NV;
245 		}
246 		/*
247 		 * Initialize the last to point to point to the page
248 		 * table page allocated earlier.
249 		 */
250 		*ste = lkptpa | SG_RW | SG_V;
251 		*pte = lkptpa | PG_RW | PG_CI | PG_V;
252 	}
253 	/*
254 	 * Invalidate all but the final entry in the last kernel PT page
255 	 * (u-area PTEs will be validated later).  The final entry maps
256 	 * the last page of physical memory.
257 	 */
258 	pte = (u_int *)lkptpa;
259 	epte = &pte[NPTEPG-1];
260 	while (pte < epte)
261 		*pte++ = PG_NV;
262 	*pte = MAXADDR | PG_RW | PG_CI | PG_V;
263 	/*
264 	 * Initialize kernel page table.
265 	 * Start by invalidating the `nptpages' that we have allocated.
266 	 */
267 	pte = (u_int *)kptpa;
268 	epte = &pte[nptpages * NPTEPG];
269 	while (pte < epte)
270 		*pte++ = PG_NV;
271 	/*
272 	 * Validate PTEs for kernel text (RO)
273 	 */
274 	pte = &((u_int *)kptpa)[hp300_btop(KERNBASE)];
275 	epte = &pte[hp300_btop(hp300_trunc_page(&etext))];
276 #ifdef KGDB
277 	protopte = firstpa | PG_RW | PG_V;	/* XXX RW for now */
278 #else
279 	protopte = firstpa | PG_RO | PG_V;
280 #endif
281 	while (pte < epte) {
282 		*pte++ = protopte;
283 		protopte += NBPG;
284 	}
285 	/*
286 	 * Validate PTEs for kernel data/bss, dynamic data allocated
287 	 * by us so far (nextpa - firstpa bytes), and pages for proc0
288 	 * u-area and page table allocated below (RW).
289 	 */
290 	epte = &((u_int *)kptpa)[hp300_btop(nextpa - firstpa)];
291 	protopte = (protopte & ~PG_PROT) | PG_RW;
292 	/*
293 	 * Enable copy-back caching of data pages
294 	 */
295 	if (RELOC(mmutype, int) == MMU_68040)
296 		protopte |= PG_CCB;
297 	while (pte < epte) {
298 		*pte++ = protopte;
299 		protopte += NBPG;
300 	}
301 	/*
302 	 * Finally, validate the internal IO space PTEs (RW+CI).
303 	 * We do this here since the 320/350 MMU registers (also
304 	 * used, but to a lesser extent, on other models) are mapped
305 	 * in this range and it would be nice to be able to access
306 	 * them after the MMU is turned on.
307 	 */
308 	pte = (u_int *)iiopa;
309 	epte = (u_int *)eiopa;
310 	protopte = INTIOBASE | PG_RW | PG_CI | PG_V;
311 	while (pte < epte) {
312 		*pte++ = protopte;
313 		protopte += NBPG;
314 	}
315 
316 	/*
317 	 * Calculate important exported kernel virtual addresses
318 	 */
319 	/*
320 	 * Sysseg: base of kernel segment table
321 	 */
322 	RELOC(Sysseg, struct ste *) =
323 		(struct ste *)(kstpa - firstpa);
324 	/*
325 	 * Sysptmap: base of kernel page table map
326 	 */
327 	RELOC(Sysptmap, struct pte *) =
328 		(struct pte *)(kptmpa - firstpa);
329 	/*
330 	 * Sysmap: kernel page table (as mapped through Sysptmap)
331 	 * Immediately follows `nptpages' of static kernel page table.
332 	 */
333 	RELOC(Sysmap, struct pte *) =
334 		(struct pte *)hp300_ptob(nptpages * NPTEPG);
335 	/*
336 	 * Umap: first of UPAGES PTEs (in Sysmap) for fixed-address u-area.
337 	 * HIGHPAGES PTEs from the end of Sysmap.
338 	 */
339 	RELOC(Umap, vm_offset_t) =
340 		(vm_offset_t)RELOC(Sysmap, struct pte *) +
341 			(HP_MAX_PTSIZE - HIGHPAGES * sizeof(struct pte));
342 	/*
343 	 * intiobase, intiolimit: base and end of internal (DIO) IO space.
344 	 * IIOMAPSIZE pages prior to external IO space at end of static
345 	 * kernel page table.
346 	 */
347 	RELOC(intiobase, char *) =
348 		(char *)hp300_ptob(nptpages*NPTEPG - (IIOMAPSIZE+EIOMAPSIZE));
349 	RELOC(intiolimit, char *) =
350 		(char *)hp300_ptob(nptpages*NPTEPG - EIOMAPSIZE);
351 	/*
352 	 * extiobase: base of external (DIO-II) IO space.
353 	 * EIOMAPSIZE pages at the end of the static kernel page table.
354 	 */
355 	RELOC(extiobase, char *) =
356 		(char *)hp300_ptob(nptpages*NPTEPG - EIOMAPSIZE);
357 	/*
358 	 * CLKbase, MMUbase: important registers in internal IO space
359 	 * accessed from assembly language.
360 	 */
361 	RELOC(CLKbase, vm_offset_t) =
362 		(vm_offset_t)RELOC(intiobase, char *) + CLKBASE;
363 	RELOC(MMUbase, vm_offset_t) =
364 		(vm_offset_t)RELOC(intiobase, char *) + MMUBASE;
365 
366 	/*
367 	 * Setup u-area for process 0.
368 	 */
369 	/*
370 	 * Validate PTEs in Sysmap corresponding to the u-area (Umap)
371 	 * which are HIGHPAGES from the end of the last kernel PT page
372 	 * allocated earlier.
373 	 */
374 	pte = &((u_int *)lkptpa)[NPTEPG - HIGHPAGES];
375 	epte = &pte[UPAGES];
376 	protopte = p0upa | PG_RW | PG_V;
377 	while (pte < epte) {
378 		*pte++ = protopte;
379 		protopte += NBPG;
380 	}
381 	/*
382 	 * Zero the u-area.
383 	 * NOTE: `pte' and `epte' aren't PTEs here.
384 	 */
385 	pte = (u_int *)p0upa;
386 	epte = (u_int *)(p0upa + UPAGES*NBPG);
387 	while (pte < epte)
388 		*pte++ = 0;
389 	/*
390 	 * Remember the u-area address so it can be loaded in the
391 	 * proc struct p_addr field later.
392 	 */
393 	RELOC(proc0paddr, char *) = (char *)(p0upa - firstpa);
394 
395 	/*
396 	 * VM data structures are now initialized, set up data for
397 	 * the pmap module.
398 	 */
399 	RELOC(avail_start, vm_offset_t) = nextpa;
400 	RELOC(avail_end, vm_offset_t) =
401 		hp300_ptob(RELOC(maxmem, int))
402 #if BSDVM_COMPAT
403 			/* XXX allow for msgbuf */
404 			- hp300_round_page(sizeof(struct msgbuf))
405 #endif
406 				;
407 	RELOC(mem_size, vm_size_t) = hp300_ptob(RELOC(physmem, int));
408 	RELOC(virtual_avail, vm_offset_t) =
409 		VM_MIN_KERNEL_ADDRESS + (nextpa - firstpa);
410 	RELOC(virtual_end, vm_offset_t) = VM_MAX_KERNEL_ADDRESS;
411 #if defined(DYNPGSIZE)
412 	RELOC(hppagesperpage, int) = 1;		/* XXX */
413 #endif
414 
415 	/*
416 	 * Determine VA aliasing distance if any
417 	 */
418 	if (RELOC(ectype, int) == EC_VIRT)
419 		switch (RELOC(machineid, int)) {
420 		case HP_320:
421 			RELOC(pmap_aliasmask, int) = 0x3fff;	/* 16k */
422 			break;
423 		case HP_350:
424 			RELOC(pmap_aliasmask, int) = 0x7fff;	/* 32k */
425 			break;
426 		}
427 
428 	/*
429 	 * Initialize protection array.
430 	 */
431 	{
432 		register int *kp, prot;
433 
434 		kp = &RELOC(protection_codes, int);
435 		for (prot = 0; prot < 8; prot++) {
436 			switch (prot) {
437 			case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
438 				*kp++ = 0;
439 				break;
440 			case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
441 			case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
442 			case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
443 				*kp++ = PG_RO;
444 				break;
445 			case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
446 			case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
447 			case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
448 			case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
449 				*kp++ = PG_RW;
450 				break;
451 			}
452 		}
453 	}
454 
455 	/*
456 	 * Kernel page/segment table allocated in locore,
457 	 * just initialize pointers.
458 	 */
459 	{
460 		struct pmap *kpm = &RELOC(kernel_pmap_store, struct pmap);
461 
462 		kpm->pm_stab = RELOC(Sysseg, struct ste *);
463 		kpm->pm_ptab = RELOC(Sysmap, struct pte *);
464 		simple_lock_init(&kpm->pm_lock);
465 		kpm->pm_count = 1;
466 		kpm->pm_stpa = (struct ste *)kstpa;
467 		/*
468 		 * For the 040 we also initialize the free level 2
469 		 * descriptor mask noting that we have used:
470 		 *	0:		level 1 table
471 		 *	1 to `num':	map page tables
472 		 *	MAXKL2SIZE-1:	maps last-page page table
473 		 */
474 		if (RELOC(mmutype, int) == MMU_68040) {
475 			register int num;
476 
477 			kpm->pm_stfree = ~l2tobm(0);
478 			num = roundup((nptpages + 1) * (NPTEPG / SG4_LEV3SIZE),
479 				      SG4_LEV2SIZE) / SG4_LEV2SIZE;
480 			while (num)
481 				kpm->pm_stfree &= ~l2tobm(num--);
482 			kpm->pm_stfree &= ~l2tobm(MAXKL2SIZE-1);
483 			for (num = MAXKL2SIZE;
484 			     num < sizeof(kpm->pm_stfree)*NBBY;
485 			     num++)
486 				kpm->pm_stfree &= ~l2tobm(num);
487 		}
488 	}
489 
490 #if BSDVM_COMPAT
491 #define	SYSMAP(c, p, v, n) \
492 	RELOC(v, c) = (c)va; va += ((n)*HP_PAGE_SIZE); \
493 	RELOC(p, struct pte *) = (struct pte *)pte; pte += (n);
494 
495 	/*
496 	 * Allocate all the submaps we need
497 	 */
498 	{
499 		vm_offset_t va = RELOC(virtual_avail, vm_offset_t);
500 
501 		pte = &((u_int *)RELOC(Sysmap, struct pte *))[hp300_btop(va)];
502 
503 		SYSMAP(caddr_t		,CMAP1		,CADDR1	   ,1	)
504 		SYSMAP(caddr_t		,CMAP2		,CADDR2	   ,1	)
505 		SYSMAP(caddr_t		,mmap		,vmmap	   ,1	)
506 		SYSMAP(struct msgbuf *	,msgbufmap	,msgbufp   ,1	)
507 
508 		RELOC(virtual_avail, vm_offset_t) = va;
509 	}
510 #undef	SYSMAP
511 #endif
512 }
513 
514 pmap_showstuff()
515 {
516 	int i;
517 	printf("CADDR1=%x pte at CMAP1=%x\n", CADDR1, CMAP1);
518 	printf("CADDR2=%x pte at CMAP2=%x\n", CADDR2, CMAP2);
519 	printf("vmmap=%x pte at mmap=%x\n", vmmap, mmap);
520 	printf("msgbufp=%x pte at msgbufmap=%x\n", msgbufp, msgbufmap);
521 	printf("virtual_avail=%x, virtual_end=%x\n", virtual_avail, virtual_end);
522 	for (i = 0; i < 8; i++)
523 		printf("%x ", protection_codes[i]);
524 	printf("\n");
525 }
526